时间:2023-03-15 15:05:52
序论:在您撰写七年级数学册时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一、选择题(共10个小题,每小题3分,共30分)
1.下列命题正确的是()
A.相等的角是对顶角
B.两条直线被第三条直线所截,同位角相等
C.在同一平面内,垂直于同一条直线的两条直线平行
D.同旁内角互补
2.下列运算正确的是()
A.a2•a3=a6B.(–a)4=a4C.a2+a3=a5D.(a2)3=a5
3.下列不能进行平方差计算的是()
A.(x+y)(-x-y)B.(2a+b)(2a-b)
C.(-3x-y)(-y+3x)D.(a2+b)(a2-b)
一、选择题(每题3分,共30分)1. 的相反数是 ( ) A. B. C. D. +12. 下列图形中,不能通过其中一个四边形平移得到的是 ( )3. 若 < ,则下列结论正确的是( ) A. - <- B. > C. < D. >4. 在平面直角坐标系 中,若点 在第四象限,且点 到 轴的距离为1,到 轴的距离为 ,则点 的坐标为( ) A. ( ) B. ( ) C. (1, ) D. ( )5. 如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有( ) A.1个 B.2个 C.3个 D.4个6. 在坐标平面上两点A(-a+2,-b+1)、B(3a, b),若点A向右移动2个单位长度后,再向下移动3个单位长度后与点B重合,则点B所在的象限为( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7. 下列命题中,是真命题的个数是( )①两条直线被第三条直线所截,同位角相等②过一点有且只有一条直线与已知直线垂直③两个无理数的积一定是无理数④ > A.1个 B.2个 C.3个 D.4个8.如图,∠ACB=90º,CDAB于D,则下面的结论中,正确的是( ) ①AC与BC互相垂直 ②CD和BC互相垂直 ③点B到AC的垂线段是线段CA ④点C到AB的距离是线段CD ⑤线段AC的长度是点A到BC的距离. A.①⑤ B.①④ C.③⑤ D.④⑤ 9. 车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是( ) A.150° B.180° C.270° D.360° 10. 对于不等式组 ( 、 是常数),下列说法正确的是( )A.当 < 时无解 B.当 ≥ 时无解 C.当 ≥ 时有解 D.当 时有解二、填空题(每题2分,共20分)11. 在下列各数 、 、 、 、 、 、 、 中,无理数有 .12. 若一个数的算术平方根与它的立方根相同,则这个数是 .13. 当x_________时, 有意义14. 如图所示,直线AB与直线CD相交于点O,EOAB,∠EOD=25°,则∠AOC=__________,∠BOC=__________班级_____ 姓名_____ 学号_____ 分层班级_____ 15. 已知关于x的不等式组 的解集为 ,则 的值为__________16. 把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式: 1). 8, a 17. 已知点M (3a (1) 若点M在第二象限, 并且a为整数, 则点M的坐标为 _________________; 6), 并且直线MN∥x轴, 则点M的坐标为 ___________ . (2) 若N点坐标为 (3, 18. 如图,一条公路修到湖边时,需拐 弯绕湖而过;如果第一次拐角∠A是120 °,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是__________ 19. 如图,点A(1,0)第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是______________.20.如图a, ABCD是长方形纸带(AD∥BC), ∠DEF =19°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是_____________;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是_____________. 三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)21. 计算: + . 22.解方程:23. 解不等式 ,并把解集在数轴上表示出来.24. 解不等式组 ,并写出该不等式组的整数解.
25. 已知: , ,点 在 轴上, .(1)直接写出点 的坐标;(2)若 ,求点 的坐标. 26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有 两种型号的设备,其中每台的价格,月处理污水量如下表: 型 型价格(万元/台) 处理污水量(吨/月) 240 200经调查:购买一台 型设备比购买一台 型设备多2万元,购买2台 型设备比购买3台 型设备少6万元.(1)求 的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.7. 如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA ,交直线AB于点D;(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为 .28. 完成证明并写出推理根据:已知,如图,∠1=132o,∠ =48o,∠2=∠3, 于 ,求证: . 证明:∠1=132o,∠ACB=48o,∠1+∠ACB=180° DE∥BC ∠2=∠DCB(____________________________)又∠2=∠3∠3=∠DCB HF∥DC(____________________________)∠CDB=∠FHB. (____________________________)又FHAB,∠FHB=90°(____________________________)∠CDB=________°.CDAB. (____________________________) 29. 在平面直角坐标系中, A、B、C三点的坐标分别为(-6, 7)、(-3,0)、(0,3).(1)画出ABC,则ABC的面积为___________;(2)在ABC中,点C经过平移后的对应点为C’(5,4),将ABC作同样的平移得到A’B’C’,画出平移后的A’B’C’,写出点A’,B’的坐标为A’ (_______,_____),B’ (_______,______);(3)P(-3, m)为ABC中一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,-3),则m= ,n= .30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。定义:平面内的直线 与 相交于点O,对于该平面内任意一点M,点M到直线 , 的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是 .班级_____ 姓名_____ 学号_____ 分层班级_____ 四、解答题(每题7分,共21分)., ∠CBD=7031. 已知:如图, AEBC, FGBC, ∠1=∠2, ∠D =∠3+60(1)求证:AB∥CD ; (2)求∠C的度数.
32. 已知非负数x、y、z满足 ,设 , 求 的值与最小值. 33. 如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B向上平移2个单位,再向右平移1个单位,得到点A,B的对应点分别是C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积 .
(2)在y轴上是否存在点P,连接PA,PB,使 = ,若存在这样的点,求出点P的坐标,若不存在,试说明理由. (3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:① 的值不变 ② 的值不变③ 的值可以等于 ④ 的值可以等于 以上结论中正确的是:______________ 北京三帆中学2014-2015学年度第二学期期中考试初一数学参考答案及评分标准一、选择题(每题3分,共30分) BDCAD DAACB二、填空题(每题2分,共20分)11. 无理数有 、 、 、 12. 若一个数的算术平方根与它的立方根相同,则这个数是 0和1 .13. 当 时, 有意义14. 如图所示,直线AB与直线CD相交于点O,EOAB,∠EOD=25°,则∠AOC=____65°___,∠BOC=___115°____15. 已知关于x的不等式组 的解集为 ,则 的值为___-2_____16. “在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”1). (1)点M _(-2,1)__; (2)点M ___(-23,-6)_ .8, a 17. 已知点M (3a 18. 如图,一条公路修到湖边时,需拐 弯绕湖而过;如果第一次拐角∠A是120 °,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是__150°_19. 如图,点A(1,0)第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是(51,50) 20.图c中的∠CFE的度数是___123°____;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是 __ 9________. 三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)21. 计算: + .解:原式=7-3+ = ……………………4分22.解方程: 解: -----1分 ------2分 ------4分23. 解不等式 ,并把解集在数轴上表示出来.解:去括号,得 .移项,得 .…………………………………1分合并,得 . …………………………………………2分系数化为1,得 …………………………………………3分不等式的解集在数轴上表示如下: …………………………………………4分24. 解不等式组 ,并写出该不等式组的整数解.解:由不等式 ,得 ;………………1分由不等式 得: x>-5;………………2分画出数轴: ………………3分所以该不等式组的解集为:-5<x≤1,………………4分所以该不等式组的整数解是-4,-3,-2,-1,0,1.………………5分25. 已知: , ,点 在 轴上, .(1)直接写出点 的坐标;(2)若 ,求点 的坐标. 解:A(4,0),点C在x轴上,AC=5,所以点C的坐标是(-1,0)或(9,0). ……………2分②SABC= =10解得y=4或-4………………………4分所以点B坐标是B(3,-4)或(3,4)………………………5分26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有 两种型号的设备,其中每台的价格,月处理污水量如下表: 型 型价格(万元/台) 处理污水量(吨/月) 240 200经调查:购买一台 型设备比购买一台 型设备多2万元,购买2台 型设备比购买3台 型设备少6万元.(1)求 的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.解:(1)由题意得, ,解得 .………………2分 (2)设买x台A型,则买 (10-x)台B型,有 解得: ………………3分 答:可买10台B型;或 1台A型,9台B型;或2台A型,8台B型. ………………4分 (3) 设买x台A型,则由题意可得 ………………5分 解得 当x=1时,花费 (万元) 当x=2时,花费 (万元) 答:买1台A型,9台B型设备时最省钱. ………………6分27. 如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA ,交直线AB于点D;(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为 .解:(1)如图; ……………………………1分(2)如图; ………………… ………2分(3)如图; ………………… ………3分(4)90; ………………………………4分(5)4.8. …………………………………6分28. 完成证明并写出推理根据:已知,如图,∠1=132o,∠ =48o,∠2=∠3, 于 ,求证: . 证明:∠1=132o,∠ACB=48o,∠1+∠ACB=180° DE∥BC ∠2=∠DCB(__两直线平行,内错角相等__)又∠2=∠3∠3=∠DCB HF∥DC(__同位角相等,两直线平行__)∠CDB=∠FHB. (_____两直线平行,同位角相等___)又FHAB,∠FHB=90°(___垂直定义_______)∠CDB=__90_°.CDAB. (____垂直定义_________)29. 在平面直角坐标系中, A、B、C三点的坐标分别为(-6, 7)、(-3,0)、(0,3).(1)画出ABC,则ABC的面积为___________;(2)在ABC中,点C经过平移后的对应点为C’(5,4),将ABC作同样的平移得到A’B’C’,画出平移后的A’B’C’,并写出点A’,B’的坐标;(3)P(-3, m)为ABC中一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,-3),则m= ,n= .解:(1)如图,过A作AHx轴于点H. .……1分(2)画图A’B’C’, , ; 4分(3)m =3,n =1. ……6分30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。定义:平面内的直线 与 相交于点O,对于该平面内任意一点M,点M到直线 , 的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是 4个 .四、解答题(每题7分,共21分)., ∠CBD=7031. 已知:如图, AEBC, FGBC, ∠1=∠2, ∠D =∠3+60(1)求证:AB∥CD ; (2)求∠C的度数. (1)证明:AEBC, FGBC, ∠4=∠5=90o.………………………1分AE∥FG.∠2=∠A.∠1=∠2,∠1=∠A.………………………2分AB∥CD.………………………3分(2)解:设∠3=xo,由(1)知:AB∥CD,∠C=∠3=xo. .………………………4分,∠D = xo+60∠D =∠3+60AB∥CD∠D+∠3+∠CBD=180o,………………………5分,x+60+x+70=180.………………………6分∠CBD=70x=25.∠C=25o.………………………7分32. 已知非负数x、y、z满足 ,设 , 求 的值与最小值. …1分 …2分 5分 …7分 33.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B向上平移2个单位,再向右平移1个单位,得到点A,B的对应点分别是C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积 . 解:(1) C(0,2) D(4,2) =8…………3分
(2)在y轴上是否存在点P,连接PA,PB,使 = ,若存在这样的点,求出点P的坐标,若不存在,试说明理由. 解: 存在。P点坐标为(0,4)或(0,-4)………5分 (3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:① 的值不变 ② 的值不变③ 的值可以等于 ④ 的值可以等于 以上结论中正确的是:_______②④_______ ………………………7分
1、能正确地进行整式的运算。撑握运算的各种法则以及乘法公式。
2、能准确找出同位角。内错角以及同旁内角并撑握判断两直线平行的方法以及平行线的特征。
3、认识百万分之一。近似数与有效数字。认识统计表和条形统计图以及形象统计图,经历数据的收集和整理过程,会用统计图中的数据解决一些简单的问题。
4了解必然事件和不可能事件发生的概率,体会概率的取值在0,1之间。了解事件发生的等可能性,运用概率的语言说明游戏的公平性。体会概率的意义,能对两类概率模型进行简单计算;能设计符合要求的简单概率模型。
5、掌握三角形分类。会画三角形的中线。角平分线以及高。认识全等三角形撑握判断三角形全等的方法以及利用全等知识解决实际问题。
6。认识常量与变量。了解自变量与因变量都是变量以及自变量与因变量之间的关系。
7、能辩认从不同角度观察到的简单物体的形状;认识轴对称现象,并能在方格纸上画出简单图形的轴对称图形;认识镜面对称现象。
二、复习的主要目标
1、引导学生主动整理知识,回顾自己的学习过程和收获,逐步养成回顾和反思的习惯。
2、通过总复习使学生在本学期学习到的知识系统化。巩固所学的知识,对于缺漏的知识进行加强。
3、通过形式多样化的复习充分调动学生的学习积极性,让学生在生动有趣的复习活动中经历、体验、感受数学学习的乐趣。
4、有针对性的辅导,帮助学生树立数学学习信心,使每个学生都得到不同程度的进一步发展。
三、复习的具体设想
1、首先组织学生回顾与反思自己的学习过程和收获。可以让学生说一说在这一学期里都学了哪些内容,觉得哪些内容在生活中最有用,感觉学习比较困难的是什么内容等等。也可以引导学生设想自己的复习方法。这样学生能了解到自己的学习情况,明确再努力的目标,教师更全面地了解了学生的学习情况,为有针对性地复习辅导指明方向。
2、与生活密切联系。复习时同样要把数学知识与日常生活紧密联系。可以设计一些生活情境画面给学生用数学的眼光去观察,提出数学问题,解决数学问题。可以让学生到生活中寻找数学问题,然后在全班中交流。学生不仅感受生活即是数学,数学即是生活,而且各方面都得了发展。
3、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的内容综合化,给学生比较全面地运用所学知识的机会。如设计学生调查班级同学最喜欢的季节或最喜欢的学科,学生在调查中经历数据的收集和整理,绘制成统计图和统计表,根据表中的数据,自己提出问题,自己解决问题。同时发展了学生的合作交流、实践操作等能力,得到良好的情感体验。
四、复习时间安排
1、整式的运算2课时
2、平行线与相交线2课时
3、生活中的数据1课时
4、概率1课时
5、三角形2课时
6、变量之间的关系1课时
一、选择题:细心选一选(每题3分,共30分)1、对于下列式子:①ab;②x2-xy;③x2+2x+1;④m+n,其中多项式有( )个。 A、2 B、3 C、1 D、42、下列各式计算正确的是( ) A、(2a3)2=4a6; B、a2•a4=a8; C、c6÷c=c6 ; D、(x+2)2=x2+43、已知:如图AB∥CD,CE平分∠ACD,∠A=120°,则∠ECD等于( ) A、120° B、30° C、55° D、35°4、下列说法不正确的是:( ) A、内错角相等,两直线平行; B、两直线平行,同旁内角互补; C、同角的补角相等; D、相等的角是对顶角5、下列计算结果正确的是( ) A、(a+3)(a-4)=a2-12 B、(2x-3y) 2= 4x2-9y2 C、(-3x2y)3=-9x6y3 D、(x+2y)(2y-x)=4y2-x26、下列不能用平方差公式计算的是( ) A(x-y)(-x+y) B、(-x+y)(-x-y) C、(-x-y)(x-y) D、(x+y)(-x+y) 7、如果一个角的补角是150°,那么这个角的余角的度数是( ) A、30°; B、60°; C、90°; D、120°8、当老师讲到“肥皂泡的厚度是0.00000007m时,小明举手说‘老师我可以用科学记数法表示它的厚度。’”同学们你不妨也试试。请选择( ) A、0.7×10-7m B、0.7×10-8m C、7×10-8m D、7×10-7m9、两整式乘积结果为a2+7a+12的是( ) A、(a+3)(a-4) B、(a+3)(a+4) C、(a+6)(a-2) D、(a-6)(a+2)10、如图,不能推出 ∥ 的条件是( ) A.、∠1=∠3 B、 ∠2=∠4 C 、∠2 =∠3. D.、∠2+∠3=180°二、填空题,耐心填一填(每空2分,共30分)11、代数式5abc,-7x2+1,-5x,中,单项式有 个,多项式共有 12、单项式-7a2bx的系数是 ,次数是 ;13、计算:(-3)5×(-3)7= 5m÷5n= (23)m= (a2b)m= 14、用分数表示下列各数:6×6-2= 3-2×( )0= 15、0.00001023表示成科学记数法为 16、∠1与∠2互余,∠2与∠3互 补,且∠1=63°,那么∠3= 17、如图,AB∥DC,∠B=60°,那么∠DCE的度数是 18、A=2x2-3x+1,B=-3x2+5x-7,则A-2B=______________19、小颖看小明是北偏东30°,那么小明看小颖时,它的方向是 三、解答题,认真做一做20、计算:(每题5分,共30分) (1)(y3)2÷y6 (2)( a2b3)(-15a2b2) (3)-(10x3+2xy2+y3)+(10x3+3xy2-8y3)
(4)(2x+y)(x-y) (5)用乘法公式计算:(3x+9)(3x-9) (6)化简求值:b(a+b)+(a-b)2-a2-2b2其中a= ,b=3
21、完成下列推理(5分) 如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明: MG平分∠BMN( ), ∠GMN= ∠BMN( ),同理∠GNM= ∠DNM. AB∥CD( ), ∠BMN+∠DNM=________( ). ∠GMN+∠GNM=________. ∠GMN+∠GNM+∠G=________( ), ∠G= ________. MG与NG的位置关系是________.22、(5分)作图:已知∠1,∠2如图所示,用尺规作图画出∠AOB=∠1+∠2保留作图痕迹 23、(5分)如图,AB∥CD,∠1=∠2,∠BDF与∠EFC相等吗?为什么? 24、(5分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25、(5分)图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象。根据图象回答问题:(1)在这个变化过程中,自变量是____,因变量是______。(2)9时,10时,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?26、(5分)乘法公式的探究及应用. (1)、如下左图,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)、如下右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)、比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达);
1.(x2)3的计算结果为 ( )
A.3x2 B.x6 C.x5 D.x8
2.下列计算正确的是( )
A.x5+x5=x10 B.x5-x5=2x10 C.(x5)5=x25 D. (a2b)2=a2b2
3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )
A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等
4.如果a=(-99)0,b=(-0.1)-1,c=(- )-2,那么a,b,c三数的大小为( )
A.a>b>c B.c>a>b C.a>c>b D.c>b>a
5.下列各式中能用平方差公式计算的是( )
A.(a+3b)(3a-b) B. -(3a-b)(3a+b)
C.-(3a-b)(-3a+b) D. (3a-b)(3a-b)
6.如图,∠l=∠2,∠DAB=∠BCD,给出下列结论:①AB∥DC
②AD∥BC ③∠B=∠D ④∠D=∠DAC,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7.如图,已知AB∥CD.则角α、β、γ之间关系为 ( )
A.α+β+γ=180° B.α-β+γ=180°
C.α+β-γ=180° D.α+β+γ=360°
8.a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
9.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.(a+2b)(a-b)=a2+ab-2b2
10.下列叙述中,正确的有 ( )
①如果2x=a,2y=b,那么2x-y=a-b;
②满足条件 的n不存在;
③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;
④在ABC中,若∠A+∠B=2∠C,∠A-∠C=40°,则这个ABC为钝角三角形.
⑤两条平行直线被第三条直线所截,同旁内角的角平分线互相平行.
A.0个 B.1个 C.2个 D,3个
二、填空题(本小题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)
11.计算(-2x2y3)2=_______; (5)-x2.(-x)2=_______。
12.计算(-3)100× =_______;
13.某种感冒病毒的直径是0.00000012米,用科学记数法表示为______米.
14.已知一等腰三角形的两边长分别为2、5,则这个三角形的周长为_______.
15.若an=2,an=3,则a2m-n的值为______.
16.(x2-mx+1)(x-2)的乘积中不含x的二次项,则m的值是______.
17.若x2+mx+9是一个完全平方式,则m的值是_______.
18.已知x+y=5,xy=6,则x2+y2=_______.
19.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…….照这样走下去,他第一次回到出发地A点时,一共走了_____米.
20.如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是______.
三、解答题(本题共50分,请把解答过程写在答题卡相应的位置上)
21.计算(每小题3分,共18分):
(1) (2)2m2•(-2mn) •(- m3n3)
(3)(-x3)2+(-x2)3-x•x5 (4)k(k+7)-(k-3)(k+2)
(5) (3x-2y)2-(2y-3x)(3x+2y) (6)(2a-b+3)(2a+b-3)
22.(5分)如图,将直角ABC沿BC方向平移得直角DEF,其中AB=8,BE=10,DM=4,求阴影部分的面积.
23.(5分)化简求值:(2x+y)(x-2y)-2x(x+y),其中x、y满足x2+y2-2x+4y=-5.
24.(6分)如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,
求∠EDC和∠BDC的度数。
25.(6分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE。
26.(10分)如图,AD为ABC的中线,BE为ABD的中线。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在BED中作BD边上的高,垂足为F;
经过七年级一期的数学教学,发现班上的学生数学基础较差,两极分化现象严重。尤其是女生的数学成绩普遍偏低,男生情况稍好,但是相当一部分学生解题作答比较粗心,不能很好的发挥出自己应有的水平。但通过上学期的学习,不少学生基本掌握了初中数学的学习方法和解题技巧,对于所学的知识能较好地应用到解题和日常生活中去。
二、指导思想
完成七年级下册数学教学任务。以十七大精神为指针,全面贯彻党的教育方针,积极落实《数学新课程标准》的改革观。通过教育教学,结合学生*的实际情况,让学生亲历将实际问题转化为抽象的数学模型,并进行解释与应用的过程。使学生获得对数学知识理解的同时,强化基本计算能力和归纳的能力。培养其探索精神和创新思维。同时提高知识应用的能力,使学生的综合能力得到较大的提升。
三、教材分析
第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交 ②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。
第六章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。
第七章、三角形:本章主要*学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第八章、二元一次方程组:本章主要学元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。
第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇
形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。
四、教学措施提高学科教育质量的主要措施:
1、认真做好教学六认真*工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学*生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、成立课外兴趣小组,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置a、b、c三等分层布置,课堂上照顾好好、中、差在三类学生。
9、进行个别辅导,*优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
11、开展课题学习,把学生带入研究的学习中,拓展学生的知识面。
五、 全期教学进度安排
章节 课时 教学起止时间
第五章 13课时 第 1-3 周
第六章 7课时 第 4-5 周
第七章 10课时 第 6-8 周
第八章 10课时 第 8-10周
第九章 13课时 第11-13周
经过七年级一期的数学教学,发现班上的学生数学基础较差,两极分化现象严重。尤其是女生的数学成绩普遍偏低,男生情况稍好,但是相当一部分学生解题作答比较粗心,不能很好的发挥出自己应有的水平。但通过上学期的学习,不少学生基本掌握了初中数学的学习方法和解题技巧,对于所学的知识能较好地应用到解题和日常生活中去。
二、指导思想
完成七年级下册数学教学任务。以十七大精神为指针,全面贯彻党的教育方针,积极落实《数学新课程标准》的改革观。通过教育教学,结合学生的实际情况,让学生亲历将实际问题转化为抽象的数学模型,并进行解释与应用的过程。使学生获得对数学知识理解的同时,强化基本计算能力和归纳的能力。培养其探索精神和创新思维。同时提高知识应用的能力,使学生的综合能力得到较大的提升。
三、教材分析
第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交 ②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。
第六章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。
第七章、三角形:本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
1 2 3第八章、二元一次方程组:本章主要学元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。
第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。
四、教学措施提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
1 2 34、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、成立课外兴趣小组,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三等分层布置,课堂上照顾好好、中、差在三类学生。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
11、开展课题学习,把学生带入研究的学习中,拓展学生的知识面。
五、 全期教学进度安排
章节 课时 教学起止时间
第五章 13课时 第 1-3 周
第六章 7课时 第 4-5 周
第七章 10课时 第 6-8 周
第八章 10课时 第 8-10周
第九章 13课时 第11-13周
第十章 8课时 第14-15周