欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

测量技术论文范文

时间:2023-03-15 15:06:47

序论:在您撰写测量技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

测量技术论文

第1篇

1.1悬浇施工控制

(1)箱梁水准点引测从0#、1#块顶板水准点利用钢尺引测到左右箱室人孔旁所做高程点,测算出所布设高程点的高程,用以作为以后底模标高测量的后视水准点。(2)底模标高测量在每个块段底腹板浇筑前,测算出底模最外缘侧的模板高程,按照监控单位发放的施工指令中给出的立模标高进行复核,调整。(3)底模高程点标高测量在每个块段底腹板浇筑前和浇筑完成后,各测出左右箱室焊设的模板高程点的高程,算出其变化量。(4)顶板高程点标高测量在每个块段顶板张拉前和张拉完成后,各测出顶板焊设的模板高程点的高程,算出焊设的测点的挠度变化量。

1.2箱梁合拢控制

(1)在各孔的边跨合拢块施工前,对各悬臂箱梁高程进行联测。(2)合拢段施工的高程观测按以下6个工况实测:①安装模板前;②浇筑混凝土前;③浇筑混凝土后;④张拉部分纵向预应力钢束后;⑤拆除临时支撑后;⑥张拉完所有预应力钢束后。(3)对于连续箱梁的中孔合拢,还应在主墩临时支座拆除的前后对各测控点进行监测。

2对称平衡施工

施工中严格按照平衡施工的要求进行,最大混凝土浇筑重量误差不得大于该梁段自重的30%,并在混凝土浇筑过程中实施监控,确保箱梁自重误差不大于设计要求的3%,控制梁段上的施工堆积物并及时清理箱梁中的施工垃圾,以避免由于施工荷载和桥面杂物的不平衡引起测量数据的不正确。

3质量保证措施

3.1抓好事前控制

3.1.1抓好人的质量施工测量放样工作是靠人干出来的,人是工作质量的决定因素,因此提高自身的思想水平、业务技术,工作能力、工作责任是极其重要的,同时必须了解和管理好所管辖内测量人员,有利于开展工作,必要时做好配合工作。3.1.2抓好测量仪器的质量测量放样必须有符合精度的仪器设备,才能确保精度和速度,除必要按规定进行鉴定,还必须在使用中时刻注意仪器的性能和状态,发现异常及时校正。3.1.3抓好基准点的精度平面高程控制点是实施施工放样的基准点,它的精度优劣直接影响放样精度。因此,施工前必须对控制点进行复测,并根据建筑物的分布,为便于放样,还需进行加密。施工阶段确保控制点的稳定完好,有破坏变动,应及时补埋补测。3.1.4抓好设计图纸的复核按设计图纸的数据进行施工,是我们的职责,设计单位要求对图纸进行复核是我们的义务,也是为了我们确保施工放样数值的准确。在复核发现问题,应及时地向设计单位反映。3.1.5学好规范、掌握规范、执行好规范规范是我们判别测放精度施工质量的标准,要养成严格执行规范的习惯,为此全面地学好规范,深刻地理解规范,认真地执行规范。在保证质量的前提下,把好执行规范,不断地总结提高。

3.2抓好事中控制

在检查时尽可能用自己的仪器自己测,及时发现问题及时解决,有些问题应及时汇报给相关的专业工程师。并有严格报验制度。3.2.1平面位置控制设站检查:全站仪对中整平后设置气象元素棱镜常数,输入站点后视点坐标,后视定向后要测距测坐标,一般误差控制在3mm以内。对每个放样点的检查,一般采用极坐标法,即以方位角定向、距离定点,再测坐标作校对。当检查点较多或时间较长时,要及时地复查后视点。当测放水中桩或不能直接定桩时,可放辅桩,但要标明辅桩与主桩的关系(方向和距离)。检查结束后,应到点位处一看一量,看所放的点组成的线形是否与设计院设计相符,量各桩间距是否与设计值相同。护栏的放样应保证其线形流畅,保证桥面宽度,其线形要确保不出现折角。3.2.2高程检查首先要经常检查水准仪的i角,确保其良好的性能,还需检查脚架及塔尺接头是否完好。检查时须从一个水准点联测到另一个水准点,这样可以:①发现所观测的是否闭合;②水准点是否变动;③水准仪有无问题。当要引测结构物上部或下部时可采用钢尺倒挂法,钢尺必须要垂角,最好用正、倒挂尺校检。

3.3事后总结

(1)平面控制方面目前采用的坐标系:①WGS-84大地坐标系;②1980西安坐标系;③1954北京系。(2)高程控制方面国家规定:采用1985国家高程基准点,它与1956黄海高程系的关系式:1985国家高程基准时1956年黄海高程值0.0286m。苏南地区采用吴淞值高程系,它与1956黄海高程系的关系式:吴淞系1956年黄海高程系值+1.8971.6972.097,根据不同地区而定。(3)加密控制对被破坏的不稳定的点必须重新埋测。桥梁处的点必须稳定可靠,并作为以后联测的起讫点。复测时设计路线不宜太长,尽量控制在2-3km,以减少误差的积累。(4)导线平差中对X、Y的fx、fy分配,可应仅考虑距离而应当按方位角距离的联合影响来分配。(5)采用全站仪用极坐标放样最大距离的控制国家规定最大误差是中误差的2倍,以J2级测一个单角,其精度约在10″左右,而放样桥梁桩、柱的平面位置,则最大要求<5mm。S=ρ″/10″×5mm=103m,最好控制在100m以内。

4结语

第2篇

在利用激光进行的三维测量中应用最广泛的测量方法主要有三种:干涉法、飞行时间法和三角法。1.1干涉法干涉法测量是利用激光的干涉原理来完成对物体测量的一种方法,其原理是将一束相干光通过分光系统分成测量光和参考光,通过测量光波与参考光波相干叠加产生的干涉条纹变化量来获得物体表面的深度信息。干涉法的测量精度高,在100m范围内可以获得0.1mm的分辨率。1.2飞行时间法飞行时间法是通过测量脉冲光束的飞行时间来测量距离的一种测量方法,其原理是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。飞行时间法以时间分辨率来换取距离测量精度,精度相对较低,一般在1mm左右,精度高的测量头可达亚毫米级,常用于大尺度远距离测量。1.3三角法三角法是光学测量中最常见的一种测量方法。它是将待测点的深度坐标,通过不同的检测元件,利用几何三角关系转换为相对于光学基准的偏移量进而计算出该点深度值。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和主动三角法。激光三角法测量是基于激光的主动三角法,是近年来研究较多、发展比较成熟的一种测距方法。其测量原理是:由光源发出的光照射到被测物体表面上,反射后在检测器(如:CCD)上成像,物体表面的位置改变,检测器上成的像也随之改变,由几何三角关系即可通过对像移的检测和计算出实际高度。激光三角法测量的精度取决于感光设备的敏感程度、与被测表面的距离、被测物表面的光学特性等,适合于近距测量,精度一般在丝米级。

2测量方法的选择

船板的形状尺寸测量是一个典型的外表面三维曲面测量。由于船板是一个连续而光滑的曲面,因此,可以将整个曲面离散成m×n个点,通过测量得到这些点的坐标值后,即可通过软件拟合出整个曲面。由于传统的接触式测量,存在探头易磨损,需要人工干预,价格昂贵,对使用环境有一定要求,测量速度慢,效率低等问题,因此,虽然其有较高的测量精度,但确并不适合应用在船板多点成形在线测量中。对比三种常用的激光测量方法,测量精度均能满足船板的测量要求。本着实用而不浪费的原则,由于干涉法测量所需的测量设备成本较另外两种方法高出很多,并且使用时需反射镜,现场在线使用不方便,速度慢效率低,因此,采用飞行时间法或三角法的激光测量传感器比较适合船板三维测量,其设备价格较低,对测量表面的要求不高,并且可直接测量,使用灵活方便。

3扫描装置

扫描装置是激光测量头的安装平台,其作用是带动激光测量头沿X轴和Y轴运动,完成对整个测量表面的扫描,并在测量的同时给出测量点的X方向和Y方向的坐标值。为了提高测量效率,最终确定扫描装置采用多点方式,这样可以大大提高船板多点成形的生产效率。由于多点测量方式使用的激光测量头数量较多,因此,在满足测量精度要求的前提下,选择了价格相对较低的飞行时间法激光测量头。扫描系统由电动滑台、联轴器、接轴、减速机、伺服电机、测量架、测头等部分组成(见图1)。电动滑台和减速机通过架子固定在上模座上,伺服电机与减速机相连,并通过接轴与电动滑台连接,测量架固定在电动滑台上。测量时,在伺服电机驱动下,电动滑台带动测量架沿X方向移动,每走一个步长测头测量当前X坐标下各点的Z坐标值,直到测量完整个板材表面点阵(见图2)。

4结束语

第3篇

地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。

1.1选定基准站

基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。

1.2基于GPS-RTK的测绘作业

GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。

1.3内业处理

测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。

2GPS-RTK在地籍测量中的质量控制

GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。

2.1构建控制网约束测量数据

控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。

2.2排除干扰控制测量误差

虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。

3结束语

第4篇

首先将已标定过的螺线管和HWR腔安装就位,并且用三维可调机构反复调节各元件至理论位置,其实际安装精度见表1.然后将测微准直望远镜所用十字丝目标及其支架,安装在冷质量元件上,并将其对准至设计位置.

2配置偏心距和旋转角

由于测微准直望远镜低温下监测,只能透过观察窗向真空室内部的光学靶观测.而光的传播存在折射和衍射,会对光学观测产生误差.采用数字水平仪调平望远镜的视准轴,并且借助激光跟踪仪事先将远近两处的基准靶和望远镜的视准轴中心调整至统一高程面,可以消弱光透过空气和玻璃观察窗不同介质时的折射误差.为了避免光的衍射误差,可以人为将不同十字丝目标的上下左右配置在±0.2mm以内不同偏心距上(见图4).由于六个十字丝之间间隔太小,为了便于观测,可以将不同十字丝目标配置不同的旋转角(30度和60度),间隔放置在螺线管和超导腔下方(见图4).

3理论模拟

在低温压力容器的元件中,除了承受由载荷(压力、外载)产生的机械应力外,由于在运行过程中元件的温度场发生变化,还将承受热应力的作用[5].为了确定腔体、磁体、支撑以及氦容器在重力和冷缩变形时的补偿量和热应力,以减小或消除应力和变形.必须采用有限元方法,模拟低温下所有冷质量组件的热应力和冷缩变形.本文采用SOLID-WORKS建模,使用ANSYS进行热应力模拟.

3.1有限元模型及其材料属性

冷质量及其支撑组件的有限元模型如图3所示.模型中磁体、氦槽及其本身焊接连接支架采用316LSS不锈钢材料,HWR腔及其本身焊接连接支架为钛材,冷质量支撑组件和腔体的6根横梁采用钛材料,准直支架及十字丝目标采用G10材料.模型中支撑杆室温端为球铰接,支撑杆低温端与钛架之间为绑定.不同接触材料之间采用螺栓连接,模拟为不同接触材料之间可相互滑动且不分离.所有冷质量材料的机械特性见表2.

3.2边界条件与模拟结果

实测的两次试验采用液氮降温,模型中支撑室温端球铰链接触面为300K室温,所建模型腔体、氦容器以及超导磁体接触面处为80K,80K表面热负荷0.1W/m2.80K下竖直和横向位移计算结果见表3,螺线管和HWR底部上移约2.0mm,横向向中心收缩约1mm.

4实测分析

4.1低温监测

先用WYLER电子水平仪,将测微准直望远镜的视准轴调平,精度控制在0.05mm/m内[6].再调焦至远处基准靶,使用旋转按钮,摆动镜筒使其对齐远处目标中心(见图5第1步);然后调整焦距瞄准近处基准靶,使用平移工作台,移动镜筒至近处目标中心(见图5第2步).重复上述两步“远旋转移”多次,调整镜筒至两基准靶偏心线上,控制其直线度误差在0.1mm以内.图5中虚线矩形框代表已旋转的测微准直望远镜,实线矩形框代表已平移的测微准直望远镜,圆形目标为MAT基准靶.由于同轴十字丝目标存在加工误差,所以需要使用测微准直望远镜,借助可调丝扣,调整六个十字丝中心上下左右至设计偏心线位置.由于光学仪器不可避免地存在瞄准误差,而且瞄准误差的大小与距离成正比,呈正态分布.所以为了提高测量精度,应该采用多次测量取平均值,和尽量缩短瞄准距离的方法[7].

4.2数据分析

两次试验降至液氮温区时跟踪仪和望远镜监测数据见图6和7.80K时竖直方向上跟踪仪监测到2号螺线管向上移动1.8mm,望远镜监测到2号螺线管向上移动1.9mm;80K时横向跟踪仪监测到2号螺线管向中心移动1mm,望远镜监测到2号螺线管向中心移动0.9mm.

5结论

第5篇

(1)GPS-RTK测量应用范围,首先用在控制测量,一般用在四等以下测量与工程测量。其次用在地形测量,用GPS-RTK测量时辅以测图软件,可测绘各种地形图,如:带状地形图与数字地形图等。最后用在放样测量。用GPS-RTK测量有效把放样工作与设计方案结合,提高工作效率。(2)GPS-RTK系统土地测量优点。PTK动态测量是继GPS定位技术后,测量领域的技术变革。有以下优点:①观测点无需通视。精度高,有效距离远,可减少测量时间和经费,使地形点位选择更灵活。②操作简便与自动化高。PTK测量所需人员少与时间短,效率高,且测量成果为独立观测值,不像常规测量积累误差。③观测时间短。通常使用PTK测量中已达到几秒就可测定一点位。能对坐标实时计算,因此可提高效率。(3)RTK技术。实时测量技术以载波观测量为依据的差分GPS技术。GPS测量模式有多种,如静态、准动态与动态定位等。但用这些模式,如不和传输系统结合,定位结果需通过测后处理获得,无法实时得出定位结果,无法实时审核基准站与用户站数据质量,长致使重测。动态测量思想是,安置一GPS接收机于基准站,对可见GPS卫星连续观测,将观测数据用无线电设备,实时发送用户观测站。在该站上,GPS接收机接收卫星信号时,通过接收设备,接收基准站观测数据,再根据定位原理,实时计算与显示用户站坐标与其精度。

2GPS-RTK测量控制要点

(1)控制点确定。设计测量控制点收集,根据需要,收集高级控制点参心坐标、高程成果与坐标转换参数等。其次确定平面控制点,把平面控制点划分等级成:一级、二级与三级。其三确定高程控制点,按精度可分成五等。最后布设平面控制点,用逐级布设与越级布设结合方式,争取控制点保证一个以上等级点和其通视。(2)测量方法。GPS-RTK测量用参考站RTK与网络RTK两种方法。通信困难时,可用后处理测量模式测量。(3)平面控制点测量。用GPS-RTK测平面控制点,先应该用流动站采集观测数据,用数据链接收参考站数据,系统中组成差分值实时处理,用坐标转换将观测地心坐标转为坐标系平面坐标。其次获取坐标转换参数时,直接用已知参数。最后,GPS-RTK测量起算点应均匀,且能控制测区。转换时根据测区与具体情况,检验起算点,采用数学模型,进行点组合式分别计算与优选。

3GPS-RTK测量土地测量中应用

(1)技术路线。土地开发所要求绘图比例为1∶10000或1∶2000,这对一定范围精度达到厘米的GPS-RTK测量将完全达到要求。准备工作。测量前检查仪器能否正常;精度检验;项目地基处理与行政界线等资料收集,为保证精度,在控制网中选取已知点求转换参数,校正应选4个以上校正点,且待测点位于校正点范围内。(2)数据采集。测量要素与综合取舍可能和普通测量不同,具体需参照指导书。外业采集时徐绘制草图。每天外业完成后要及时把观测数据输到计算机。一般主要有两种采集,即连续测量与非连续测量。(3)GPS数据处理阶段。开展传输时把电脑与测控设备放一起,就能把当天信息与内容融汇,以表格展示出来,非常便利。(4)图形编辑。用AutoCAD编辑图形,参照外业草图或外业点记录编号把测量区地物按实际连接与形成矢量图,等高线生成与地类符号等作业。(5)图幅整饰与面积统计。依据规范与指导书要求,将绘制土地现状图图号、坐标系、制图单位与其他说明上图。(6)界址点放样与埋设界桩。界址点放样测量方法,用接收机在放站为固定站,用RTK移动站放样和定位时。按这几个步骤:①建立项目与坐标管理。选择参考椭球与参数输入,选择和输入投影带等。②移动站频率选择。根据无线电频率。选一理想频率,移动站与基准站要使用一个频率。③坐标输入。将界址坐标及控制点坐标输入建立项目作为放样与检查使用。(7)测量菜单选择RTK形式,并初始化,完成后启动RTK,然后进行测量。(8)定位放样。从手薄中调出项目放样点坐标,手簿屏幕上放样点距移动站方位与距离,背着接收机,它会提醒走到放样点位置,迅速与方便。移动站正对放样点时,手簿有提示声,表明该点定位成功。然后挖坑和埋设界桩,埋设时不断纠正界桩位置到达到误差要求。良好条件下,PTK初始化需时间几十秒;不良条件下,先进PTK需几分钟或十几分钟。

4总结

第6篇

推动着各公司和机构提高了对影像测量技术的重视,影像测量仪的品种和规模也不断扩大[2-4]。国外影像测量仪技术的由于起步早,技术发展比较成熟,因此市场占有比例高,产品知名度和普及度也较高。美国OGP公司设计的VidicomQualifier863,是首个使用固态CID相机和灰度图像处理技术的现代影像检测系统。该公司在影像测量技术领域拥有着多项核心技术和专利。德国蔡司(ZEISS)公司旗下的高端三坐标测量机处于行业先进水平,代表性产品为光学三坐标测量机O-INSPECT系列。其他生产影像测量仪公司如日本MITUTOYO、NIKON,瑞典HEXAGON等也有着雄厚的技术力量。国内的影像测量技术由于起步晚,技术力量薄弱,但随着国家的重视和科研经费投入的加大,相关技术水平持续提高,研究成果也不断涌现。智泰集团(3DFAMILY)代表性的VMC250S型影像仪使用XYZ全闭环伺服控制系统;采用了自主研发的OVMPro全自动光学测量系统,并具有SPC报表分析功能,提高了批量检测的效率,但难以测量高度尺寸。天准公司于2007年自主开发了一款二维自动影像测量仪,打破了国外厂家的技术垄断。其他新兴企业如冶信、新天等生产的影像测量仪器和设备也逐渐在国内市场上崭露头角,占据着一席之地。

2影像测量仪的结构分类与特点

影像测量仪主要由机械主体、标尺系统、影像探测系统、驱动控制系统以及测量软件等组成。影像测量仪的结构型式主要有柱式、固定桥式和移动桥式。柱式一般用于小量程的机器,桥式一般用于中大量程的机器。

2.1柱式影像测量仪

柱式结构底部为基座,二维工作台分别沿X和Y向移动,影像探测系统可在固定立柱上沿Z向运动,结构牢固、精度高,不过工件的重量对工作台运动有影响,不能承载过重工件,适合于中小行程影像测量仪。

2.2固定桥式影像测量仪

固定桥式测量仪的X、Y、Z轴相互正交并沿着各自导轨运动,其中Z轴上安装有影像探头并可以相对Y轴做垂直运动,而Y轴则安装在基座上。Z轴部分和Y轴部分的总成牢固装在机座两侧的桥架上端。每轴都由电机来驱动,可确保位置精度,但不适合手动操作,该结构稳定、整机刚性好。

2.3移动桥式影像测量仪

移动桥式结构是目前大量程影像测量仪中应用最广泛的一种结构形式。其中,工作台固定,其中一个桥框由导轨带动在工作台上沿X轴移动,同时由另一个导轨带动滑板在桥框上沿Y轴移动,主轴则沿Z轴移动。被测工件安放在工作台上,影像探测部件安装在主轴上。这种形式的影像测量仪结构简单、紧凑,刚度好,具有较开阔的空间。

3展望

第7篇

在锅炉自身检验工作开展过程中,我们经常会发现如果炉墙温度过高时,会使得热量大量的散失和消耗,从而降低了锅炉的工作效率,同时对于整个锅炉系统的安全运行也带来了非常不利的影响。当前我国出台的锅炉节能标准中,对于锅炉的炉墙温度进行了一定的限制,对于检测壁面的传统设备等也发挥了很好的作用。因此采用新的热成像检测技术能够使得更好的完成检测过程,使得检测更加直观、具体,检测结果也更加容易方便记录。在利用热成像技术开展检测过程中,能够迅速的检测锅炉壁面的运行温度,通过对其相关的仪器设备显示情况进行显示,能够准确的了解锅炉内部的高温点分布情况,同时对于超过正常温度的范围可以提前做好控制,提高能源的利用效率,减少能源不必要的消耗,同时也可以为检测工作人员做好相应的准确工作,提前可以做好保温措施,避免出现工作中的一些遗漏。在利用热成像技术开展工作的过程中,利用壁面进行取像时,可以利用自然光进行取像操作,通过采用专门的软件设备,可以对不同的热成像图像进行对比,寻找不同之处,对其进行原因分析,从而能够有助于对锅炉运行过程中,热成像技术的运行精确度进行把控,对其影响因素不断进行分析和探讨,从而不断提高锅炉运行过程中的精确度,提高其检验效率,节约检验成本投资。热成像技术在应用于锅炉检测过程中,能够对存在温度异常的锅炉区域进行科学检测,从而有助于检测人员及时的发现保温层受到损害的情况,及时开展解决工作,降低其测量过程中的误差。采用这种新型的检验方式,能够更好的帮助工作人员制定一个检测计划,比如定期开展检测和养护工作,能够有助于能源的合理利用,提高能源利用效率。采用热成像技术对于锅炉的水垢方面也能够实现很好的识别管理,有效的做好水垢清除工作,节约成本,保证锅炉的良好运行。

2辅助设备的检验应用

在锅炉运行过程中,辅助设备的良好运行对于锅炉的安全运行有着重要作用,因此在锅炉检验工作开展过程中,还需要假期nag对辅助设备的检查和控制。在最近几年中,我国锅炉运行的自动化程度不断提升,因此采用辅助设备也会对锅炉的安全运行带来一定的影响,比如锅炉持续发热,就可能意味着锅炉的辅助设备出现了一定的磨损情况,或者是整个辅助设备出现了故障等,因此需要及时的展开检测工作,利用热成像测量技术就可以快速的展开检测工作,及时发现辅助设备中出现的电线脱落、连接过密等情况,从而能够及时的采取措施来达到有效解决的效果,从而保证其辅助设备的良好运行。

3结语