欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

通信原理论文范文

时间:2023-03-16 16:27:26

序论:在您撰写通信原理论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

通信原理论文

第1篇

论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

第2篇

《通信原理》课程知识范围广泛,涵盖大量的通信技术概念及原理,每节课授课内容信息量较大。采用传统的课堂板书形式教学,不仅需要大量的时间书写文字及公式推导,还需要绘制图表及框图以帮助学生理解记忆,这无疑消耗了有限的课堂授课时间,影响教学效率。为此,课堂授课环节可以采用多媒体辅助教学,在课前可以参考课程教材辅助所自带的多媒体参考课件,同时结合自身授课内容及进度精心准备并制作该课程的多媒体教学课件。在多媒体课件中对授课内容进行提炼,取其精华,去其冗余。特别针对一些繁杂的概念性的解析,课件中主要显示其必要的提纲性文字,再结合口述、举例等方法予以解析;此外,针对理论公式的详细推导、系统框图等,也可以减少中间推导的冗余过程,而在重要的推导环节增加必要和详细的说明,以帮助学生的深入理解。运用多媒体课件教学的过程中,一方面不仅可以大大节约文字书写及图表绘制的时间,极大的提升课程的教学效率,且可以选择性的增补教学大纲外的必要的教学信息,帮助学生学习的过程中将知识活学活用,举一反三。另一方面,在多媒体教学过程中,部分抽象性的文字叙述可以辅以教学录像、网络图片或flas等,使其内容形象化、具体化、生动化。多元化的多媒体课件教学演示过程不仅可以动静快慢结合、图文声像并茂,且可以使复杂抽象的概念原理简单化和形象化,既提高了学生对通信系统基本原理的感性认识,又起到了活跃课程气氛的效果,从而有效的激发学生对《通信原理》课程专业知识的学习兴趣。

2.中英文结合双语教学,使学生熟练掌握专业英语,与国际化接轨

自上世纪90年代,我国高等学校通信类专业已引入了包括Wiley、WorldScience等出版社国外系列经典教材,包括A.Goldsmith等编著的《WirelessCommunication》、J.G.Proakis等编著的《PrincipleofCommunicationSystems》等。上述教材已先后为国内多所985重点大学通信、电子类的本科生教学所采用并日益普及。另一方面,随着我国通信事业的长足进步。目前,我国的电信科学研究院、中国移动通信研究院等科研院所与华为、中兴等国内通信设备提供商在通信行业的标准化协议制定、基站关键技术解决方案及终端服务等领域已逐步取代了索尼-爱立信、诺基亚-西门子等传统科技巨头,其关键技术的科技含量无论在亚洲抑或欧美市场都极具竞争力。与国际接轨,意味着无论在民企、私企、国企或是外资企业,通信业务相关的关键核心技术标准化协议及基本原理、样机使用、维护等说明均采取英文版本。可以说,没有良好的专业英文功底,甚至将很难适应于学生日后毕业进入企业所面对的技术工作需求。为了帮助学生在学习专业基础知识的同时,尽快的适应、学习并掌握通信行业的英文资料学习、查阅等需求,在课程的授课环节中,采取了中英文结合的双语教学模式。为了能让学生逐步适应双语教学的进度,在课程实践中,采用循序渐进的方式。首先,在课程的教学及课件制作过程中,适量引入一些知识、概念的专业英文名称及系统流程概念的中英文对照,例如,正交频分服用(OrthogonalFrequencyDivisionMultiplex,OFDM)、多输入多输出(Multi-InputMulti-Output,MIMO),大规模天线(LargeScaleAntenna)[2]等技术概念的中英文解析,并鼓励学生在课后通过互联网或电子图书馆等方式进一步查阅相关技术的特点及扩展知识。在熟悉相关技术专业名词及概念后,在逐步过渡到全英文多媒体课件教学,使学生在学习理论知识的同时,提升相应的专业英文技能。从期末学生的反馈意见及教学实践过程来看,大多数学生在中英文双语授课的模式中,不仅学习到了通信系统的基本理论知识,同时也能较好的掌握相关的专业英语。

3.新技术专题报告,填补教科书空白,使学生了解国内外通信技术的前沿动态

无线通信领域的新技术新原理发展迅速,每年在IEEE数据库中针对无线通信领域的理论创新科技论文多达数以万计。针对通信领域技术标准化协议的日新月异,《通信原理》本科教材的知识内容略显陈旧,例如,即便国内不少高校均使用的新版教材《通信原理》(国防工业出版社,第六版)中,仍未涉及到当前国内外业已广泛商用化的第四代无线通信系统的理论框架及原理。为了填补教科书新知识新技术的空白,同时激发学生对当前通信领域最新前沿技术动态的了解与掌握,在课程教学过程中,采取专题技术报告的形式,结合授课教师的科研领域,为学生详细讲解相关的新技术、新知识,激发学生对当前通信行业尖端高新技术的求知欲。例如,笔者在该课程授课过程中,针对新一代无线通信网络的协议与构建等领域,邀请了中山大学—思科中国(Cisco)网络工程研究院高级工程师为学生举办了一次专题知识讲座,讲座的内容围绕新一代无线通信网络,包括自组织网络、传感器网络、认知无线电网络等技术原理,并结合实际工程应用为学生做了多角度的讲解。讲座结束前,专家与学生分享了上述通信网络技术热点问题及相应的文献查阅方法,帮助有兴趣继续深造的学生进一步深入学习相关知识内容。通过反馈,大多数学生在专题讲座后加深了对通信行业前沿技术的了解,并明确了自己未来的努力方向,这一教学形式深受学生广泛好评。

4.结语

第3篇

该部分主要涉及它涉及无线传播、路径损耗、阴影、区域覆盖等方面的知识。移动无线电传播-小尺度衰落该部分知识点较多,主要对无线传播中小尺度衰落、多普勒扩展、多径衰落等知识点展开,并且适当提及了分集技术。无线通信与无线传播多址接入该部分主要对多址技术中的FDMA、TDMA、CDMA等技术进行简介。LTE及LTE-advanced技术该部分为新增内容,主要对最新的4G技术(TD-LTE、LTEFDD)进行介绍[5]。

2改革教学方法

2.1授课模式的改进思路

“无线通信原理”双语课程在大三下学期开设,主要采用传统的课堂授课模式。由于该英文教材有700页左右,但是因为课时限制,我们的教学大纲仅覆盖其中250页左右的章节。由于学生往往忽略剩余的其他章节(在学习英文教材时学生缺少主动性),这不利于学生专业知识结构的培养。我们今后可能需要引入网络大学堂等改革到此类课程中[6],把部分章节内容转化为网络学习资源,以便于学生利用碎片化时间自学。

2.2教学方法多样化

在教学过程中应该多采用启发式、互动式的教学方法,以课堂授课、课间讨论、课后自学等方式组合授课,这样有助于充分调动和激发学生的学习热情。因此,我们将考虑引入微课和翻转课堂等新型教学方法,以改进传统教学模式的缺点。

2.3考核方法灵活化

在“无线通信原理”双语课程考核时,采用课堂表现分、作业完成分、考试成绩分等组合打分的考核方式,改变以往单一依靠考试成绩考核的局面,从而全面考察学生的专业综合素质。其次,我们也可能考虑引入辅助的线上考核方法。

3教学成果展示

为了更好地评估2014年度教学方案,本文对随机选取的南京邮电大学“通信工程”专业修习该双语课程的学生成绩进行分析。该班级共有学生38人,对学生成绩画出对数曲线拟合图及成绩分布的饼状图(如图1所示),从图1可见看出学生成绩多分布在70-90分数段(该分数段人数占比超过70%),与预期学生考试评价范围吻合。由此可见,传统教学模式下双语教学方案还是可行的。

4结束语

第4篇

通过企业走访、毕业生跟踪调查、听取行业专家意见等各种形式,了解专业岗位(群)对“通信原理”课程教学内容的需求,构建基于项目驱动和案例教学的模块化课程内容[1],实现教学资源的共享。一是做到课程内容的选取尽量来自实际应用,满足市场需要,做到教学与实践相结合;二是根据教学需要,将课程内容分成多个模块,化解难点,循序渐进,做到模块间的独立性和关联性有机统一;三是在模块内精心设计项目,以项目或项目群为载体,构建完整的教学内容布局。通过项目式教学改革,让学生学习实用的模拟通信系统与数字通信系统的基本理论、分析方法、开发设计流程等,构建以技能训练为中心的知识结构和课程章节。

2通信原理课程资源开发

课程资源分为基本资源和拓展资源。基本资源是指能反映课程教学思想、教学内容、教学方法、教学过程的重要资源;拓展资源是指反映课程特点,应用于各教学环节,支持课程教学和供学生自学的多样性、交互性辅助资源。

2.1基本资源的开发

我们在课程建设中把基本资源的开发分为课程概况和教学核心资源两大部分,基本资源结构如图1所示。课程概况包括课程教学大纲、主讲教师(团队)介绍和学期教学进度;教学核心

资源以教学单元模块为单位,每个模块主要包括教学课件或教案、教学案例、教学视频和作业等。本课程在以下6个方面进行了一系列的设计和开发。

(1)课程概况。教学大纲和学期教学进度表是课程教学最基本的文档。大纲描述了课程的培养定位、教学目标、核心教学内容等基本要素,进度表描述了课程的时间安排、章节处理与分配等内容。根据我校应用型人才的培养目标,本课程建设中通过企业走访、毕业生跟踪调查、听取行业专家意见等形式,对这类文档进行了反复论证,认真制定,在实教学践中认真执行。

(2)单元模块。把本课程划分为20多个一级单元模块,每个单元模块根据实际案例进行命名,比如,“模块1:AM通信系统的分析与设计”、“模块2:DSB通信系统的分析与设计”、“模块3:SSB通信系统的分析与设计”等。并且可根据实际情况,对一级模块进行细化划分,比如模块1还可以细分为“1.1:AM通信系统调制部分的分析与设计”,“1.2:AM通信系统解调部分的分析与设计”等[2]。

(3)教学课件和电子教案。在每个单元模块中,放置教学课件和教案,以便学生下载学习。课件的设计简洁、生动,能够提纲挈领,激发学生学习兴趣;电子教案则相对详细具体,突出重难点问题的说明与解决,使学生能通过它把握课程的重难点,并能深入理解所学知识。

(4)教学案例。教学案例是指把教学所需要的实际例子或项目按照教学设计进行呈现,让学生理解所学知识在实际中的应用场合和应用方法,引导学生利用所学知识进行相关的开发设计工作。本课程在每一个教学模块中都设置了至少一个教学案例。

(5)教学视频。教学视频是学生在线学习的重要资源,是教学课件和电子教案的必要补充。本课程教学视频资源分为主讲教师授课视频和外校优秀教师授课视频两部分,互为参考,互相补充,学生可通过观看不同视频资源更全面地理解相关内容。

(6)作业。为强化本单元的学习目标,突出应用型培养而设置作业。根据本课程的特点和培养目标,作业题型以设计开发、应用创新为主,比如调制解调器、数字滤波器、基带信号编码器的的设计、仿真与制作等,充分培养学生的知识应用能力和动手实践能力。

2.2拓展资源的开发

拓展资源包括案例(项目)库、职业标准、专题讲座库、在线自测、虚拟/仿真实验实训系统、试题库、试卷库、交流平台等[3],如图2所示。充分开发该部分资源,可以方便地满足部分学生对本课程进行更具深度和广度的学习的要求。本课程在以下7个方面进行了一系列的设计和开发。

(1)案例(项目)库。本库分为单元模块拓展案例(项目)和综合性案例(项目)两部分,旨在进一步加强学生对单元模块的理解,提高其实际应用能力。案例(项目)内容涉及到多个单元模块,或涉及到多门课程。在本案例(项目)库中,除了常规的案例(项目)之外,还添加了近几届全国大学生电子设计大赛、“西门子杯”无线通信大赛、挑战杯等学科竞赛中的典型选题,以反映当前本专业领域的发展方向和趋势。

(2)职业标准。与本课程或本专业相关的职业标准,也可以是相关的行业标准、技术标准、官方文件等。本课程推荐的标准文件主要有“通信行业国家职业标准系列”、“通信工程师职业资格考试大纲”等。

(3)专题讲座库。库里主要包含与本课程或本专业相关的技术前沿、典型问题、热点问题等的讲座资料,比如“4G-LTE移动通信技术及其应用”、“先进的光通信技术”、“智能网技术及应用”、“移动互联与物联网技术”、“信息安全与防火墙技术”、“云计算”等。教学团队成员所做讲座的完整资料存放至课程网站,网络视频则给出相应链接,方便学生进行学习。

(4)虚拟/仿真实验实训系统。虚拟/仿真实验实训系统是指虚拟实验系统、仿真实验系统、仿真实训系统等,包括用于进行虚拟实验、仿真实验、仿真实训等的软件平台。

(5)在线自测。本课程网站建立了在线自测版块,主要以单元模块在线测试为主,其主要目的是让学生方便地了解自己的学习水平,对所学内容的理解程度,以及知识结构是否完备、合理。

(6)交流平台。本课程网站建立了在线论坛版块,用于课程的辅助学习,其主要目的是通过师生间或学生间的相互交流,及时解决学生学习中遇到的困难和疑问,为课程的顺利推进提供保障。

(7)试题试卷库。试题库是按照教育测量原理和规范,用于本课程学习效果评价的各类题目的集合。试题库除具有存储试题的功能外,还具备查询、智能组卷、分析反馈等功能。试卷库是指用于课程结束后进行学习效果测试的试卷集合,相当于单元模块在线自测的汇总。

3课程建设的保障措施

一是加强领导,强化责任。课程是组织教学活动、实现人才培养目标的核心。本课程的建设制定了任务书和进度表,专业带头人、主讲教师、教学团队成员分工负责,各位教师着力发挥课程建设的主体作用,参与到相关课程的建设与开发工作中,确保本课程建设高效推进,取得实效。

第5篇

1.1 线性系统和多功能滤波设计

SystemView的操作图符库包含功能强大、易于使用图形模板设计模拟和数字以及离散和连续时间系统的环境.如FIR滤波器设计(包括:低通、带通、高通、带阻、Hilbert和微分)、IIR滤波器设计(包括:多极Bessel,Butterworth,Cheby-shev和Linear Phase)和FFT类型:magnitude,squared、光谱分析器、能量谱密度和相位.

1.2 信号分析、处理功能

SystemView分析窗口是能够提供系统波形的交互式分析窗口、动态探针、实时显示的可视环境.它还提供完成系统仿真、数据生成并处理操作的接收端计算器.另外,SystemView允许用户如同系统内建的库一样使用自己用C/C++编写插入的用户代码库;能自动执行系统连接检查,并显示出错的图符等特点,便利于用户系统的诊断.

2实验过程的流程及基于SystemView的电路原理模块的设计流程

实验过程流程如图1所示,在教学过程中,结合具体的教学内容,借助于SystemView仿真平台,根据原理、规律,应用软件提供的模块,设计电路,并确定电路中的各模块器件参量,运用仿真平台提供的虚拟仪器进行在线动态测量[8-14],这样以人机交互的方式,可使每位学生亲自动手接触电路,连接元件,依据电路设计要求更改相应元件参量,从而达到培养学生的设计、创造能力.SystemView电路模块设计流程如图2所示,可按照理论要求,方便地调整和修改模块器件参量,分析各器件参量对系统产生的影响与作用.这样将连线、测试、修改、分析、仿真结果的观察相统一,与理论描述相对照比较,把实验与理论有机相结合,加深了学生对理论的认识及理解,提高学生逻辑思维能力.

3电路设计与仿真实践

以“数字基带传输系统[15]”为例进行电路设计及实时仿真.3.1电路模型分析数字信号基带传输系统主要由脉冲形成器、发送滤波器、传输信道、接收滤波器和识别等功能电路组成[2,10].3.2模型搭建及仿真

启动SystemView仿真平台[14],进入设计窗口.设计创建实验电路过程如下:1)模块选取在SystemView原理图编辑窗口中,从左边的图符库中选择需要的图符,将各图符模块选取到设计窗口中.2)实验电路图符的连接将每个图符依据数字基带传输系统电路原理模型,在设计窗口中连接起来形成如图3所示仿真电路.系统仿真电路中各图符块的参量设置如表1所示.

3)电路文件的保存电路创建完成后将该电路保存为“TEST”,以便进行调用、测试.设置SystemView系统视窗并仿真:设置“时间窗”参量:Start Time 0s;Stop Time 0.5s;Sample Rate 10 000Hz.运行系统之后,进入“分析窗”,进行观察、分析.

4仿真结果及分析

眼图是利用实验手段方便地估计系统性能时在示波器上观察到的一种图形,衡量基带传输系统性能的重要方法,借助于它可以达到有效地改善系统性能.通过SystemView分析窗“绘制新图”功能,在“System Sink Calculator”对话框中的Style和Time Slice按钮,设置好“Start Time(sec)”和“Repeat Length(sec)”栏内参量,获得数字基带传输系统的眼图.如图4所示,在低通滤波器为巴特沃兹滤波器(Fc=60Hz)条件下,当信道中噪声方差(Std Dev)为0.1V时,接收滤波器的输出波形眼图与噪声方差为0.3V的眼图分别如图4(a)和(b),可以观察到,“眼睛”张开情况;改变低通滤波器的带宽,如巴特沃兹滤波器(Fc=30Hz)条件下,当信道中噪声方差(Std Dev)为0.1V时,接收滤波器的输出波形眼图与噪声方差为0.3V的眼图分别如图5(a)和(b),直观地观察出“眼睛”的情况;当信道中噪声方差(StdDev)为0.1V,巴特沃兹滤波器的信道带宽不同时,抽样判决比较后输出的信号眼图如图6(a)和(b)所示.接收端通过抽样判决来重现基带信号,当噪声过大、低通滤波器的带宽较窄时,抽样判决就会产生错误,产生误码.通过以上眼图的观察研究,明显地得出:噪声大小对眼图的影响,噪声越小,线条越细,越清晰,“眼睛”张开越大,误码率越小.同时观察到信道带宽对眼图的影响情况,眼皮厚度反映了加入噪声的幅度和信道带宽,信道中加入的噪声干扰越大及信道越窄,眼图越模糊,越杂乱等这些较抽象的物理现象及使学生深刻理解高斯滤波器、抽样比较电路的物理功能.

5结束语

第6篇

移动Ad Hoc网络可以实现固定或移动用户的计算机通信和本地信息的收集和分配。由于它具有组网灵活、抗毁性强、支持用户的移动性和动中操作、易于快速部署等特点,从一开始就在商业、军事、经济领域获得了广泛的应用。

2移动AdHoc技术原理

2.1移动AdHoc主要特点

移动AdHoc网络有以下几个显著的特征:a节点的移动性。网络中的每个节点并非静止不动,每一个节点都可以独立地做随机的运动。b动态的网络拓扑结构。由于网络中的每一个节点都可以自由地、相对对立地运动,使得AdHoc网络没有固定的拓扑。更糟糕的是,网络拓扑的改变是随机的、频繁的,而且是不可预测的。c传输带宽受限且链路的容量是时变的。通常情况下,无线链路的容量比相应的有线链路的容量低很多。如果再考虑多址接入、信道衰落、噪声和干扰等不利因素的影响,实际可获得的链路容量比理想的无线传输速率还要低很多。d节点能量受限。一般来说,AdHoc网络的节点都是一些便携式的移动终端,它们都要靠随身携带的电池或者其他消耗性的手段提供能源。为了能够延长节点的运行时间,一个最重要的系统设计准则就是要尽量的节约能量,采用较小的发射功率。分布式随机接入协议,节点基于信道忙闲状态的监测结果来决定是否发送分组。由于在AdHoc网络中,每一个节点的无线覆盖范围是有限的,因此简单的采用CSMA多址接入方式不可避免地带来了隐藏终端和暴露终端问题,如图2所示。隐藏终端问题是在目的节点的载波监听范围内而未在源节点监听范围内,在目的节点处发生冲突;暴露终端问题是在源节点的载波监听范围内而未在目的节点监听范围内,在源节点处发生冲突。图1移动AdHoc网络示意图以上这些特点决定了AdHoc网络独特的运行机制,其网络示意图如图1所示。由于每一个节点的无线覆盖范围相对整个网络的覆盖区域来说较小,那么网络中从一个节点到另一个节点可能要经过多个其他节点的转发,也就是说是多跳的。网络中不存在固定的路由器,每一个节点在完成自身的功能之外,还必须充当一个路由器,转发其他节点的分组。网络的运行是完全分布式的,与网络的组织和控制有关的任务被分配到各个节点。AdHoc网络中无需中心控制实体,所有的协议只能分布式的运行。

2.2移动AdHoc多址接入技术

多址接入技术是一种用来解决多个用户共享一个通信信道的技术。多址接入技术是否设计得当或者选择合理直接影响到无线资源的利用率和通信质量。根据对无线信道共享的方式不同,多址接入技术可以分为三大类:固定多址接入(如FDMA,TDMA等);随机多址接入(如ALOHA,CSMA),预约型的多址接入(如PRMA,DSA等)。目前,在AdHoc网络中的多址接入协议通常都是基于载波侦听的随机多址协议CSMA。CSMA是一种简单的图2隐藏终端问题和暴露终端问题移动AdHoc网络在MAC层和PHY层采用的典型协议是IEEE802.11系列协议。IEEE802.11的MAC协议具有两种信道接入方式:分布式协调方式DCF和点协调方式PCF。其中DCF为竞争型的信道访问机制;PCF为无竞争的信道访问机制,有中心控制点(通常成为AP)进行集中控制。DCF中采用载波检测与碰撞避免(CSMA/CA)协议,其中有两种基本的信道接入方式:简单的CSMA方式和增强型的接入方式(即RTS/CTS方式)。基本的CSMA/CA协议采用两次握手机制,接收方正确接收业务分组后,立即发送ACK。而发送方收到该ACK后,就知道业务分组己被成功接收。在增强型接入方式中,RTS/CTS方式采用四次握手机制,即在发送有效数据之前,先通过采用RTS/CTS预约信道。这样不仅能够解决发送长业务分组时发生分组碰撞导致信道利用率急剧下降的问题,而且可以有效减少“隐藏终端”问题。在增强型接入方式中如果在发送完RTS的规定时间内没有收到CTS,则发送节点认为RTS发送出错。在这两种情况下,发送节点都会按照“二进制指数退避算法”进行退避与重传操作。

2.3移动AdHoc路由技术

移动AdHoc网络中的路由技术给网络的设计和维护都提出了严峻的考验。这主要是由于在移动AdHoc网络中节点是运动的、网络节点间的通信需要进行多次中继、无线链路的不可靠性以及供电设备能量的限制。移动AdHoc网络的路由必须在受到多重约束条件和动态环境下,能够保证数据的可靠传输。因此,动态分布式的路山算法成为了AdHoc网络中研究的一个关键问题。路由协议主要分为单播路由和多播路由算法,其中以单播路由应用最为广泛。所谓的单播路由,实际上就是从网络中的某一个节点到另一个节点的可用路径。传统的路由算法基本上是为有线网络设计的,没有考虑到网络的动态特性。移动AdHoc网络还面临着无线信道的不可靠性、高速移动环境下链路频繁出现故障以及节点的有限电能等情况。很显然,上述这些传统的路由算法不可能直接应用到AdHoc网络中。更为重要的是,传统的路由算法中都存在着一些致命的缺陷,如路由闭环、收敛速度慢等问题,因此,我们必须研究新的路由策略来适应移动AdHoc网络的特殊性。

总的来说,单播AdHoc路由算法分为三种,具体分类见图4。(1)平面式路由(FlatRouting)算法,即网络中的所有节点都处于同一层次上,各节点获得的网络中的路由信息基本相同。我们又根据其设计的具体原则进一步的将平面式路由分为ProactiveRouting算法和ReactiveRouting算法。(2)分层路由(HierarchicalRouting)算法,即网络按一定的规则分为多个不同的层次,在不同层次中又可以有不同的路由策略。分层的路由策略比较容易进行网络规模的扩充。(3)地理位置辅助的路由(GeographicpositionassistedRouting)算法,即网络中的节点可以获得.

3移动AdHoc应用展望

由于移动AdHoc网络不需要架设固定的通信基础设施,组网迅速、灵活,抗毁性强,因此具有极高的军用价值和商用价值。

(1)军队通信系统需要具有抗毁性、自组织性和机动性。移动AdHoc网络不依赖固定的有线设备,节点自行组织和管理。采用分布式技术,即使网络中某些节点或链路发生故障,也可以通过其他节点继续通信,很适合战场的恶劣通信环境,另外移动AdHoc网络组建简单、迅速、机动性强。因此,移动AdHoc网络技术已经成为数字化战场通信的首选技术。

(2)在地震、洪水、台风等自然灾害发生后,固定的通信网络设施可能被毁坏而无法正常工作。这时就需要移动AdHoc这种不依赖任何固定网络设施又能快速布设的自组织网络技术来满足抢险救灾的通信需要。另外,移动AdHoc还可用于临时通信需求,如商务会议中参会人员之间的通信交流等。

(3)与移动通信系统的结合。移动AdHoc网络还可以与蜂窝移动通信系统相结合,利用移动节点的多跳转发能力扩大蜂窝移动通信系统的覆盖范围,均衡相邻小区的业务量,提高小区边缘的数据速率等。

(4)个域通信。可用于实现PDA、手机、手提电脑等个人电子通信设备之间的通信。还可用于个人局域网之间的多跳通信,蓝牙技术中的超网、VANET就是典型的应用案例。

(5)传感器网络。传感器网络是移动AdHoc网络技术的一大应用领域,很多应用场合的传感器网络只能使用无线通信技术,同时受体积和节能的图3DCF工作时隙及原理图点的地理位置信息,通过这些信息可以有效的减低路由算法中用户路由建立或维护的开销。影响,传感器的发射功率不可能很大。使用移动AdHoc网络实现多跳通信是非常实用的解决方法。分散在各处的传感器组成移动AdHoc网络。可以很好地实现信息的传递和收集。

4结束语

第7篇

变电站(英文称Substation),是电力系统中输电和配电的集结点。目前的变电站监控体统是一种智能化、数字化、自动化和网络化的系统。变电站系统中的遥测数据信息是指利用远动的遥测功能采集的数据信息,遥测数据信息的传输主要是通过多种渠道与装置将遥测数据的各种参数传送到变电站的,遥测数据信息主要分为电量与非电量两种形式,其中电量主要包括母线电压、系统频率、电流流动电力设备(即发电机与变压器)以及输电线的有功功率、无功功率和电流,而非电量主要包括发电机机内温度和水电厂水库的水位等。这些信息中电量的电流、电压与功率是随着时间变化的,而电量中的电流、电压以及功率变量主要通过互感器与变送器将要遥测的交流强电信号变成0-5V或0-10mV的直流信号,之后再送入变电站的监控系统,或者也可以将要遥测的交流强电信号变成幅度较小的直流信号进而送入监控系统,之后再由监控系统进行交流信号采样。遥测数据信息的传输主要是从变电站向电力调度中心传送的过程,或者从下级电力调度中心向上级电力调度中心传送的过程。因此在变电站系统中的遥测数据信息的采集与处理是电力系统正常运行的关键。

2.变电站遥测数据采集

2.1遥测数据信息的采集系统

变电站为了使得遥测数据信息采集系统更加灵活、可靠与安全,因此变电站的遥测数据信息采集系统是采用模板化的结构,其中各个模板都发挥了一定的数据采集与处理能力。遥测数据信息采集系统的模板主要是MAIN主模板,该模板的主要功能有数据处理、流程控制、远程通信等,另外遥测数据信息采集系统还包括一些辅模板,即I/U模板、PSYN模板、RF调制解调模板以及信号输入防雷模板等。变电站的遥测数据信息采集系统具有故障自检能力,及对遥测数据不正确情况引发的变电站故障可以自己检测故障点,进而发挥自检功能对变电站进行快速检修,确保变电站的正常运行。在遥测数据采集系统中大力应用了单片机的原理,通过在MAIN主模板上应用具有ISP和IAP能力的容量较大的FLASHRON单片机,可以进行远程遥测数据信息,无需技术人员站到遥测地点进行遥测,因此这种单片机原理的应用可以在交通恶劣的地方发挥了更大的作用,进而极大减轻维护工作量,提高维护效率。

2.2变电站遥测数据信息采集的流程

遥测数据采集系统中的CPU采用的是单片机8031,单片机8031内部的寄存器件30H中存放有遥测量选通通道(00H-1FH),并且在遥测数据采集流程中初始化为00H,同时启动一次A/D转换,以此触发中断,之后将A/D转换的数据存入到单片机6264中,其要测量选通通道为2000H-203FH,此时注意低字节在前,高字节在后。变电站遥测数据信息采集的流程。

3.遥测数据采集系统的基本装置模式

遥测数据采集系统基本装置的工作流程是将变电站的遥测数据传送到电力调度中心,首先,可以通过电流变送器、电压变送器和功率变送器将遥测数据中交流信号和电量参数传送到变电站,再由变电站的变送器和传感器将交流信号转换为直流模拟信号,这些直流模拟信号受到模拟多路开关的控制分时接入模拟数据转换电路,然后使用线性系统循环码进行编码和计算,从而获取实际的电流数字量,然后进行同步的信道调制、信道译码,将遥测电能量通过在遥测CRT显示器上显示出来,通过主计算机和模拟屏的校队发现数据不对时,应该返送校对和核查,纠正错误。变电站遥测数据采集系统的基本装置模式工作流程。

4.变电站监控系统的通信原理

(1)IEC61850标准是目前关于变电站通信网络和系统的最先进国际标准,我国许多电力企业都将全面使用IEC61850标准,可以有效降低变电站遥测数据采集成成本和维护费用,进而充分利用系统资源,提高变电站遥测数据的可靠性,促进电力企业陆续推出很多符合IEC61850标准的产品.

(2)IEC61850标准的主要内容包括含义完整的信息模式、通信模式等建模步骤,它是为了实现将功能先分解然后再组合的过程。IEC61850标准为了实现不同厂家的IED之间的互操作性,通过标准的信息分层、面向对象的自我描述、数据对象统一建立模式以及通信服务映射等技术建立数据采集处理的无缝通信系统,而这种无缝通信系统广泛应用于变电站遥控数据的采集和处理过程,不仅加快了遥测数据采集和处理速度和效率,而且提高了变电站数据库的完整性、可靠性、互操作性、稳定性和信息可扩充性。

(3)IEC61850标准的面向对象的自我描述特征是指利用面向对象的、面向应用开发的自我描述方式来采集处理数据肯信息,具体地说是指在数据源就对监控对象本身进行自我描述,使得接收方收到的数据都带有自我说明,不需要再对数据进行对应及标度转换等工作,使得不同设备之间、不同厂址之间实现数据接入胡互操作性,从而简化了对遥测数据的采集处理和维护过程,提高变电站遥测数据采集的速度。

5.基于变电站远动装置的遥测数据采集与处理

为了完成变电站与调度中心之间的远距离信息的自动输送,必须利用远动技术和远动系统,采用远动装置。变电站远动装置既包括一种很简单的单一对象控制的简单远动系统,又包括一种很大的综合系统,但无论是哪种类型的远动装置,其远动系统总的功能就是远距离进行人或计算机和计算机之间交互信息。基于变电站远动装置的遥测数据输入方式主要包括两种,即查询方式和中断方式,其中查询方式主要是利用CPU(中央处理器),按照时间周期,对保存信号的输入/输出接口进行扫描,然后将扫描到的数据存入计算机,便于后续进行优化电路工作。在实际应用过程中,这种查询方式的应用范围比较普遍,这是由于查询方式的编程比较简单,使用简便。而中断方式是指一旦开关量输入发生变化,则接口电路就会通过中断线向处理机处于中断允许状态,当它完成当前的命令后可进入中断处理程序。中断处理程序的时间通常不长,只是进行一些紧急情况处理工作,如利用在远方终端中的随机存储器作内存,可将采集到的开关状态存等遥测数据放在内存单元中。当下次再对开关状态遥测采集时,可通过新采到的状态与原来的状态进行比较,来判断开关状态是否变位,若发生变位时,可将事件顺序记录下来,然后再返回到原来的断点继续扫描过程。

6.测数据采集系统的变电站故障处理

变电站监控系统中遥测数据的采集还应用了电网自动电压控制系统,由于这种电网自动电压系统在各等级电压的电网节点都安装了检测装置,该控制系统的主要检测装置包括变压器、电容器与线路,其中变压力的功能是通过测量变压器的有功功率、无功功率和母线电压以及接头档位和各侧电流值,以此确定变压器的运行状况、各侧开关状态和各测母线电压情况等,电容器的功能是采集电容器开关上的有功功率、无功功率与电流值等,而线路的功能是采集流经线路的电流值以及该线路上的有功功率和无功功率等。,另外这种电网自动电压控制系统的工作原理主要是通过采集各电网节点的遥测数据对电网的运行状况进行分析,以此检测变电站是否存在故障,以及准确的确定变电站发生故障的故障点,进而便于快速检修故障,确保变电站快速进入运行状态中,最终做好遥测数据的采集和处理工作。

7.结论