时间:2023-03-20 16:20:36
序论:在您撰写自动控制职称论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.1集成自动控制
集成自动控制系统是我国机械自动化工程当中是十分重要的一项。而集成化自动控制系统就是保留原有的信息技术,然后加以修改,取其精华,去其糟粕,使机械自动化系统变得更加完善。集成化自动控制系统能将原有的信息技术和与生产相关的信息糅合起来,不仅使得机械工程中的集中工程得到了加强,还将为械工程的生产与发展拓展到了更广阔的领域。计算机技术是机械自动控制系统的基础,而计算机技术在不断的发展,集成自动美国控制系统得到了多方面工程制造的认可,深入到了各个领域。同时,集成自动控制系统也在计算机技术的更新下得到了完善与提高。
1.2柔性自动控制系统
机械自动控制系统不能够保持原有的自动化成分,需要不断的更新研发与创造。而柔性自动控制系统就是新发展的一项自动技术,它不仅包含了其他自动化控制系统的特性,能够自动化生产,还能够在生产中智能化。在机械工程不断发展的同时,柔性自动控制系统已经成为了其中重要的组成部分。在机械工程的发展与应用中,柔性自动控制系统将信息技术、现代化机械生产技术与先进的计算机信息化设备进行结合,利用数控技术进行生产,这样的科学生产方式使得机械制造不断进步。
1.3智能自动控制系统的应用
所谓智能自动控制系统,就是在人工技术与计算机网络技术的共同作用下,对机械工程中的任意一个过程进行模拟和控制,让机器变得人性化,让机械自动控制系统工作时能够与人的大脑相类似,能够收集数据和采集信息。智能自动控制系统有效的结合了人工智能技术和机械工作的过程,这样,不仅使得生产效率大大提高,生产过程更易控制,还节省了人力,创造了更大的经济效益。
2自动控制系统的发展前景
未来的科技技术会比现在更加发达,而每一个国家和地区的经济水平都在不断发生着变化,我们国家的发展和经济水平也都在不断的提高。这些都离不开机械工程,而自动控制系统是机械工程的重要组成部分,只有自动控制工程不断的更新发展,机械工程才能够不断的创新,变得越来越科技化,才能呢个拓展到更多的领域。在自动控制系统在网络信息技术不断发展的背景下,在机械工程的应用中将实现先进的网络化发展,并通过网络的传播,迅速渗入到各个行业中。当今社会经济的发展更注重的可持续性,无论多啊么先进的自动控制系统,在生产生活中都应该更注重环保和节约。在生产自动化控制装置时,应该以环保为首要考虑,节约能源,这样才能够可持续发展。
3结语
关键词:自动控制风机盘管变风量系统制冷装置新风机组恒温控制器电动阀
一、工程概况:
本空调工程全部采用吊顶暗装风机盘管加独立新风系统。室内风机盘管承担全部的室内冷负荷和湿负荷,新风机组把引入的室外新风处理到室内焓值,再按需求分配到各个房间。按舒适性空调设计,采用露点送风。系统冷热源选用风冷式空气源热泵,安置于天台上。空调水系统采用一次泵定水量系统,双管制,闭式循环。系统主机采用远程控制,各房间的风机盘管可单独控制调节。
二、空气房间温度自动控制是通过接通或断开电加热器,以增加或减少精加热器的热量,而改变送风温度来实现的。
空调温度自动控制系统常用的改变送风温度方法有:控制加热空气的电加热器,空气加热器(介质为热水或蒸汽)的加热量或改变一、二次回风比等。室温控制规律有位式、比例、比例积分、比例积分微分以及带补偿与否等几种。设计时应根据室温允许波动范围大小的要求,被控制的调节机构及设备形式,选配测温传感器、温度调节器及执行器,组成温度自动控制系统。
(1)控制电加热器的功率
控制电加热器的功率来控制室温的系统,其原理图及方框图见下
①是室温位式控制方案,由测温传感器TN,位式温度调节器TNC,及电接触器JS组成。当室温偏离设定值时,调节器TNC输出通断指令的电信号,使电接触器闭合或断开,以控制电加热器开或停,改变送风温度,达到控制室温的目的
②是室温PID控制方案,由测温传感器TN,PID温度调节器TNC及可控硅电压调整器ZK组成,可实现室温PID控制。
(2)控制空气加热器的热交换能力
控制进入空气加热器热媒流量的室温控制系统及其原理如下:
该方案是由测温传感器TN,温度调节器TNC,通断仪ZJ及直通或三通调节阀组成。当室温偏离设定值时,调节器输出偏差指令信号,控制调节阀开大或关小,改变进入空气热交换器的蒸汽量或热水量,从而改变送风温度,达到控制室温的目的。
(3)制进入空气加热器的热水温度
该温控方案组成与上面相同,不同的是控制三通阀来改变进入空气加热器的水温,改变热交换能力,达到控制室温的目的。
三、房间空气相对湿度自动控制的方法
空调房间温湿度控制:
空调房间温湿度的干扰因素的多样性,气候变化的多工况性以及房间存在的较大的热惯性等因素使得利用单回路直接控制房间温湿度的方法难以达到满意的调节效果。因此,应该另选有效的方法。针对空调房间的热特性,采用串级调节较适宜。其调节框图如图所示
室温调节器用于克服维护结构传热,室内热源散热引起的室温干扰。室温调节器根据房间内实际温度与设定温度的偏差调整送风温度的设定值。送风温度调节器则用来控制送风温度。这一环节主要克服在不同的季节,新风、回风混合比的变化引起的对换热器的出口状态干扰。使其在进入房间前受到一定的抑制,减少对室内状态的影响。采用串级调节后,还能改变对象的时间特性,提高系统的控制质量。
四、风机盘管空调系统的自动控制
(一)温控器
(1)风机盘管宜采用温控器控制电动水阀,手动控制风机三速的控制方式。风机启停与电动水阀连锁。
(2)冬夏季均运行的风机盘管,其温控器应有冬夏转换措施。一般以各温控器独自设置冬夏转换开关为好。
(二)节能钥匙
(1)房间设有节能钥匙系统时,风机盘管宜与其连锁以节能。
(2)当要求不高时,可采用插、拔钥匙使风机盘管启动或断电停转的方式。使用要求较高时,可增设一个温度开关。
(三)定流量水系统
风机盘管定流量水系统自控方式较简单易行,但节能效果没有变流量自控方式好。
五、风机盘管的定流量水系统自动控制
该工程使用定流量二管制,其风机盘管机组的控制通常采用两种方式。
(1)三速开关手控的二管制定流量系统
采用二管制水系统时,表面冷却器中的水是常通的。水量依靠阀门的一次性调整,而室温的高低是由手动选择风机的三档转速来实现的。
(2)温控器加三速开关的二管制定流量水系统
采用这种控制的水系统时,表面冷却器中的水是常通的,水量依靠阀门一次性调整。室内温度控制器控制风机启停,而手动三档开关调节风机的转速。
温控器选择AFT06*系列即可满足要求。该系列是带浸入式套管的。
六、变风量系统的监控
变风量系统的基本思想是当室内空调负荷改变以及室内空气参数设定值变化时,自动调节空调系统送入房间的送风量,使通过空气送入房间的负荷与房间的实际负荷相匹配,以满足室内人员的舒适要求或工艺生产要求。同时送风量的调节可以最大限度的减少风机的动力,节约运行能耗。
除了节能的优势外,VAV系统还有以下特点:(1)能实现局部区域的灵活控制,可根据负荷变化或个人舒适度要求调节。(2)由于能自动调节送入各房间的冷量,系统内各用户可以按实际需要配置冷量,考虑各房间的同时使用系数和负荷分布,系统冷源配置可以减少20%~30%左右,设备投资相应较大减少。(3)室内无过冷过热现象。
该系统采用单风管再加热VAV空调系统,其原理和控制系统图如下:
七、空调用制冷装置的自动控制
1、蒸发器的自动控制
空调用制冷装置系统的蒸发器和冷凝器温度的自动控制如图所示
空调负荷是经常变化的,因此,要求制冷装置的制冷量也要相应地变化。而制冷量的变化,就是循环的制冷剂流量的变化,所以需要对蒸发器的供液量进行调节,实现对载冷剂即被冷却物质的温度控制。空调用制冷装置的中常用的供液量自动控制的设备是热力膨胀阀。
热力膨胀阀的一种直接作用式调节阀,安装在蒸发器入口管上,感温包安装在蒸发器的出口管上。DV1和DV2是电磁阀,压缩机停时,电磁阀立即关闭,切断冷凝器至蒸发器的供液。
2、冷凝器的自动控制
在制冷装置上通常用冷却水量调节阀来调节冷凝温度。冷却水量调节阀是一种直接作用式调节阀,安装在冷凝器的冷却水进水管上,它的压力测量温包安装在压缩机的排气端,或冷凝器的制冷剂入口端,以感受Pl的变化。
3、制冷装置的自动保护
为了保证制冷装置的安全运行,在制冷系统中常有一些自动保护器件。制冷系统常用的自动保护包括排气压力保护、吸气压力保护、减压保护、断水保护、冷冻水防冻保护等。其系统图如下:
(一)排气与吸气压力自动保护
在制冷设备中设置了安全阀,还使用压力控制器来控制排气压力。当排气压力超过设定值时,压力控制器立即切断压缩机电动机电源,起高压保护作用;控制吸气压力的采用压力控制器PxS。它对吸气压力有保护作用。
(二)油压的自动保护
在制冷压缩机运转过程中,它的运动部件会摩擦生热。为了防止部件因发热而变形而发生事故,必须不断供给一定压力的油。油压控制器是一个压差控制器,用它可以实现制冷装置油压的自动保护。
(三)断水自动保护
为了保证压缩机的安全,在压缩机水套出水口和冷凝器出水口,装设了断水保护装置。该装置是由测量冷凝器出水口水的电阻的两个电极,配以晶体管控制电路的水流控制器SLS及继电器所组成。
(四)冻水防冻自动保护
在制冷装置运行中,蒸发器中冷冻水温度过低,容易发生冻结影响压缩机的正常运行,因此设置了冷冻水防冻自动保护系统。该系统是在蒸发器出口端安装了温度控制器TfS,当冷冻水出口处温度降至较低时,温度控制器使中间继电器断开,压缩机也就停止运转;在压缩机停转后,若蒸发器冷冻水温度回升到某一温度时,温度控制器使中间继电器接通,冷冻水泵和冷却水泵就重新启动,而压缩机也恢复运转。
4、水量调节阀的选择:
根据系统水管管径尺寸为:DN25DN32DN50三种,选择相应阀门口径的电动调节阀。结果如下:(品牌:丹佛斯)
阀门口径KV值经过阀们的流量(m^3/h)
压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)压降(bar)
0.20.250.30.350.40.450.50.550.6
DN25104.475.005.485.926.326.717.077.427.75
DN32167.168.008.769.4710.1210.7311.3111.8712.39
DN504017.8920.0021.9123.6625.3026.8328.2829.6630.98
二通阀选择:DN25Kvs=10m^3/h编号:065Z3420法兰连接VL2(PN6)
065B1725法兰连接VF2(PN16)
065B1525法兰连接VFS2(PN25)
DN32Kvs=16m^3/h编号:065Z3421法兰连接VL2(PN6)
065B1732法兰连接VF2(PN16)
065B1532法兰连接VFS2(PN25)
DN50Kvs=40m^3/h编号:065Z3423法兰连接VL2(PN6)
065B1750法兰连接VF2(PN16)
065B1550法兰连接VFS2(PN25)
三通阀选择:DN25Kvs=10m^3/h编号:内螺纹:065B1425外螺纹:065B1325
法兰连接VF3,VL3
DN32Kvs=16m^3/h编号:内螺纹:065B1432外螺纹:065B1332
DN50Kvs=40m^3/h编号:内螺纹:065B1450外螺纹:065B1350
模拟量控制驱动器:AME15,AME16,AME25,AME35
AME电子驱动器用在DN50以下的VRB,VRG,VF,VL,VFS2,VEF2阀门。该驱动器自动适应行程到阀的终端位置以减少调试时间。电源电压:24V~。适配器编号:065Z7548,介质温度超过150℃。阀杆加热器,用于DN15~DN50的阀门,编号是065B2171。
手动平衡阀:MSV-C该阀用于平衡制冷、供热和生活用水系统的流量。其特点有:固定的测量孔板;带有2件针式测量接头;手轮具有关断功能,一圈360度均可读数;数字刻度指示,并具有锁定功能;固定孔板测量精度是+-5%,MSV-C为内螺纹。
八、风机盘管系统的监控
风机盘管系统的控制通常包括风机转速控制和室内温度控制两部分。
1、风机盘管系统的监控功能
(1)室内温度测量;(2)冷、热水阀开关控制;(3)风机变速及启停控制
其监控原理图如图
九、新风机组的监控
新风机组通常与风机盘管配合进行使用,主要是为各房间提供一定的新鲜空气,满足人员卫生要求。其基本监控功能有:(1)监测功能检查风机电机的工作状态,确定是处于开或关;检测风机电机的电流是否过载;测量风机出口处的空气温湿度,以了解机组是否已将新风处理到要求的状态;测量空气过滤器两侧的压差,以了解过滤器是否要求清洗;检查新风阀状态,确定是开还是关。(2)控制功能根据要求启停风机;控制水量调节阀的开度;控制干蒸汽加湿器调节阀的开度;换热器的冬季防冻保护(3)集中管理功能显示新风机组启停状态,送风温湿度,风阀,水阀状态。通过中央控制管理机启停机组,修改送风参数设定值
为实现上述功能,相应的硬件配置如下:
新风机组的新风阀配置开关式风阀控制器。这是因为新风机组的风量是根据工作区内人员数量计算出来的,一般不做调节,因此新风门只有开、闭两种状态。在风机开启时,风阀全开,停机时,风阀全关。风阀的控制通过一路DO通道完成。当输入为高电平时,风阀全开;低电平时,风阀全关。若要了解风阀的实际状态,还可以用一路DI接受风阀执行器的反馈信号。
十、电子机械房间恒温控制器RMTE
该控制器广泛应用于商业、工业和住宅建筑。适用于供热,制冷和全年空调系统的室温控制,特别是风机盘管和电加热器等。特点是:高度敏感,无基准振动问题,硬防火塑料底座和上盖,一体结构,易于安装,系统OFF位置,切断所有环路。RMTE-HC2适用于2管制供热/关断/制冷,温度范围是10~30℃。电源等级:230V+-10%50/60HZ电流等级:恒温控制器1A230V/AC风机6(2)A230V/AC
十一、区域电动阀ZV-2/3
该系列阀门与时间温度控制器一起用来控制家庭和商业的中央供热,热水及冷水系统中的水量。主要参数:适用于各种安装要求和偏好,适用于供热和供冷应用,性能可靠,使用寿命长,易于安装和接线,结构坚固。相关数据如下:
类型产品编号种类DN关闭压力KV螺纹(外)介质
ZV-215087N72402-通开/关152.5bar3.2G1/2”制冷/热水(+5/+90)
ZV-220087N7241202bar3.2G3/4”
ZV-225087N7242250.8bar6.8G1”
ZV-315087N72373-通分流器152.5bar4.3G1/2”
ZV-320087N7238201bar4.6G3/4”
ZV-325087N7239251bar5.7G1”
十二、SIEMENS3LD主控和急停开关
3LD1开关可用于控制主回路、辅助回路以及三相电机和其它负载。应用
它是手动隔离开关,符合IEC947-3/DINVDE0660第107部分(EN60947-3)标准,并且满足隔离要求。3LD1控制开关可以用于:起/停(ON/OFF)。控制该开关有三个相邻的主触头,在开关的任何一边都可以装第四个触头。这个触头可以是N触头或一个带1常开和1常闭触点的开关
SIEMENS3TH中间继电器
3TH系列中间继电器,适用于交流50Hz或60Hz,电压至660V和直流电压至600V的控制电路中,用来控制各种电磁线圈及作为电信号的放大和传递,符合IEC947,VDE0660,GB14048等标准。继电器动作机构灵活,手动检查方便,结构设计紧凑,可防止外界杂物及灰尘落入继电器的活动部位。接线端都有罩覆盖,人手不能直接接触带电部位,安全防护性很高;继电器电磁铁工作可靠、损耗小、噪音小、具有很高的机械强度,线圈的接线端装有电压规格标志牌,标志牌按电压等级著有特定的颜色,清晰醒目,接线方便,可避免因接错电压规格而导致线圈烧毁。
十三、压差控制器
根据阀门口径,选择以下几种:ASV-PVDN25ASV-PVDN32AIPDN50
ASV压差平衡阀可自动保证供热和制冷系统的水力平衡。该工程中采用的是定水量系统,压差控制器用在排气与吸气压力自动保护中。使用ASV阀门,可避免烦琐的调试过程,安装完阀门即可。在所有负荷下自动平衡系统,也有助于节能。安装时需安在回水管,且流向应与阀体上的箭头一致。
十四、参考文献
建筑环境与设备的自动化刘耀浩天津大学出版社
建筑设备自动化卿晓霞重庆大学出版社
在社会发展的多个领域,都能够发现智能化技术的应用。智能化技术具有综合性的特点,包含着多种学科内容,例如控制学。从字面的理解来看,智能化技术的实际应用是借助一定技术手段的实施,完成人工智能的机器操作目标,并且解决一些人力不能完成的问题。在较长时间的实践应用中,智能化技术逐渐走向成熟,在各个社会领域发挥的作用更加明显。在电气工程领域,利用智能化技术实现较好的自动化控制,经过了较长时间实践,应用了多方面的电气工程内容,才得出了较强的实用性结论。因为智能化技术的应用术语属于高端的计算机技术,所以,自动化控制工作中引入智能化技术,必须有一定的计算机理论基础,否则将影响智能化技术的作用发挥。在智能化技术的不断实践应用中,极大提高了自动化控制系统的运行速度,较好改善了电气自动化控制工作,降低了工作成本,减轻了工作压力,实现了人力资源配置的合理优化。
二、智能化技术的应用优势
(一)免去了控制模型的建立
在电气工程的传统工作中,自动化系统控制的实现必须有控制模型的建立。但是,在实际的操作中,被控制对象往往需要十分复杂的动态方程,这就影响了精确效果的获得。由此,在设计对象模型的环节中,经常会遇到无法科学预测、无法准确估量的一系列困难。然而,智能化系统的出现,使这些困难得到了较好解决,极大促进了工作效率的提升,同时对于一些不可控制的因素,也实现了较好的控制,大大提升了自动化控制器的准确性。
(二)实现了便捷的电气系统控制
智能化控制器的实际应用实现了更加便捷的电气系统控制,随时都可以完成对系统控制程度的有效调整,极大提升了系统的整体工作性能,是对自动化控制顺利实现的进一步保障。从这一项优势中就可以看到,和传统的自动化控制器相比较,在任何条件下,智能化控制器都具有更加完善的调解控制功能,在电气工程的自动化实践应用中占据优势。
(三)实现了一致性的智能化控制
在自动化控制中的数据处理环节,智能化控制器可以实现一致性的智能化控制,很好解决了不同数据的处理困难。而且,在自动化控制的标准执行上,即使遇到陌生的数据,也依旧可以获得具有较高准确度的估计。但是,如果发现智能化控制器在实际的应用中没有发挥出理想的效果,一定要全面排查工程的各个细节,细致地进行分析,不能盲目的否定智能化控制技术。
三、智能化技术的实践应用
(一)系统病因诊断
在电气工程诊断工作中,采用传统的人工手段具有较强的复杂性,虽然对工作人员要求十分严格,但是也无法获得较为准确的诊断病因。在电气工程工作中,实现自动化控制的过程中经常会遇到一些如设备、数据等方面的问题,这是不可能避免的,采用传统的人工诊断办法不能确保病因处理的及时性,而且处理效果也不佳。但是,智能化技术的广泛应用,使得自动化控制工作的诊断效率得到大幅度提升。而且,定时检测诊断应用,有效避免了一些不必要的问题。
(二)系统设计优化
在电气工程发展中,传统的工程设计需要工作人员进行多次重复的实验操作和改良,而且,在这一工作过程中,对工作人员的工作素质也有着较高的要求,既需要工作人员掌握一定的专业设计知识,还需要工作人员能够很好的将知识理论应用于实践工作中。但是,在实际的设计工作中,工作人员往往不能做到全面的考虑,经常会漏掉一些具体的问题。所以,一旦发现复杂问题,很多情况下都不能做到及时解决。而智能化技术的出现,较好解决了这一问题。设计工作可以借助于计算机网络完成,也可以借助于相关的软件完成,既保证了设计中数据的准确性,也实现了设计样式的丰富化,更能够做到对复杂问题的及时处理,较好保证了自动化控制的稳定性。
(三)系统的自动化控制
在电气工程中,智能化技术可以应用于多个控制环节,能够很好的实现整体性的自动化控制。智能化技术的主要控制工作是借助于三种手段实现的,一是模糊控制,二是专家系统控制,三是神经网络控制。运用这三种控制手段,极大提升了自动化控制效率,使远距离的自动化控制成为可能,增强了对电气系统的运行反馈。特别是神经网络控制,能够实现算法的反向学习,在信号处理方面得到了较大应用。
四、结语
1.1电气工程自动化工程体系优缺点同时存在
现在我国运行的电气工程自动化工程采取的控制系统一般有集中监控、DCS(分布式控制)两种。首先集中控制系统的优势在于,它将全部功能都安置在一个处理器中,在系统设计、维护以及运行等方面都比较简单。其劣势在于处理器承担的任务量较大;在此控制体系中,隔离器件闭锁和断路器联锁是运用硬接线进行连接,在设备扩容等方面比较困难,其操作难度也比较大。其次DCS系统是在集中控制系统的前提下设计并发展起来的,在现代电气工程自动化工程控制系统中获得较为广泛的应用。其劣势在于使用和传统仪表相似的模拟仪表,减少系统安全可靠性,在维修环节也比较困难,各个设计厂家没有规范而统一的标准,加重维修的成本,并且其价格比较高。
1.2电气工程自动化工程控制系统还不具备标准化端口
电气工程自动化工程控制系统接口到目前为止还没有统一、完善的标准,这种情况提升工程造价,阻碍数据资源共享的实现。自动化体系设计方案很重要,然而很多企业没有规范的方案,各个厂家和企业间硬件和软件交换数据有差异,导致企业间难以深入的交流和信息交换。同时电气工程自动化工程控制没有实现统一化,难以根据客户要求设计、建立规范、标准的电气工程自动化工程控制体系。
1.3电气工程自动化工程控制没有实现专业化
在电气工程自动化工程控制设计、安装以及操作等环节,相关工作人员的专业技术比较薄弱,需要进一步提高。此外我国电气工程自动化工程控制习题创新能力不足,一般产品属于中低档,需要提高其创新能力。
2构建电气工程自动化工程控制系统的发展对策
2.1建立一体化的电气工程自动化工程控制体系
要从各个环节建立起具有一体化的电气工程自动化工程控制体系。首先国家要按照电气工程自动化工程控制体系具有技术水平和技术特点,制定统一的产品规范。其次厂家和企业要加强交流,从设备精简、调试与维修以及技术合理性等多方面向规范化的方向进行制造和生产,让控制体系更科学。最后要研发出新型、操控更方便的一体化控制系统,可以运用社会性质和分工外包间的协作,让零部件的生产走商业化生产的路线,促进电子工程自动化工程控制体系的一体化。
2.2运用国际化生产标准
IEC61850是现在控制系统厂家所认可的国际标准,可以参照这个标准对控制体系进行研究和开发。另外可以运用微软公司所制定的标准技术,由于企业策划电气工程自动化工程控制系统时,PC系统是连接管理系统和控制系统的中间系统,其接口具有标注化,能够保证厂家和企业间实施软件和硬件的数据交换,妥善的解决由于通讯而产生的问题。
2.3引进和培养电气工程自动化工程控制系统的专业人才
随着电气工程自动化工程控制逐渐集成化和高智能化,对其制造人员、维修人员和安装人员都具有很高的要求,所以要引进和培养专业技术较强的人员。首先企业要培养具有实际操作能力的人才,他们要了解和掌握软件和硬件系统的操作。其次对安装人员记性专业技术进行培训,使之懂得安装的流程和技术。最后要更新技术人员的知识结构,可以引进人才,通过引进人才的“传帮带”,培养新人,促进他们在维修和系统保养等方面的学习,提高工程系统安全可靠性。
3结语
摘要:远程自动化控制闸门单片机
闸门调节是灌区工程中经常采用的手段,闸门控制的探究对于节约能源、确保水利工程的正常运行、提高水资源的利用效率和节约用水具有重要的意义。目前国内大部分灌区已基本实现流量数据的自动采集和监测,并把数据传输到管理部门,但是在根据有关数据进行远程自动监测和控制方面成熟的经验非常少。国外非凡是欧美等先进国家在这方面已经达到较高的水平,如美国的SRP灌区自动化浇灌系统,可以同时采集100多点的水位、闸门开度和其他信息,通过计算机处理后,控制几百座闸门、150多处泵站的运行。本文以国内某大型灌区为例,对闸门的自动监控进行了探究。
1、系统的总体设计
本系统采用无线数据传输技术,分一个主站和若干个子站,通过无线调制解调器构成一个无线通讯网络,对多个断面的数据信息进行采集、传输、处理和控制。系统的总体结构图如图1所示。下位机中的传感器把引水渠中的水位值和各闸门的开度值经转换后送给编码器,编码器对水位及闸门开度信号进行编码,在通过避雷器将编码信号传给数采仪,数采仪将数据进行初步加工和处理后由无线调制解调器传给上位机,上位机即系统主站,可分别和不同的子站建立联系,查询各测点的数据,并按照用户的要求对各闸门进行控制,下位机中的控制箱接收到此信息,经过计算,发出控制信号自动控制闸门到一定的开度,达到自动控制的目的。
图1闸门远程自动监测和控制结构图
2、下位机系统设计
设计下位机重点在于闸门自动控制箱的设计,本文提出闸门的运行控制模式,并进行可靠性处理,然后利用无线传输设备和上位机进行通讯,传输数据。
2.1下位机硬件电路设计
本系统采用AT89系列单片机,采用矩阵式键盘进行输入数据,键盘提供切换键、时间设置键、控制键三个按键,通过三个按键显示水位、流量、闸门开度、日期和时间。切换键实现上述四个功能的转换,时间设置键用于修改日期和时间,控制键用于对电机启停进行控制。
2.2闸门控制系统设计
本系统下位机接收到上位机传来的要求流量值(或水位值),当要求的流量值(或水位值)和系统所测的流量值(或水位值)不一致时,单片机启键闭合,闸门电动装置控制箱自动启动电机,提升或下降闸门,当所要求的流量值(或水位值)和当前所测流量值(或水位值)相等时,单片机闭键闭合,电机自动停止,达到自动控制的目的。
闸门的运行控制模式有实时型控制模式和定时型控制模式两种,在实时型控制模式中,上位机根据用户要求的流量,利用流量—水位关系曲线把要求的流量换算成要求的水位,然后和下位机联系,下位机接到信号后,由电动装置控制箱控制电机的正反转,达到要求时停止转动。定时控制模式要求用户输入所期望的流量值和要求闸门动作的时间,下位机的控制箱在规定的时间里自动开启和关闭闸门,进行控制。
2.3无线通讯设备SRM6100调制解调器
SRM6100无线调制解调器原是美国Data-LincGroup公司生产的军用产品,现应用于民用。它提供最可靠和最高性能的串行无线通讯方法,在2.4GHz-2.483GHz频段应用智能频谱跳频技术,在无阻挡物的情况下,两调制解调器之间的通讯距离可达32.18公里,可实现PLC(可编程控制器)和工作站之间的无线连接。SRM6100应用跳频,扩频和32位误码矫正技术保证数据传输的可靠性。无需昂贵的射频点检测技术。射频数据传输速率为188kbps。并且不需要FCC点现场许可证。SRM6100支持多种组态,包括点对点通讯和多点通讯。多点通讯对子站数目无限制。并且SRM6100可做为中继器工作,以达到扩展通讯距离或克服阻挡物通讯的目的。
2.4下位机可靠性处理
为了精确控制电动闸门的关闭,避免电动闸门在工作中出现过载破坏或关闭不严的现象,本系统在电动轴上安装了转矩传感器,用来监测闸门输出轴的转动力矩,以判定闸门是否关严、是否被卡住。闸门电动装置用于检测和控制闸门的开度,本系统在转动轴上安装了光电码盘,考虑到闸门可能出现频繁的正反转交替,为了避免错位和丢码,采用双光耦技术,光耦输出的两路信号经74221双单稳触发器进行整形,89C51的INT0和INT1对其进行计数、计时,并判定转动方向,计算闸门开度。电动闸门在工作中若出现异常现象,系统会自动报警,切断电机电源并显示故障情况。
2.5下位机软件设计
下位机的软件设计分为闸门自动装置控制箱程序设计和串行口中断服务程序设计两部分。闸门自动装置控制箱程序设计主要完成数据采集、存储、显示、按键操作等功能,串行口中断服务的程序完成下位机向上位机数据的传送和用户设定参数的接收。控制箱程序的主框图如下摘要:
图2、闸门自动控制程序流程图
3、上位机设计
上位机的软件部分采用VB6.0为开发工具,将各个功能模块化,分别解决相应新问题,再将各个模块组装,构成上位机软件系统的核心,上位机软件系统的结构如图3所示,通信模块位于最底层,其余模块功能的实现都直接或间接建立在此模块的基础上,本文利用VB的API函数编写串口通讯程序,程序的框图如图4所示。数据管理模块的主要功能就是为水位、流量、闸位等建立数据库,并对其进行管理。
图3、上位机软件系统结构图
图4、通信模块程序流程图
4、结语
本文以国内某灌区为例,全面分析了灌区闸门自动化控制系统的整体结构及其设计,对其软件开发和硬件选择作了全面阐述,并总结了提高自动化系统可靠性的经验,为提高灌区现代化管理水平提供了有利的工具,具有较高的使用价值和广泛的应用前景。
参考文献摘要:
[1、水利水文仪器介绍,水利部南京水利水文自动化探究所,1997。
1.1电气工程自动化模型得到了简化。
通常而言,在电气工程自动化控制达到智能化目的之前往往需要建立相应的模型,除此之外,在模型建立的时候还需要综合考虑到很多会直接或者间接影响模型的参数。鉴于此,通过模型来实现自动化控制归纳的说就是通过相关的动态方程来控制和反馈数据的,但是通过这种方式是无法保证在数据传输的期间不出现意外状况来影响数据的传输以及反馈,这样一来数据的及时性和准确性就无法得到保证了,使得理论结果与现实实践之间出现偏差也就不足为奇了,这会导致电气工程自动化控制的工作效率大大的降低。然而我们通过实践得出,引入智能化技术能够非常有效的跳过设计与建立模型这一环节,可以实现调节的自动化,从根本上降低了出现上述情况的可能性和风险,在很大程度上避免了那些不可控制的客观因素发生,提高了控制器的精确度和自动化的控制效率。
1.2确保电气工程自动化控制的统一。
传统的自动化控制器一般地说都是就某个模型对象来加以控制的,事实证明,这种方式对于单个的模型控制效果良好,但是无法统一而全面的控制电气工程自动化控制系统,这样一来就极易造成不同的模型之间各不相同。然而智能化电气工程的自动化控制就可以有效避免模型设计的这一环节,因此无法控制模型的复杂性这一问题就不复存在了,这不管是对于指定的对象或者非指定对象都能够保证控制上的一致性,从根本上确保了电气工程自动化控制的统一,这样一来不仅大大提高了自动化控制器的工作效率,工作质量也得到了质的提高。
1.3有效控制了电气工程自动化系统。
前面已经讲到,智能化技术能够控制和反馈对电气工程中所有设备的数据,与此同时还能够有效根据响应时间、下降时间和鲁棒性变化等参数来对电气工程自动化的控制程度实现自动调节,这样一来就可以节省了重新建立模型的时间,另外还可以在第一时间来处理因客观因素以及预警自动化控制过程中所造成的错误。这样及时的处理和高效的警惕大大降低了风险,节省了很多的人力物力财力的消耗,从而更好的实现了对电气工程自动化系统的有效控制。
2、智能化技术的有效应用
就目前而言,智能化技术在电气工程中主要应用表现为以下几个方面。
2.1模糊逻辑与控制。
一般地说,电气工程的自动化控制系统中都会含有一定数量的模糊控制器,它能很好的代替PID控制器。就目前而言,模糊逻辑的控制主要有M型与S型两种应用类型,但是有一点需要强调的是,这两种控制器都有各自的规则库,又可以叫做ifthem的模糊规则集。其中S型控制器的规则为if。X是G,y是H,则W=f(X,Y),这里所说的G与H指的都是模糊集,下面分别对这两种应用类型进行介绍。M型控制器主要由模糊化、知识库、推理机与反模糊化这四大部分所共同构成,主要用于实现变量的测量、量化、模糊化的目的,其隶属函数的形式也是多种多样的;知识库主要是由语言控制的数据库与规则库两个部分,其开发方式是将专家知识与经历置于控制及应用目标上。值得注意的是,在建模的过程中,一定要使用神经网络的推理机与模糊控制器对其加以操作;推理机同样也是模糊控制器中不可或缺的重要组成部分,它能够很好地模仿人类决策与推理模糊控制行为;反模糊化主要用来量化与反模糊化,它包括的技术种类也比较多,其中应用得最为广泛的当属中间平均技术与最大化的反模糊化这两种了。
2.2优化设计与诊断故障。
在过去的很长一段时间里,设计产品通常都是依靠实验或者传统手工检验来完成,通过这种方式所得方案往往不是最优方案。随着计算机技术的蓬勃发展以及在各个领域的广泛应用,越来越多的电气工程产品开始更多的选择使用CAD来进行设计。这样大大减短了产品的开发周期,如果在这个过程中很好地渗透智能化技术,可谓是如虎添翼,使其设计质量与效率得到大大的提升,专家系统的设计就是一个典型案例。不仅如此,智能化技术在优化设计还体现在遗传算法方面。众所周知,遗传算法是当前全世界范围内比较先进的计算法,其最大的优势之处在于计算精度高,因此在电气工程中得到了亲睐,而且在其中也起到了极其重要的作用。除此之外,故障和它的预兆在电气工程中的关系是错综复杂的,具有不确定与非线性的特点,这给我们的判断带来很大的困扰。
3、总结语
从20世纪50年代开始,一直到现在的几十年探索中,人工智能化已经可以像人一样进行感应与行动,凭借着高效率、高精度以及高协调性等特点超越来传统的控制技术。随着计算机技术的不断发展,对人的思维能力进行模拟的构想现在已经得到了实现,后来在程序语言编制上,智能化模拟的可实施性也得到而来增加。随着电气工程自动化控制技术的不断发展,智能化技术的市场得到不断拓宽,这种技术的应用不仅可以使电气工程的工作速度得到提高,同时还在电气工程中节约了大量的人力与物力[1]。智能化技术在整个电气自动化控制行业中主要是利用不断实践来进行的,其中包含的内容十分广泛并复杂。智能化技术属于计算机高端技术的一种,因此要想很好的掌握其应用,那么必须要具备专业性计算机理论知识。智能化技术不仅有效有提升了电气自动化控制的工作效率,同时也也很大程度上降低了工作人员的压力,优化了资源配置,促进了电气工程自动化系统的稳定运作。
2智能化技术的主要特点分析
对于很多人来说,智能化技术是一个陌生的词汇,然而它却与我们的生活息息相关,下面我们就对它的主要特点进行阐述,帮助大家深入理解智能化技术。作为电力系统中的关键环节,电气工程自动化控制对电力系统的正常运行存在着决定性的作用,为了保证电气工程的顺利发展,从而有效提升恒业的整体水平,对智能化技术进行应用是大势所趋。
2.1高精度与高效率
在电气工程自动化控制中,精度与效率是两项重要指标,在智能化技术指导留下,对多个CPU与高速CPU芯片进行使用,电气工程控制工作效率与精度得到了显著的提高。
2.2多系统控制
智能化技术的应用可以有效减少相关工序,同时还能使工作效率得到显著提高,目前该项技术在电气工程自动化控制中的实际应用正朝着系统控制的方向发展着。
2.3科学计算的可见性
在电气工程自动化控制中,智能化技术的应用可以对数据进行有效的处理,不仅可以通过文字和语言进行信息交流,同时还能利用图形与动画实现信息交流,这在很大程度上提升了工作的效率。
3智能化技术在电气工程自动化控制中的应用
在电气工程自动化控制系统中应用智能化技术,有效提升了系统的工作效率,降低了工作人员的压力,对于电气工程自动化控制中智能化技术的应用主要体现在三个方面:(1)怎样将智能化技术应用到电气工程中对病因的诊断与维修之中;(2)如何对电气产品与设备进行优化设计;(3)通过怎样的形式对电气工程智能化控制进行实现。
3.1对电气工程自动化控制中的病因进行诊断
利用传统的人工方式对电气工程系统中的病因进行诊断是非常复杂的,同时对工作人员的要求也非常高,而且也不能对病因进行准确的诊断。在电气工程自动化控制中难免会发生一些设备和数据问题,依靠人工诊断方式往往不能对病因进行及时的诊断与处理。而智能化技术的应用不仅可以使病因诊断的效率得到明显提高,同时还可以使定时检测与诊断得到实现,在这一过程中很多问题的出现都会得到避免。
3.2对电气工程设计进行优化
在传统电气工程设计中,往往需要通过工作人员在工作过程中进行反复的实验才能完成。在这一过程中工作人员很有可能不会考虑到一些具体情况。如果真的出现复杂性的问题,也不能对其进行及时的解决,在这种情况下,工作人员不仅要掌握大量的专业设计知识,同时还要很好的将自己已经掌握的理论知识运用到实际应用中。智能化技术得到应用以后,设计人员就可以利用计算机网络和相应的软件对电气工程自动化控制进行设计,这样一来,设计数据的准确性得到而来增加,同时设计样式也非常丰富,另外,还能对一些复杂问题进行及时的处理,电气工程自动化控制的顺利运行就得到而来有效的保证。
3.3对整个电气工程进行自动化控制
电气工程控制系统中存在着很多控制环节,智能化技术的应用正好可以使对整个电气工程的自动化控制得到实现。智能化技术在应用过程中通过神经网络与模糊控制等方式实现对电气工程的自动化控制。其中,神经网络控制的应用是非常关键的,它可以进行反向的算法,同时具有多层次的结构。在神经网络控制的子系统中,其中的一个子系统可以结合系统参数对转子的速度进行调控与判断,而另一个子系统就可以按照以上参数对转子的速度进行判断与控制。目前神经网络控制已经在识别模式以及信号处理等方面得到了广泛的应用。智能化手段的应用使电气工程的远距离与无人操控自动化控制得到了实现,通过公司局域网的帮助,智能化技术的应用使得对电气系统各环节的实际运行情况进行了详细的反馈分析。
4结语