时间:2023-03-17 18:05:26
序论:在您撰写人工智能论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:人工智能计算机技术
一、人工智能的定义
“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
二、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
三、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).
[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).
截至目前,古典控制方法一直都无法被人工智能控制技术所取代。但是随着时代的进步和发展,现代控制理论也日臻完善,人工智能软件技术(包括遗传算法、模糊神经网络、模糊控制以及人工神经网络等)逐渐取代了传统的控制器设计常规技术。这些方法有着许多的共同之处:都要具备不同类型和数量的描述特性和系统的“apriori”技术。这些方法都有着显著的优势,所以工业界都做出了不断的尝试,旨在进一步开发和使用这类方法,但是工业界又急于开发该系统,从而使其性能更加优异,系统更加简单、易操作。直流传动的控制程序较为简单,在过去得到了较为广泛的应用。但是不可忽视的是,它们有着难以克服的限制性因素,而且随着DSP技术的不断进步和发展,直流传动的优势逐渐隐没,性能更高的交流传动逐渐取代了直流传动。但近几年,部分厂商逐渐改良工艺,更高性能的直流驱动产品涌入市场,但是人工智能技术却鲜少提及。在未来几年,使用人工智能的直流传动技术将在更大范围内得到推广和普及。
交流传动瞬态转矩具备较高的使用性能,它有着较强的控制性,仅次于直流电机。目前,直接转矩控制(DTC)和矢量控制(VC)是比较常见的高性能交流传动控制方法。当前,不少厂商都顺应市场形势,相继推出了矢量控制交流传动产品,而且无速度传感器的矢量控制产品也大量上市。在性能较高的驱动产品中广泛使用AI技术,将会进一步提高产品的使用性能,截至目前,仅有两个厂家在其生产的产品中运用人工智能(AI)控制器。而在十五年前,日本和德国的研究人员提出了直接转矩控制这一概念,经过了十年的发展演变过程,ABB公司面向市场,将直接转矩控制的传动产品引入市场,让人们能够直接感受直接转矩控制的优势,从而开展相关的研究。可以预见,人工智能技术将会运用到直接转矩控制中,常规的电机数学模型将会被替代,从而退出市场。
人工智能控制器主要分三种类型,即:增强学习型、非监督型和监督型。当前,常规的监督学习型神经网络控制器的学习算法和拓扑结构已基本成型,这在一定程度上限制了此种结构控制器的生产和使用,导致计算机计算时间增长,而且常规非人工智能学习算法在具体应用上效果不明显。而要克服这些困难,最好的办法就是采用试探法和适应神经网络。常规模糊控制器的模糊规则表和规则初值是“a-priori”型,这加剧了调整难度。假若该系统无有效的“a-priori”信息作为支撑,那么将导致系统陷入瘫痪。而要有效克服此类缺陷和困难,就可以运用自适应模糊神经控制器,保证系统的正常运转。
二、电力系统中的智能控制
当前,世界各地的专家和学者都将眼光聚焦于智能控制理论的研究,研究表明,只要合理运用智能系统,就能在很大程度上提高电力系统控制水平,推动我国电力传动系统步入新的阶段。市面上广泛使用的交直流传动系统在控制技术和手段上已日臻成熟,闭环控制、矢量控制都有着较好的运用前景。PID控制法作为最新的控制方法,能较好地完成数学建模需承担的控制任务,但是在具体实践中,电力传动系统表现出较强的不稳定性,随工作状态的变化,电机参数也不断变化着,这加剧了传统建模控制的难度。
概述制造业是国家的经济命脉,而汽车制造又是战略性支柱产业,它包括了整车、各种零配件厂等生产商,也包括了各地经销企业和销售企业。近年来,我国汽车行业面临着前所未有的挑战,原材料、生产、物流成本上涨、利润下降,以及国际经济形势的影响。因此,汽车企业可以运用具有智能分析功能的商务智能系统,通过分析历史数据快捷、及时地输出各类报告,预测未来的客户需求和销售趋势,在宏观上为企业管理人员提供决策依据。计算机人工智能技术发展到了今天,已经开始使用庞大的知识库来有效地取代人类器官或机构的记忆方法,近些年来很多的专家决策系统在考虑一定规则的基础上对人类的诊断和经验上的分析都能够做出很好的判断,甚至处于主导地位。这个系统可以很好地利用知识库,并从中挖掘出我们想要的问题答案、成功地寻找到其中的关联性,并提取相应的模式等。而实际上,这样的专家系统已经在很多领域都有了非常不错的应用,帮助很多企业在很短的时间内就做出相应的生产计划、调度计划、运输计划等,非常有效率,而且可以大大地增加收益,并很好地控制企业的人力成本。我国工业机器人是从20世纪80年代开始起步。经过二十年余年的努力已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示中国市场上工业机器人总共拥有量近万台,占全球总量的0.56%,其中完全国产工业机器人行业内规模比较大的前三家工业机器人企业,行业集中度占30%左右。其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为0.2亿以上。多年来我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位、劳动强度大、作业环境恶劣、焊接质量不易保证,而且生产的柔性也很差,无法适应现代汽车生产的需要。
1.1搬运机器人在汽车制造业中应用
汽车桥箱类零件具有精度高、加工工序多、形状复杂、重量重的特点。为提高其加工精度及生产效率,各重型汽车生产厂家纷纷采用数控加工中心来加工此类零部件。而在使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定位精度,且需要保证每次上料的一致性。由于人工上料此类的工件具有劳动强度高、上料精度不好控制等缺点现在正逐步被工业机器人或专机进行上下料所取代。工业机器人具有重复定位精度高、可靠性高、生产柔性化、自动化程度高等、突出的优势,与人工相比,能够大幅度提高生产效率和产品质量,与专机相比具有可实现生产的柔性化、投资规模小等特点。机器人智能化自动搬运系统作为减速器壳体加工的重要生产环节,虽然已经在国内重型汽车厂内取得成功的应用,但依然尚未普及。在国家经济建设飞速发展的进程中,重型载重汽车的生产能力及生产力水平亟待有一个质的飞跃,而工业机器人即是提升生产力水平的强力推进器。
1.2焊接机器人在汽车制造业中的应用
汽车行业的发展水平,代表了一个国家的综合技术水平,汽车工业的发展将会带动其他行业的发展。各厂商为了在日渐激烈的竞争中立于不败之地,必须率先实现焊接自动化。因此,今后除了如汽车、摩托车这样的大批量生产行业。一些产品多样化的企业,为了提高焊接质量,也将会考虑使用焊接机器人,如钢结构等行业,与此同时,对焊接机器人的要求也必然会逐步提高,如说对焊道的自动跟踪系统的需求会逐步加大等。作为焊接机器人和焊接机的专业生产厂家,OTC公司将继续为提高中国的高速、高效、自动化焊机做出自己的贡献。对于在汽车工业中的点焊应用来说,目前已广泛采用电驱动的伺服焊枪。日本丰田公司已决定将这种技术作为标准来装备其日本国内和海外的所有点焊机器人。
1.3装配机器人在汽车制造业中的应用
在国内外各大汽车公司装配生产线上被广泛采用的装配机器人。一方面使汽车装配自动化水平大大提高,目前,国外某些大批量生产的轿车的装配自动化程度已达50%~65%。另一方面,有效地减轻了工人的劳动强度,提高了装配质量并明显地提高了生产率。在汽车整车装配中,机器人不仅用于挡风玻璃的密封济涂覆、安装和车轮备胎、仪表盘总成、后悬梁、车门、蓄电池等部件的安装。
1.4喷涂机器人在汽车制造业中的应用
喷涂机器人在汽车制造业中可喷涂形态复杂的汽车工件而且生产效率和很高。多用于汽车车体的喷涂作业,如喷漆、喷釉等。除了上述机器人以外,汽车制造业中应用的机器人还有用于特殊加工的激光加工机器人用于部件形状测量、装配检查和产品缺陷检查的检测机器人,抑制尘埃粒子大小及数量的水切割机器人和净化机器人等。
2人工智能在汽车制造业中的进展分析
随着中国汽车工业的迅猛发展,机器人在先进汽车制造中的重要性也越来越凸显。机器人的产品应用广泛,覆盖焊接、物料搬运、装配、喷涂、精加工、拾料、包装、货盘堆垛、机械管理等领域。在汽车行业的应用主要分为以下五大部分。车身系统中,采用虚拟仿真等手段,主要针对车身覆盖件不断开发出新的标准化、模块化解决方案,动力总成系统中,提供了涵盖汽车传动系统核心部件,发动机、变速箱和传动轴的全套装配测试系统。在冲压自动化系统方面从卷材与堆垛到零件的码垛,从提供控制系统到企业ERP,从设计到生产支持与效率优化,拥有全面的工程能力,涂装自动化系统方面,以高柔性高精度的喷涂机器人来帮助客户提升涂装质量,减少生产废料,而在焊接自动化系统中,机器人比较典型的应用是电阻点焊、电弧焊,其最新一代机器人配套提供一系列高度人性化的软件工具。汽车工业的最大特点是产量大,生产节拍快,产品一致化程度高。消费者对汽车质量要求越来越高,是促使机器人应用越来越普遍的一个重要原因。机器人本身只是集装箱里的一个货物,随机器人的设备功能越来越精细,客户的思维在这时候逐渐走向成熟,在采购时不再单单考虑某生产工位的瓶颈,而更多地考虑到长期战略因素,如维护成本加入的高低,长期投资回报是否划算,服务涵盖地域是否广泛,响应是否及时,全球技术支持能力有多强,中期后期不同阶段解决问题的能力有多大等等。这时,产品本身的价格和意义相对弱化而长期的价值越发凸显。
3结束语
顾名思义,人工智能就是研究怎样利用机器模仿人脑进行推理、设计、思考和学习等思维方式和活动,帮助人们解决一些需要专家才能解决的问题,通俗一点说,就是借助计算机来执行人类的智能活动,最终实现利用各种自动化机器或是智能机器,模仿和完成人的智能活动,实现某些“机器思维”或是脑力自动化。但从学术的角度说,人工智能包含的范围非常广,与人工智能相联系的不下几十门学科,所涉及的理论领域和应用的领域几乎涉及人类的所有活动,人类任何工作离不开智能,因此,任何领域都是人工智能的潜在应用领域。例如,应用人工智能的方法和技术,设计和研制各种计算机的“机器专家”系统,可以模仿各行各业的专家去从事医疗诊断、质谱分析、矿床探查、数学证明、家务管理、运筹决策等脑力劳动工作,以完成某些需要人的智能、运用专门知识和经验技巧的任务等等。在信息社会的构建中,网络的应用正在深远的影响着人们的工作和生活方式,计算机网络技术的发展正处在日新月异、交融更替之际,信息安全的保证将成为公众的需求和时代的责任,在这个方面,人工智能技术是一种模仿高级智能的推理和运算技术,在很多实际的控制和管理问题上都显示出具有很强优势,如果能把人工智能科学中的一些算法与思想应用到计算机网络中,将会大大提高计算机网络的性能,不断提高信息的安全性。
2信息安全与人类生活的关系
信息安全包含的范围很广,大到国家军事机密,小到如何防范商业秘密和人身秘密。在目前的网络信息社会中,信息安全的实质就是要保护信息系统或信息网络中的信息资源免受各种类型的威胁、干扰和破坏,但是在我们的日常生活中,这种事情还是屡有发生。
2.1信息安全对人们生活的影响
(1)对信息服务的破坏。
一是信息的泄露,被某个未被授权的实体或者是个人获得用于不法目的,而且在这个过程中,可能导致信息被非法转让、删减或者是破坏,让原来信息拥有者的信息失去真正的意义;二是被拒绝服务,这是对信息或者是相关资源的合法访问被无条件阻止。
(2)非法使用对合法权的破坏。
这主要是某一资源被某个非授权的人,或以非授权的方式使用。一是窃听。用各种可能的合法或非法的手段窃取系统中的信息资源和敏感信息。例如对通信线路中传输的信号搭线监听,或者利用通信设备在工作过程中产生的电磁泄露截取有用信息等。通过对系统进行长期监听,利用统计分析方法对诸如通信频度、通信的信息流向、通信总量的变化等参数进行研究,从中发现有价值的信息和规律。二是假冒。通过欺骗通信系统(或用户)达到非法用户冒充成为合法用户,或者特权小的用户冒充成为特权大的用户的目的。黑客大多是采用假冒攻击。攻击者利用系统的安全缺陷或安全性上的脆弱之处获得非授权的权利或特权。例如,攻击者通过各种攻击手段发现原本应保密,但是却又暴露出来的一些系统“特性”,利用这些“特性”,攻击者可以绕过防线守卫侵入系统的内部破坏
2.2信息安全受到威胁的分类
(1)授权侵犯
被授权以某一目的使用某一系统或资源的某个人,却将此权限用于其他非授权的目的,也称作“内部攻击”。在某个系统或某个部件中设置的“机关”,使得在特定的数据输入时,允许违反安全策略。
(2)木马攻击。
软件中含有一个觉察不出的有害的程序段,当它被执行时,会破坏用户的安全。这种应用程序称为特洛伊木马(TrojanHorse)。计算机病毒:一种在计算机系统运行过程中能够实现传染和侵害功能的程序。
(3)人为原因。
一个授权的人为了某种利益,或由于粗心,将信息泄露给一个非授权的人。信息被从废弃的磁碟或打印过的存储介质中获得。侵入者绕过物理控制而获得对系统的访问。重要的安全物品,如令牌或身份卡被盗。业务欺骗:某一伪系统或系统部件欺骗合法的用户或系统自愿地放弃敏感信息等等
3人工智能对信息安全的影响和未来发展趋势
随着人工智能的不断发展和应用方法的不断成熟,人工智能在信息安全保障的服务能力将更加强大,人工智能也将处于计算机网络发展的前沿,与计算机发展的轨迹同行。笔者仅就人工智能在信息安全的具体领域“数字水印”的研究展开论述,分析未来人工智能与信息安全的密切关系。
3.1数字水印的定义
数字水印技术的基本思想源于古代的密写术。古希腊的斯巴达人曾将军事情报刻在普通的木板上,用石蜡填平,收信的一方只要用火烤热木板,融化石蜡后,就可以看到密信。使用最广泛的密写方法恐怕要算化学密写了,牛奶、白矾、果汁等都曾充当过密写药水的角色。可以说,人类早期使用的保密通信手段大多数属于密写而不是密码。然而,与密码技术相比,密写术始终没有发展成为一门独立的学科,究其原因,主要是因为密写术缺乏必要的理论基础。
数字水印(DigitalWatermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取,因为当前的性信息安全技术都是以密码学为基础,计算机处理能力提高后,这种密保措施已经越来越不安全,因此数字水印就是人工智能跨速发展的结果,数字水印是信息隐藏技术的一个重要研究方向,这对于信息安全有着超强的保护能力。
3.2数字水印的特征
(1)隐蔽性:
在数字作品中嵌入数字水印不会引起明显的降质,并且不易被察觉。
(2)超强安全性:
水印信息隐藏于数据而非文件头中,文件格式的变换不应导致水印数据的丢失。
(3)不可丢失性:
是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持完整性或仍能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。
3.3发展前景
(1)实现数字化作品产权信息保护。
计算机网络的发达,让数字作品(如电脑美术、扫描图像、数字音乐、视频、三维动画)的版权保护成为当前的热点问题。但是数字作品的拷贝、修改非常容易,而且可以做到与原作完全相同,“数字水印”利用数据隐藏原理使版权标志不可见或不可听,既不损害原作品,又达到了版权保护的目的。目前,用于版权保护的数字水印技术已经进入了初步实用化阶段,IBM公司在其“数字图书馆”软件中就提供了数字水印功能,Adobe公司也在其著名的Photoshop软件中集成了Digimarc公司的数字水印插件。
(2)商务票据信息安全保护。
随着高质量图像输入输出设备的发展,特别是精度超过1200dpi的彩色喷墨、激光打印机和高精度彩色复印机的出现,使得货币、支票以及其他票据的伪造变得更加容易。网络安全技术成熟以后,各种电子票据也还需要一些非密码的认证方式。数字水印技术可以为各种票据提供不可见的认证标志,从而大大增加了伪造的难度。
(3)重要声像数据信息安全保护。
数据的标识信息往往比数据本身更具有保密价值,如遥感图像的拍摄日期、经/纬度等。没有标识信息的数据有时甚至无法使用,但直接将这些重要信息标记在原始文件上又很危险。数字水印技术提供了一种隐藏标识的方法,标识信息在原始文件上是看不到的,只有通过特殊的阅读程序才可以读取。这种方法已经被国外一些公开的遥感图像数据库所采用。
长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学 (cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,著 名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领 域的兴趣。
在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
计算机与人工智能
"智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而 理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machines who thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联 系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究 会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificial intelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以 及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行 情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深 蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发 展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的 现实应用的基础。90年代以来,人工智能研究又出现了新的。
我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问: 目前人工智能研究出现了新的,那么现在有哪些新的研究热点和实际应用呢?
答: ai研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容 量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。
智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的 翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显 著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据 挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半 结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务, 而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多 主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多 主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何?
答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础 上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技 术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
问: 请您预测一下人工智能将来会向哪些方面发展?
答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来 人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
什么是人工智能?
人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的 角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
ai理论的实用性
在一年一度at&t实验室举行的机器人足球赛中,每支球队的"球员"都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白 有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。
这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和 无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以 大大减少网络堵塞。
我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
未来的ai产品
安放于加州劳伦斯·利佛摩尔国家实验室的asci white电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--"蓝色牛仔" (blue jean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。
以上论证说明:人工智能技术可以在人类隐性智慧定义的工作框架内模拟人类显性智慧(人类智能)生成知识,创建主客双赢的策略解决各种复杂问题。而这是现今其他各类技术做不到的。不过,由于在人工智能系统工作的基本过程中,(1)中客观存在各种不确定性,人类给定的知识未必能够理想地体现客观规律,也未必能够完全满足求解问题的需要,(2)中人类预设的求解目标也不见得完全合理,(3)中人工智能系统各个环节必然存在各种不理想性。因此,人工智能系统对人类显性智慧能力的模拟不可能完全到位,人工智能系统提供的问题解答也有可能不如人类自己求出的解答。换言之,人工智能系统所模拟的人类显性智慧能力,原则上不可能超过人类自己的显性智慧能力。如果说人工智能系统确实也有超人的地方,那主要是它的工作速度、工作精度、持久能力等因素,而不可能是显性智慧中的智慧品质。至于一些人所宣传的机器超越人类甚至机器淘汰人类的说法,是没有根据的。无论是人工智能系统,还是其他各种机器系统,它们共同的问题之一是:机器没有生命,没有目的,不可能自主发现应当解决的实际问题,不可能自主形成机器的智慧,尤其不可能无中生有地形成超越人类和淘汰人类的荒唐愿望,因此更不可能产生淘汰人类或灭绝人类的行为。
2人工智能与信息技术的关系
图2的人工智能系统模型表明,完整的人工智能技术系统必须具有如下环节:信息获取(感知)、信息传递(通信)、信息处理(计算)、知识生成(认知)、策略创建(决策)、策略执行(控制)以及反馈学习优化等基本技术系统,这正像“人”这个智能系统必须具有感觉器官(信息获取)、传输神经系统(信息传递)、思维器官(信息处理、知识生成、策略创建)以及执行器官(策略执行)。 其中传感(感受信息)、通信(传递信息)、计算(处理信息)、控制(执行信息)等技术属于信息技术。可见,人工智能系统是一个全局整体,其中包含着传感、通信、计算、控制等信息技术环节;这正像人这个智能系统是一个全局整体,其中包含感觉器官、传输神经、丘脑和执行器官这些信息器官。如果把人工智能系统称为完整的人工智能系统,而把其中的知识生成和策略创建称为核心人工智能系统,那么,则有:完整的人工智能系统=核心人工智能系统+信息技术系统其中,核心人工智能系统处于完整人工智能系统的核心,处理知识和智能层次的问题;信息技术系统处于完整人工智能系统的外周,处理信息层次的问题,同时担任核心系统与外部环境之间的两端接口:一端是从环境获取本体论信息(传感),另一端是对环境施加智能行为(控制)。这就表明,信息技术系统提供给人类的服务主要是方便快捷的信息共享,而不可能提供如何认识事物本质的服务(因为这需要知识),更不可能提供如何解决问题的服务(因为这需要智能策略)[2]。
3“新型”信息技术
近十多年来,先后出现了大数据、云计算、物联网、移动互联网以及各种互联网的应用技术。人们把它们称为“新型”信息技术或“新一代”信息技术。深入分析可以发现,这些新型信息技术的核心技术正是核心人工智能系统的知识生成和策略创建技术。不妨以大数据技术为例加以说明。图3表示了大数据技术系统的工作流程。由于有着多种来源、多种背景以及多种格式,大数据通常是病态结构或不良结构的大规模数据集合,其中可能包含垃圾、病毒和黑客攻击程序。因此,如图3所示,大数据技术的第一个环节就是智能分类:把无用的数据识别分类出来加以过滤和抑制,把有用的数据按照某些特征进行分类,再分门别类地送到恰当的云计算(和云存储)系统,进行相应的信息处理,为知识生成(知识挖掘)做好必要的准备。通过知识挖掘生成了足够的知识之后,才可以把这些知识(结合求解目标)转换成为用来解决问题的智能策略。其中,智能分类、知识挖掘和策略创建都是人工智能的基本技术。可见,如果没有这些人工智能技术,大数据就只能是数据,而不可能转换成为有用的知识和可以用来解决问题的智能策略。
由此可知,大数据技术的核心就是人工智能技术,可以把它比较确切地称为面向大数据的智能技术。而把它称为新型信息技术则没有真正抓住大数据技术的要害和本质,模糊了人们对大数据技术和人工智能技术的认识,不利于大数据技术的研究和发展,也不利于人工智能的研究和应用。真正的智能物联网模型不是别的,正是图2所示的模型。如图2所示,只要在综合知识库内设置“对物控制的目标”,那么“外部世界的物”的信息就经由传感器获得,经过通信系统传送到计算系统并在这里进行必要的处理即把信息变成适用的信息,接着由认知系统转换成为知识,然后由决策系统根据控制目标把信息和知识转换成为智能策略,智能策略再经通信系统传到执行系统之后转换成为智能行为反作用于所关注的“物”,使它的状态符合预设的目标。近来人们在密切关注着“互联网+”。其实,“互联网+”可以有两种不同的理解。一种理解是当前人们所关注的互联网推广,这里的“+”就相当于信息化的“化”,就是互联网的各种应用。另一种更有意义的理解则把“互联网+”理解为互联网升级,就是把以计算机为终端的现有互联网升级为以人工智能系统为终端的智能互联网。这就是2015年全国两会期间全国政协委员的“中国大脑”提案。应当认为,互联网推广,即把互联网应用到各行各业是完全必要的,这是信息化建设的正常要求。但是,从信息化建设的发展大势来看,互联网升级即把当前常规互联网升级为智能互联网则更为必要,这将为中国信息化建设注入更为强大的新活力,是转变经济发展方式的需要,是国民经济产业升级的需要。综上所述,大数据技术、云计算技术、智能物联网技术,其实都是人工智能技术的相关具体应用。可以这么说,如果没有人工智能技术,单凭信息技术很难有效地应对大数据和物联网以及未来更多更复杂的技术挑战。
4结束语
第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。
2园林设计中人工智能应用现状
2.1系统操作方面
由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。
2.2园林可重复使用性方面
目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。
2.3计算机辅助设计方面
计算机辅助设计即常说的CAD。目前来说,CAD并不能完全对口符合园林设计的需求,因为CAD只能呈现出单一的图形画面,既不利于设计者进行设计,也不利于客户对设计者的设计的理解,导致客户与设计者之间难免信息不对称,造成一定的信息偏差,影响之后园林设计出来的成果。
3加强人工智能在园林设计中应用的办法
3.1园林子系统的设计
作为整个园林系统的组成部分,园林子系统的设定概要应通过计算机实施建模,来对项目实施进行基本设定,在获得项目系统的自动生成规则之后,在对所收集到的园林基本数进行存档,来作为全局的运行参数,在一定程度上影响了计算机的运行结果。一般来说,存档信息有园林的设计规模、投资情况、发展需求以及相关的环境因素等,存档后,可能会对建筑的规模大小、选址、风格特点以及植物的搭配等造成影响。
3.2地形子系统的设计
地形子系统的设计应当是通过计算机对采集到的地质数据进行推理而后才进行的。一般来说,会采用规则引擎最为计算机的推理机,是基于专家系统的模式下进行推理的,工作原理是由机器来仿造人类在对事件进行考虑的思维和方法,通过进行试探性的方法来进行推理,并不断地对推理所得出来的结果进行解释和验证。对地质情况进行实时实地勘查是保证园林设计图纸正常输出的要求,这是不能单纯地依靠计算机来实现的,因为地质勘查涉及到很多复杂地形的勘查,只能依靠人工的方式。地质勘查可以分为前期阶段和后期阶段。前期阶段主要是设定园林工程的初稿,因此,只要对地质情况进行系统的粗略勘察即可。后期阶段主要是完成图纸设计要求,因此,对数据准确性要求更高,并勘查人员对此进行较为细致的处理。这以后才是通过对计算机智能系统软件的使用来将前期阶段和后期阶段所获得的数据进行智能化处理,完成相关数据的细化以及修正,然后通过系统推理得到一个初步的园林模型。
3.3主干道路子系统的设计
对地形子系统进行地形数据的输出即可得到主干道路设计,因为我们首先完成了地形的设计,因此,在接下来对道路进行设计的过程中就可以有效地避免其他的建筑和设施的干扰,这之后的设计才能按部就班地开展。推理的总体规则为:首先,由园林的建设规模、投资情况等来对道路的类型和所需费用等进行计算,得到相关数据;然后,结合之前的输出地形图来生成推荐道路图,并检查道路的密度是否符合园林的设计规范,接着根据道路建设定额表来对工程造价进行计算,看是否符合预期投资情况;最后,对道路图进行人工的调整,并反复验算。
3.4图纸和图表输出子系统的设计