时间:2023-03-17 18:08:25
序论:在您撰写建筑抗震论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.1新疆地震活动的分布及主要特点新疆地震活动的主要特点是地震发生的频率高、强度大,在历史上发生过强烈地震,如富蕴县的8.1级大地震,昭苏县的8.0级大地震,1985年乌恰县的7.4级大地震,使整个县城严重损坏,易地重新建城。1997年的伽师县6.9级地震,2003年的巴楚—伽师县6.8级地震,2008年的于田—策勒县7.0级大地震都造成了人员伤亡和经济损失。2008乌恰发生的6.8级地震,2011年尼勒克县、巩留县交界处发生的6.0级地震,2012和田地区洛浦县发生的6.0级地震,阿图什市发生的5.2级地震,新源县、和静县交界处发生的6.6级地震,和田地区于田县发生的6.2级地震,若羌县发生的5.5级地震,2013年阿图什市发生的5.2级地震均造成了人员伤亡,并给震区人民造成了巨大的财产损失。2008年国家确定5个重点防御区中有2个在新疆,全疆87个县市设防烈度都在6度以上,7度以上的县市占84%,8度以上的县市占34%。
1.2新疆村镇建筑抗震研究进展新疆地域辽阔,村镇建筑的建筑风格、结构形式、建造材料及建造方式等因所处的地理环境、气候条件、历史传统、生活习惯、民族习俗等不同而有较大差别。根据调查,新疆地区的建造材料主要利用当地材料采用传统的建造方法,常见的结构形式有石木结构、木构架-生土墙结构、木板夹心结构、砖木结构、砖混结构、木结构和木构架土坯围护墙等。新疆对现有建筑的抗震设计标准都是参照国家现行标准来控制的,还没有根据新疆村镇建筑所处区域的特点来单独研究并制定抗震设防要求。例如,砖混结构房屋按照国家现行多层砌体设计规范进行设计、施工;砖木结构房屋墙体抗震构造措施按普通砖混结构进行设置;对于木板夹芯结构与木构架-土坯墙结构只是给出了防止房屋倾倒的建议;对单层石木结构仅是给了简单的抗震建议措施。目前,有个别学者针对新疆村镇建筑的特点进行了抗震研究。曾广群等阐述了新疆村镇建筑的抗震性能及目前主要存在的问题,并提出了相应的解决和改进措施。阿肯江•托呼提等通过对历次大地震中新疆村镇土坯房屋的震害特点研究,提出了木柱、梁-土坯组合墙结构体系,以简便易行的手段提高新疆土坯房屋结构的抗震能力。王瑾采用理论分析和试验相结合的方法对石木结构进行抗震性能研究。陈汉清对木柱梁-土坯组合墙体进行数值模拟及抗震性能分析。陈嘉对生土结构材料的物理性质及力学性能进行了试验研究。赵成对改性土坯砌体进行了试验研究。夏多田分析了新疆村镇建筑的抗震性能,提出了未来村镇建筑抗震技术发展的趋势。
2新疆村镇房屋节能研究现状
就新疆村镇建筑建造现状节能而言,村镇建房节地、节材、资源的重复利用及房屋保温隔热意识非常淡薄。
2.1村镇房屋使用土地资源状况砌体结构材料主要以粘土砖为主,而粘土砖的生产原料又主要来自于耕地。随着建设的迅速发展,建筑材料需求量急剧增加,加剧了对粘土资源的破坏性使用,造成大量土地毁坏,生态环境遭到破坏。
2.2村镇房屋使用建筑材料状况农村居民文化水平不高,节能与环保意识欠缺。有些地区,农村居民在住宅建设中,房屋高度不仅有攀比现象,还普遍认为层高越高夏天会越凉爽。其实,增加层高不仅使建筑材料用量增加,而且加大了建筑物采暖与制冷的能耗。现有极少一部分经济条件较好的地方,在政策鼓励下,建造时选用轻质高性能的材料,并且尽量使材料循环使用。
2.3村镇建筑保温状况村镇建筑围护结构的热工性能差,围护结构是建筑物构成的主体,据统计通过护结构的热损失约占建筑物总耗热量的70%~80%。绝大部分农村住宅墙体均无保温层,且窗户、屋顶等密封性差。近些年,随着农村经济水平的提高、农民收入的增长,农民在建造新房时片面地追求面积大、外观美,但只是改变了瓦材、墙体、窗户等面层材料,而忽视了保温隔热材料的重要性。有极个别的学者认识到新疆地区村镇建筑节能的重要性,对其村镇建筑节能进行了研究。原甲在对新疆不同寒区村镇住宅建设现状进行调研的基础上,提出住宅节能设计的方法与思路。冯伟刚研究了棉秆植物纤维砌块用来替代粘土砖,既充分利用新疆当地充足的棉秆资源,又同时使村镇建筑抗震性能和保温性能得到极大的提高。姜曙光等通过对新疆暴风雪灾害的调研,分析了村镇建筑砖木结构、砖混结构和轻型钢结构的房屋受损特点,提出了建筑修复加固的原则和方法,以及在修复加固的同时兼顾对既有建筑保温节能的改造方案。
3绿色建筑展望
新疆地域辽阔,村镇区域地理位置复杂,各地区灾害分布不均,经济发展水平相差很大,缺乏具有针对性、切实可行的新型抗震节能绿色建筑结构体系的研究。随着村镇经济结构的变化和居住生活水平的提高,村镇建筑应将逐步由“粗放型”向“细致化”转变,由“面积型需求”向“舒适型需求”转变。为此,需加大研究力度,针对各个地区的特点,把村镇建筑建成绿色建筑,把村镇建筑的抗震、节地、节材、资源的重复利用及房屋保温隔热有机结合起来,在各要素间寻找到平衡点,精心构思、设计、精选材料、合理构造,同时严格控制建设成本,研究出抗震、节能、经济、适用并且村镇居民能接受的绿色建筑,这也是新农村建设、村镇防震减灾和节能减排以及国家对绿色建筑的战略需求。新疆村镇绿色建筑面临着抗震与节能的迫切要求,从设计、施工技术、质量验收和管理等方面,将村镇绿色建筑的抗震与节能有机结合,使绿色建筑抗震与节能实现协调统一,进行抗震节能综合研究设计。新疆村镇绿色建筑应从以下几个方面来考虑抗震与节能结构体系的研究与设计:
1)考虑抗震问题时,必须保证采取的抗震措施造价低,适应性强,村镇居民能接受,易于推广。
2)研究的结构体系,应易于就地取材,并充分利用秸秆,建筑垃圾等生态绿色环保建材,遵循经济、实用、生态、环保、抗震、节能的原则。
3)所研究的村镇建筑抗震与节能结构体系在保证结构的抗震安全性的同时,还需综合考虑建筑墙体、屋面及门窗的保温需求。同时,建筑墙体、屋面及门窗的保温措施不仅使房屋达到预期的保温效果,同时还应兼顾提高抗震效果。
论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。
建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑
设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。
一、建筑体型设计问题
建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。
二、建筑平面布置设计问题
建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。
三、建筑竖向布置设计问题
建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。
四、建筑上应满足的设计限值控制问题
根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。
五、屋顶建筑的抗震设计问题
在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。
六、结束语
总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑
抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。
参考文献:
[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。
[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。
1.1材料对超限高层建筑抗震设计的影响
质量是建筑的核心,而建筑的抗震性能是体现建筑质量的主要因素,对建筑质量的影响极大,然而,在当今超限高层建筑抗震设计中,却由于由于多种原因造成抗震设计的质量出现了严重的问题,材料对其造成的影响只是其中一个重点要素。材料的影响主要现在材料的质量、材料的不匹配等问题,在超限高层建筑工程设计中,有很多工作人员为某一己之私而在施工中用一些质量不达标的材料,严重影响的建筑的抗震性能;另外,还有些工作人员在设计中会将一些其他的建筑抗震设计方案引入到该建筑物中,而由于建筑物的高度以及整体结构都有所不同,导致出现“张冠李戴”的现象,与实际的建筑缺乏匹配度,导致超限高层建筑抗震设计受到了一定的影响,使建筑的安全性降低达不到超限高层建筑抗震的标准。
1.2平面结构设计对超限高层建筑物抗震设计的影响
超限高层建筑物的平面结构设计是与建筑物外形有着直接的联系,当然也与建筑物抗震设计有着密切的关系,同时超限高层建筑的平面设计与施工难度有着直接的联系,然而,在当今超限高层建筑平面设计中却存在一定的问题,平面结构设计引起的施工难度过大,而导致的超限高层建筑抗震的施工也受到了一定的阻碍,即使能顺利施工也会因为结构设计的不合理对超限高层建筑抗震性能造成一定的影响,在后期的使用中依旧存在重大的安全隐患[3]。另外,如果平面结构设计的不合理,会造成无法准确的确定超限高层建筑抗震的均衡点的位置,尤其是超限高层建筑设计中需要考虑的因素较多,可能会在平面结构设计中会漏掉某些细节的设计,一些结构细节出现问题也会导致超限高层建筑整体的抗震性安全性受到一定的影响。
1.3受力体系对超限高层建筑抗震设计带来的影响
受力体系是建筑抗震设计中需要考虑的重要因素,而且每个建筑的受力体系也各不相同,这与设计者的经验没有太大的联系,因此,在设计的过程中不能光凭经验来完成设计,而且,确实有这种情况发生,觉得自己有着多年的设计经验,就没有详细的对建筑受力体系进行分析,通过以前的经验直接按部就班的放到设计里,最终导致建筑的受力体系与抗震设计发生了矛盾,造成超限高层建筑抗震的性能降低,使得建筑整体缺乏安全性和稳定性。
2超限高层建筑抗震设计优化
2.1做好超限高层建筑设计的前期工作
由第一部分得知,建筑材料对超限高层建筑设计抗震设计的影响及其的严重,因此在设计前要做好前期的准备工作,主要对设计中涉及到的材料质量、数量、规格等做好相应的规划设计,通过对材料的了解再进行相应的设计,尤其是材料的性能参数一定要做好详细的分析,因为有很多材料类型差不多,但是,还是有着细节上的差别。另外,还应对超限高层建筑地点的地质地貌、周边环境等进行详细的分析,这些因素对超限高层建筑抗震设计也有着一定的影响。因此,要做好前期的材料搜集、整理的工作,要确保相关数据材料收集的全面性和准确性。通过做好前期的准备工作,不管是在超限高层建筑的整体设计还是对建筑的抗震设计需要将这些数据作为设计的基础,进而确保设计过程中避免出现一些误差。
2.2对超限高层建筑物平面结构设计的优化
超限高层建筑的设计要比平常的多层、高层的设计特点复杂的多,而且对超限高层建筑抗震设计的本身要求也特别高,因此,在这种情况下超限高层建筑抗震设计中,应全面的考虑各种因素,将其作为优化方案的因素。另外,在对超限高层建筑抗震设计的过程中,设计者要根据实际情况,再结合多种有关设计因素,如,抗震指数、施工方式等,设计出多种超限高层建筑抗震设计方案,然后再通过多种方案的相互比较,选择出最优化的方案,通过这种优化方式,能更好的做好超限高层建筑的抗震设计,而且,以这种设计优化方式,一旦发现方案中存在设计问题或安全隐患能及时的比较出来,并及时的改正,对建筑抗震性能具有很大的保障。
2.3明确超限高层建筑抗震设计中的受力体系
随着社会不断的发展,人们不仅对建筑的质量要求提高了,同时也对建筑物的外观有着一定的要求,美观、大气、上档次是建筑外观现出来的典型特点,但是有很多建筑物只考虑到外观设计,却忽略了建筑的受力体系,对建筑物的抗震性能带来直接的影响,如果这种现象出现在超限高层建筑的设计中,势必会为建筑物带来更大的安全隐患,因此,在对超限高层建筑物抗震设计中一定要明确建筑物的受力体系。建筑的外观要求是要满足的,而在达到这个要求的同时,还需要设计者充分考虑到超限高层的抗震设计,要尽量以后者为主,毕竟后者是关乎到建筑物使用的安全性。可以通过力学的知识来寻找超限高层建筑抗震设计受力体系中的平衡点,以此来实现超限高层建筑的抗震要求。
3结语
该断裂大致沿合肥市长江路呈东西走向纵贯市区,为隐伏断裂,在五里墩南断面向南陡倾,为张性断裂。该断裂在新第三纪至第四纪初曾强烈活动,大蜀山橄榄玄武岩喷溢可能与其有关。但晚更新世以来没明显的活动,对小震活动的控制作用不明显。
2合肥地区地震历史学习分析
2.1合肥地区历史地震记录据史料记载
公元288年至今,区域内没有发生过7级以上强震。
2.21970年以来地震记录资料
2.3对地震记录资料的分析
合肥地区据史料记载,自公元288年至今区域内没有发生过7级以上强震;1673年3月~1962年8月史料中,1673年合肥南部发生的5级地震,位置在桥头集-东关断裂、大蜀山-长临河断裂与乌云山-合肥断裂的交汇部位,据专家推断该三条断裂为活动断裂,且合肥地区具备发生5.5级~6级地震构造。此外,邻区地震也影响合肥,如1668年山东郯城-莒县间发生的8.5级地震,造成合肥大约7度的破坏;1917年霍山6.25级地震和1954年在合肥六安间发生的5.5级地震均造成大约6度的破坏。据有关部门从1973年至1994年发生的MS≥1级地震震中分布与断裂关系研究发现:合肥地区小震活动主要集中于区域东部,形成一个小震丛集区和两个密集带:
①一个小震丛集区位于池河-西山驿和乌云山-合肥断裂之间,反映区域东部地壳活动性明显强于西部;
②巢湖内的姥山-中庙一线存在着一个近东西向展布的小震密集带,线状特征明显;
③元瞳-梁园-石塘一带小震呈密集带,暗示有北西向隐伏线性构造的存在。
3合肥地区地震评价和抗震烈度区划现状
合肥市是距离郯庐断裂带最近的省会城市,经权威部门研究认为:
①郯庐断裂安徽段为中强震低频地段;
②合肥地区未来的地震危险性主要来自华北地震区的长江下游-黄海地震带和郯庐地震带;
③未来可能发生在安徽六安-霍山地震区、涡阳—凤台地震区和江苏溧阳地震区的强震,会对合肥地区有较大潜在地震影响;
④综合各方面情况,合肥区域发生6级以上地震或受到大于7度地震影响的概率极低。国务院把合肥列为全国13个地震重点监视防御城市之一,2010年抗震规范规定合肥市四区(蜀山、瑶海、庐阳、包河)及四县(长丰、肥东、肥西、庐江),建筑抗震设防基本烈度为7度、第一组、地震加速度为0.10g;巢湖市列为建筑抗震设防基本烈度为6度、第二组、地震加速度为0.05g。
4合肥地区工程抗震浅析
4.1合肥地区抗震措施一般不需要考虑“避让断裂带”的要求
根据2010年抗震规范第4.1.7条规定“抗震设防小于8度区域,建筑抗震不用考虑避让断裂带”的要求,原因是通过国内外大量地震资料在小于8度地震区,地面一般不发生断裂错动。合肥市四区、四县、一市抗震设防基本烈度皆小于8度。
4.2合肥地区建设工程时地貌单元勘察要求
合肥地区要注意在河、湖岸边漫滩及一级阶地等地貌单元上建设工程时,应该注意场地土(砂土和粉土)的液化问题。在这些地貌单元勘察时必须进行有关技术测试,如对砂土要进行标准贯入试验,对粉土要进行颗粒分析试验和标准贯入试验,并进行有关液化土评价和场地液化指数的综合计算,进而提供设计对地基基础的技术措施依据,施工中严格按照勘察设计要求进行,使建筑满足抗震规范要求。必须注意:本次规范修订依据国家标准《建筑工程抗震设防分类标准》(GB50223—2008),修订中总结汶川大地震的经岩土工程与基础处理336验教训考虑到我国经济已有较大发展,把“未成年的学校、医院、体育场馆、博物馆、文化馆、图书馆、影剧院、大商场、交通枢纽等人员密集的公共服务设施”划为重点设防类,其地基基础抗震设防措施比基本烈度提高一度的要求进行设计。对抗震基本烈度为6度区的巢湖市,建筑抗震乙类(重点设防类,如中小学、幼儿园等)及甲类建筑,严格注意勘察时应对场地在7度地震力作用下有液化的土层进行技术测试与液化评价,进而在设计时考虑要按照“比基本烈度提高一度(7度)设防”的要求采取措施处理,以达到抗震规范规定的抗震要求。
4.3对重要的、体型复杂的高层建筑应该进行地基动参数检测、地震力衰减和时程分析
在地震过程中,土的剪切模量和阻尼比随剪应变的加大而呈现出明显的非线性变化。在有限的范围内剪切模量G与剪切模量Gmax的比值随剪应变γ的变化曲线仅与土类有关,故土的非线性动力特性可以用G/Gmax~r曲线描述。而Gmax由原位剪切波速测试出的S波速Vs由下式算出:Gmax=ρVS2。根据《高层建筑混凝土结构技术规程》(JGJ3-2002)要求,地震作用计算拟采用弹性时程分析法进行多遇地震下的补充计算。通过对场地原位剪切波速测试和人工模拟的加速度时程曲线,计算各层土层地震动力反应,给出地表加速度时程,再进行有关加速度时程合成。通过地震危险性分析给出了场地基岩地震动时程的动力学特性:峰值加速度及加速度反应谱。人工合成地震动就是计算满足这些特性的加速度时程,其方法是不断调整初时时程Ra(t)的幅值谱,使Ra(t)的动力特性(包括加速度反应谱及峰值加速度)均满足危险性分析的要求。地震动时程的强度包线采用如下形式:(t/c1)2×Agmaxt≤c1Agmaxc1≤t≤c2exp(-c3(t-c2)Agmaxt>c2f(t)={其中:c1、c2、c3是确定包络线的3个参数;Agmax是最大加速度;t是从地震初至开始的时间。对合肥周围地区,在考察每个潜源的最大震级和潜源内发生最大震级地震对场地影响两个方面的因素后,多遇地震各参数:c1=17.76,c2=26.52,c3=0.12。为反映地震全过程,对多遇地震时程长度为20.48s,采样步长0.02s,相应的采样点数分别为1024。
4.4建设工程勘察、设计、施工必须严格按照国家抗震设防分类
标准(2008)和2010抗震规范执行新规范继续保持着“小震不坏、中震可修、大震不倒”的抗震设防方针。所有建筑只要严格按规范设计和施工,可以在遇到高于区基本烈度1度的地震下没有倒塌的危险,从而实现生命安全的目标。其中:所指的“小震即多遇地震、中震即基本烈度地震、大震即罕遇地震”,其对应的50年“超越概率63%、10%和2%~3%的地震”,对应的“重现期分别为50年一遇、约500年一遇和约2000年一遇的地震”。
4.5对既有建筑抗震的现状分析与抗震措施的建议
4.5.1既有建筑抗震的现状
根据笔者参加的安徽省住建厅与安徽建筑工业学院2009年对“安徽省城市重要市政基础设施和公共建筑的抗震性能调查”研究,既有建筑物抗震隐患主要存在如下几种情况。
①抗震设计标准的变化引起建筑物抗震性能不满足现行规范要求,如原抗震设防分类标准为丙类而现行规范定为乙类建筑,如教育建筑、医疗建筑、大型公用建筑等,因为现在新规范要求要比基本抗震烈度提高1度设计,所以现在不能满足新规范要求抗震。
②7度区1978年前建造使用的建筑和6度区1989年前建造使用的建筑,由于之前没有进行抗震设计建造,因此其安全性较低,达不到现行抗震要求。
③对于1978年前建造的建筑虽然进行了一些抗震加固,但其整体性差,很多建筑根本不能抵抗基本烈度的地震作用。
④1978年以后建造的抗震房屋,但根据对部分建筑(如合肥市西苑新村某楼,6层,二层)现场检测其承重墙砌体砂浆标号很低,已很多达不到M25,不能抵抗基本烈度7度时的地震力作用。
⑤其他问题诸如:部分建筑结构体型不规则和设计缺陷,引起的建筑结构抗震能力薄弱;部分建筑由于施工质量较差和建筑材料性能指标不合格导致结构抗震性能不满足设计要求;有些建筑未经技术鉴定或设计许可,擅自加层或改变使用功能而导致结构抗震性能存在隐患;个别建筑建造在没有处理的坑道上、液化场地上、可能造成的滑坡上等等。
4.5.2对既有建筑的抗震措施的建议
对重要公共建筑设施应该积极进行鉴定、加固。对过去设计符合老规范没有达到新规范标准的如未成年的学校、医院、体育场馆、博物馆、文化馆、图书馆、影剧院、大商场、交通枢纽等人员密集的公共服务设施,应该重点实施加固改造。对民房、危房应积极宣传,鼓励自行委托鉴定、加固或拆除。
5结语
原建筑竣工于1984年,按7度(0.15g)抗震设防,结构抗震设防类别为丙类。依据《建筑工程抗震设防分类标准》第4.0.3条规定,改造后的结构抗震设防类别为乙类。鉴于医院实际需求及《建筑抗震鉴定标准》第1.0.6条规定,该病房楼进行改造设计前需对原结构进行抗震鉴定,并确定其后续使用年限为40a。
2建筑现状调查
抗震鉴定前应进行建筑现状调查,包括搜集勘察、施工及竣工验收的相关原始资料;当资料不全时,应根据鉴定的需要进行补充实测。调查建筑现状与原始资料相符程度、施工质量和维护状况。
2.1原始资料调查
该住院楼岩土工程勘察报告、竣工图纸、竣工验收资料等原始资料均较齐全。
2.2外观质量检查
钢筋混凝土结构主要检查结构构件的裂缝及劣化程度等。经检查个别框架柱及剪力墙表面存在蜂窝、麻面现象;少数框架梁存在梁底钢筋锈蚀现象;个别屋面板板底存在碱蚀、露筋现象。结构构件未发现明显开裂、较大变形等严重结构性损坏现象。
2.3材料性能检测
建筑结构的材料性能是结构安全的基本保证。本工程混凝土强度采用超声-回弹综合法对混凝土抗压强度进行现场取样检测,检测混凝土强度摘录如表1所示。现场采用钢筋探测仪对部分梁、板、柱、剪力墙的钢筋配置、分布及混凝土保护层厚度进行检测,检测结果基本符合原图纸设计要求。
3抗震鉴定
3.1抗震鉴定原则
本工程属于B类建筑,应进行两级鉴定。
(1)第一级鉴定对现有房屋的宏观控制和构造鉴定为主进行综合评价;
(2)第二级鉴定:对现有房屋进行抗震验算为主结合构造影响进行综合评价。(1)和(2)同时满足的建筑评定为满足抗震要求,可不进行加固处理;(1)满足而主要抗侧力构件的抗震承载力不低于规定的95%、次要抗侧力构件的抗震承载力不低于规定的90%,可不进行加固处理;(1)不满足而抗震承载力较高时,可通过构造影响系数进行综合抗震能力的评定;(1)和(2)均不满足要求时,应采取加固或其他相应措施。
3.2抗震等级确定
本工程使用功能为病房楼,根据《建筑工程抗震设防分类标准》第4.0.3条,二三级医院的门诊、医技、住院用房,抗震设防类别应划分为重点设防类(乙类)。依据现行《建筑抗震设计规范》第6.1.2条规定,本楼框架抗震等级为二级、剪力墙抗震等级为一级。依据现行《建筑抗震鉴定标准》第6.3.1条规定,框架抗震等级为三级、剪力墙抗震等级为二级。改造工程的抗震设防目标及抗震设防水准,按照安全、经济、合理的要求,结合其后续使用年限40年相协调,确定框架抗震等级为三级、剪力墙抗震等级为二级。
3.3场地、地基和基础
查阅原地勘报告,本楼建造于对抗震有利的地段,场地类别为II类,其地基主要受力范围内不存在软弱土、饱和砂土和饱和粉土或严重不均匀土层。依据《建筑抗震鉴定标准》第4.1条、4.2条规定,可不进行场地对建筑影响的抗震鉴定,同时也可不进行地基基础的抗震鉴定。
3.4抗震措施鉴定(第一级鉴定)
3.4.1结构高度
本工程结构总高26.90m,满足《建筑抗震鉴定标准》第6.1.1条,7度框架-抗震墙结构适用的最大高度为120m的要求。
3.4.2房屋的结构体系
本工程为双向多跨框架-抗震墙结构,结构布置及框架梁、柱、剪力墙截面满足《建筑抗震鉴定标准》第6.3.2条房屋结构体系要求。本工程建筑平面形状为矩形,平面没有局部突出,立面没有局部缩进,均满足《建筑抗震鉴定标准》第6.2.1条房屋结构体系要求。楼层刚度大于其相邻上层刚度的70%,且连续3层总的刚度降低小于50%,满足《建筑抗震鉴定标准》第6.2.1条房屋结构体系要求。首层个别框架柱轴压比为0.98,不满足《建筑抗震鉴定标准》第6.2.1条框架-抗震墙柱(抗震等级三级)轴压比≤0.95的要求。
3.4.3混凝土强度等级
本工程混凝土强度实测结果,满足《建筑抗震鉴定标准》第6.3.3条梁、柱、墙实际达到的混凝土强度等级不应低于C20要求。
3.4.4框架梁的配筋及构造
本工程框架梁纵向受拉钢筋的配筋率不大于2.5%;梁端截面的底面和顶面配筋量的比值不小于0.3;梁端箍筋实际加密区的长度大于梁截面高度的1.5倍,箍筋最小直径为8mm,满足要求。
3.4.5框架柱的配筋及构造
本工程框架柱实际纵向钢筋的总配筋率,框架中柱、边柱和角柱均大于1.0%,满足要求。柱箍筋加密区的箍筋间距为100mm,箍筋直径为φ8mm和φ10mm,满足要求。柱加密区箍筋肢距不大于200mm,且每隔1根纵向钢筋在2个方向均有箍筋约束,满足要求。
3.4.6框架节点核心区构造
本工程框架节点核心区内箍筋最大间距为100mm,最小直径为φ12mm,柱体积配箍率为1.6%~2.1%,满足《建筑抗震鉴定标准》第6.3.6条要求。
3.4.7抗震墙的配筋及构造
本工程抗震墙墙板竖向、横向分布钢筋的配筋率约为0.628%,均大于0.25%,最大间距为150mm,最小直径φ12mm,满足要求。抗震墙边缘构件的配筋,纵向钢筋配筋率为1.2%~2.0%,箍筋直径均为φ10mm,间距均为100mm,满足《建筑抗震鉴定标准》第6.3.7条要求。
3.4.8填充墙
本工程砌体填充墙在平面和竖向布置均匀对称,满足要求。砌体填充墙沿框架柱每隔500mm有2根φ6mm拉筋,拉筋伸入填充墙内长度700mm,满足三四级框架不应小于墙长的1/5且不小于700mm的要求。墙长度大于5m时,墙顶部与梁设有拉结措施,满足《建筑抗震鉴定标准》第6.3.9条要求。
3.5抗震承载力验算(第二级鉴定)
第二级鉴定是以抗震验算为主,结合构造影响进行综合评价。第二级鉴定可采用楼层综合抗震能力指数法与《建筑抗震设计规范》规定方法进行抗震计算分析。本工程采用中国建筑科学研究院编制的《PKPM混凝土结构鉴定加固》软件进行抗震承载力计算。在建立计算模型和选择计算方法时采取了如下处理。
1)在PKPM软件计算中,依据原设计施工图、本次改造建筑图,并结合现场调查结果,确定结构布置及荷载分布,建立计算空间计算模型
2)抗震计算的有关参数抗震设防烈度:7度;设计基本地震加速:0.15g;设计地震分组:第一组;设计特征周期值:0.30s;建筑场地类别:II类;地面粗糙类别:C类;框架抗震等级:三级;剪力墙抗震等级:二级。
3)梁柱节点重合部分,梁端简化为刚域。
4)考虑填充墙对于结构总体刚度的影响,计算时取周期折减系数为0.75。
5)根据第一级鉴定结果,体系影响系数取0.95。经计算首层个别框架柱抗剪不满足要求,首层、2层部分框架梁、板承载力不满足要求,3层、5层改造为设备机房位置楼板承载力不满足要求。
3.6抗震鉴定结论
1)个别框架柱轴压比不满足要求;
2)个别框架柱抗剪不满足要求;
3)部分框架梁承载力不满足要求;
4)部分楼板承载力不满足要求。
4抗震加固设计
4.1框架柱加固
轴压比不足的框架柱采用加大截面法进行加固处理。该方法是在框架柱构件表面凿毛和清洁处理后用钢筋混凝土围套,围套内的纵向受力钢筋由计算确定,并与原框架柱内纵向受力钢筋共同工作。采用加大截面法不仅提高框架柱的承载力,并且在一定程度上提高了结构的刚度。加大截面的尺寸一般在100mm左右,采用混凝土加大截面,浇筑时很难振捣密实,加固质量难以保证。本工程采用高强灌浆料代替混凝土,保证了混凝土的密实度。抗剪承载力不足的框架柱采用横向粘贴碳纤维的方法进行加固处理。框架柱粘贴环向碳纤维箍,缠绕3圈且搭接长度应超过200mm。碳纤维箍外侧抹厚度不小于25mm的高强度水泥砂浆,以满足防火及防护要求。框架柱顶部及底部设置4mm厚钢板封闭箍进行附加锚固。
4.2混凝土梁加固
混凝土梁采用型钢加固法。此方法适用于不允许增大构件截面尺寸,而又需要大幅度地提高承载力的混凝土结构加固。型钢加固法是在混凝土构件四周包以型钢,型钢与被加固梁之间用聚合物砂浆或结构胶等方法黏结。型钢表面抹厚度不小于25mm的高强度水泥砂浆(应加钢丝网防裂)作防护层,具体做法
4.3楼板加固
楼板采用粘贴碳纤维加固法。碳纤维复合材加固混凝土结构,主要是利用纤维抗拉的高强度、高弹性模量、高应变性能及利用改性环氧树脂类胶结材料,使碳纤维与混凝土结构产生良好的黏结性,加固补强原结构受拉纵向钢筋和受剪、抗扭箍筋的不足,从而提高结构抗弯、抗剪、抗扭承载力。该方法用高性能黏结剂将碳纤维布黏贴在楼板表面(纤维粘贴方向应平行于构件的主受力方向),使两者共同工作,提高楼板的抗弯承载力。为提高碳纤维布黏结加固耐久性,碳纤维表面采用压结钢片加射钉进行附加锚固,压结钢片长度宜为碳纤维布宽+60mm,射钉应不打穿碳纤维布。
5结语
1)抗震鉴定应根据结构形式、后续使用年限等因素,结合现场实测数据,采用逐级鉴定的方法,进行抗震性能分析。
建筑的抗震设计对于国家财产的保护,人民生命安全都有着极其重要的意义,当地震来临时,建筑抗震设计不仅仅能够保护人们的生命安全,还保护了国家财产,为国家经济建设做出了贡献。所以建筑抗震设计是建筑设计中极其重要的内容。但是,由于地震等灾害的发生具有不确定性,随时性,破坏性等的特点。房屋的抗震结构设计对于房屋的建筑结构有及其重要的作用。建筑结构的抗震设计是属于结构设计中的概念设计,能够在概念设计中清晰的表达。为了更好的做好建筑结构的抗震设计,在设计之前需要精确的掌控灾害能量的最大输入,结构体系,建筑结构的类型,刚度分布等相关问题。这样就可以从根本上消除房屋建筑结构抗震结构中的薄弱环节。
2建筑结构抗震设计的要点
地震的影响范围一般情况下都很大,一定区域内的建筑物都会受到一定的破坏。所以建筑物场所的选择对于结构的抗震设计及其总要。在选择建筑场地时要注意以下几个方面:地质结构坚硬、避开有较大坡度的山脚,周围地势开阔和避免地震多发地带。在结构的抗震结构设计中对于建筑物的高度有一定的规定和标准。因此建筑物的高度要严格按照国家标准设计。在一些地震多发地区,不仅仅要设计合理科学,还要注重建筑材料的性能。通常情况下,不同高度的建筑对于建筑材料也有一定的要求。一般都采用不同规格的钢筋混凝土结构。同时,为了提高结构的抗震性,在建筑结构抗震设计中,需要减小柱的轴压比,增大柱的截面尺寸。从抗震设计的科学角度来讲,减小柱轴压比主要是为了使柱子处于大偏心受压状态,从而避免这样的情况发生比如:纵向受力钢筋未达到受拉屈服但混凝土却被压碎。在建筑的抗震设计时,很多专家认为应该会提高建筑物抗震设计的等级。这主要是考虑到我国是地震多发国家。大型地震容易出现重现。或是50年,或是200年。建筑的抗震设计还存在一些其他的问题,比如在选择结构体系选型时,尽量可以采取承载能力高、延展性好和充足耗能性能的体系,主要是为了在地震发生时,建筑结构能够有足够的抗倒塌能力。同时在结构的刚性和强度方面要水平方向和竖直方向均匀分布。防止出现局部结构出现问题导致整体结构的倒塌。
3抗震设计对结构抗连续倒塌的影响
3.1地震作用及倒塌机制地震
可以造成建筑倒塌是地震造成一切破坏的主要形式,是为结构在外部作用力下的倒塌。连续性的倒塌是因为内部内力发生重新分布而造成的。在地震作用下,构建的受力和质量分布有关系,构建受力分布在整个结构之中。整个结构的非弹性形变能够很好的减轻地震队构建的破坏。建筑结构的倒塌开始于结构中大部分梁柱节点的损坏。近而造成其他部件和结构的倒塌和破坏,这也叫做建筑结构的连续性倒塌。
3.2抗震设计与抗连续倒塌设计的关系
抗连续倒塌设计的主要目的在于防止建筑结构倒塌的连续性,连锁性的发生。抗震设计的标准是比较小的地震,建筑没有出现任何的结构的问题。较大的地震建筑结构不会倒塌。一般中等地震造成的破坏仍旧可以重新的进行结构的维修。抗震设计和抗连续性设计都有一个共同点就是都特别的注重结构的整体性和连续性。在地震作用性,建筑结构造成结构一定的破坏,抗倒塌能力的作用主要是在梁抵抗内力重分布上。然而结构的抗震设计能够使梁中纵向受力钢筋增加,也提高了结构的抗倒塌能力。建筑结构的抗震设计和抗连续倒塌设计存在很多的相同点,同时也有不同和相互的影响。
3.3抗震设计对结构抗连续倒塌的影响
目前,抗震设计对抗倒塌能力的影响有两种不同的观点:一种认为抗震设计通常是可以取代抗连续倒塌设计的,主要在于抗震设计的结构有整体牢固性的特点,使得结构的抗连续倒塌性能提高。另一种观点认为,抗震设计和抗连续性的倒塌设计有着不同的出发点和目的,存在较大的差别。对于每一种设计都应该充分的考虑,不能够想当然的认为抗震设计可以取代抗连续倒塌设计。因为结构抗震设计中的一点点的构造的方法可能增加了。虽然一些构造措施可增加建筑抵抗倒塌的能力,但是毕竟这样的一点点增加对于整个建筑抵抗连续倒塌能力是微乎其微的。于述强等人通过科学的方法对于抗震设计对于结构抗连续倒塌性的影响。主要采取的方法是建立模型进行分析。采用拆除构件法通进行实验的主要方法,这也是美国使用比较科学的方法。分别拆除了角柱,中柱,拆除内柱等,然后分析了模型的抗连续性倒塌能力。通过模型实验分析得到了科学的理论。一是地震作用存在较多的偶然因素在里面,但是有不同于偶然作用,存在较大的差别,所以抗震设计并不能够取代抗连续倒塌设计。二是虽然抗震设计不能够期待连续性倒塌设计,但是研究表明抗震设计对于抗连续倒塌能力有着极其重要的意义。在较小级别的抗震结构设计中对于结构抗连续倒塌能力没有一个明显的提高,但是当建筑的抗震级别高于8度时,抗震设计结构抗连续倒塌能力得到增强。
4结束语
论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。
建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。
一、建筑体型设计问题
建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。
二、建筑平面布置设计问题
建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。
三、建筑竖向布置设计问题
建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。
四、建筑上应满足的设计限值控制问题
根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。
五、屋顶建筑的抗震设计问题
在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。超级秘书网
六、结束语
总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑
抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。
参考文献:
[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。
[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。