欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

温度监测系统范文

时间:2023-03-15 15:04:40

序论:在您撰写温度监测系统时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

温度监测系统

第1篇

关键词:CC2530;无线传感器网络;温度传感器;DS18B20

中图分类号:TP212.9文献标识码:A

引言

基于ZigBee的温度监测系统由部署在监测区域内大量的廉价微型传感器节点组成,构成无线传感器网络系统,其目的是协作地感知、采集网络区域温度信息发送给协调器节点,可与PC机通信,实现远程监测和收集监测数据。该系统设备体积小,传输可靠性高,安全高,节点功耗低,监测区域大等优点,且无需钻孔布线,使整个监测系统更灵活有效。可用于危险工作环境,珍贵的古老建筑保护等现代工农业生产生活中。如果采用人工定时测量,不但要耗费大量的人力,而且,不能够做到实时监控,特别在某些高温场所还有可能造成安全事故。为此,设计了一种基于无线传感器网络(Wireless Sensor Networks,WSN)的温度检测系统[1]。

ZigBee技术填补了低成本、低功耗和低速率无线通信市场的空缺,提供了丰富快捷的应用[3]。本设计正是采用ZigBee技术来架构温度监测系统。

1系统组成

如图1所示,整个系统由测控主机、协调器以及若干无线温度传感器节点组成。其中测控主机主要由上位机、电源、无线收发模块CC2530组成,通过MAX3232转换电路,和PC机进行串口通信。 它能够接收远程各节点信息,监控节点运行情况,并能根据上位机要求发送命令字到指定节点,用来控制各节点的功能。无线温度传感器节点主要由电源、温度传感器、无线收发模块CC2530组成,能够采样并发送数据到测控主机,接收并执行测控主机发送来的指令,并且可作为中转站间接传输数据。限于篇幅,本文主要介绍无线温度传感器节点的硬件结构和软件设计方法。

图1系统结构图

2硬件设计

该系统的协调器及传感器节点电路如图2所示。

核心芯片采用了TI公司的CC2530。CC2530是TI公司推出的真正意义上的SoC ZigBee产品。CC2530片上系统功能模块集成了CC2420RF收发器,具有极高的接受灵敏度和抗干扰性能,并支持2.4GHz IEEE 802.15.4/ZigBee协议[3]。CC2591 [4]是TI公司推出的一款高性能、低成本的RF 前端,可将输出功率提高+22dBm,接收机灵敏度提高+6dB。温度传感器采用美国Dallas公司推出的单线数字式温度传感器DS18B20,它将现场采集到的温度数据直接转换成数字量输出到CC2530的IO口。

3 软件设计

主程序包括单片机系统初始化、CC2530子系统配置初始化、ZigBee组网等。程序流程如下图3所示。

图3 程序流程图

在PC机上,用VC++编写上位机程序,把从传感器接收到的数据描绘成曲线,并显示当前值。图4是一个置于空调前的温度传感器节点发回来的数据曲线图,从该图可以看出,节点温度从32℃降到了19℃。

图4 上位机界面

4 结语

本文针对当前温湿度检测中面临的检测点分散、布线困难和实时性差等特点,设计了基于ZigBee的温度监测系统,可以显示各测试点的实时温度,还可以通过RS232接口将数据上传到PC机存储,以便进一步分析处理。该系统采用了低功耗的集成化器件,提高了系统稳定性和可靠度,在危险区域和大面积检测中布置容易,能够实现低成本连续在线检测,较传统在线检测系统具有更大的优势。

参考文献

[1]瞿雷,刘盛德,胡咸斌. ZigBee技术及应用[M].北京:北京航空航天大学出版社,2007:472.

[2]李文仲,段朝玉等.ZigBee2006无线网络与无线定位实战[M].北京:北京航空航天大学出版社, 2008:23-30

[3]Chipcon Products from Texas Instruments CC2530 datasheet

第2篇

关键词:温度;单片机;传感器

引言

在国内,原来的粮库对粮食检测主要采取对各粮库粮食进行取样、记录、分析、汇总数据等办法,通过人工来进行,不仅工作量大、效率低下、而且可靠性和实时性差。现在测量粮食的各种参数己逐步被电子检测设备所取代。小的储粮设备一般采用小型测温、测湿度仪器检测粮温和湿度以及通风,目前我国大中型储粮设备己开始配备微机测温测湿和检系统。

1 系统设计简介

1.1 设计方案论证

该系统由模拟开关构成的开关电路板置于仓上,远处仓上的温度信号需要跨仓传输。各种粮仓上信号线传递温度信号,控制线选择温度点及其电源线连在一起,构成一个庞大的树状网络。在通常情况下,这种温度方式可以正常工作,但是在储粮仓多、各仓相距远,特别是在电磁干扰较强的地方,该系统难以正常工作。为了克服由于储粮仓系统庞大对于测量温度精度和系统可靠性的影响,我们设计了单片机作为前沿机械进行温度数据采集,用单片机与微机通信的方法送回温度数据,构成特别适用于大型粮仓中应用的分布式微机测量温度系统,并且能够利用温度传感器送回的温度数据进行粮位检测。

1.2 系统框图

图1 粮仓温度监测系统框图

2 系统的硬件设计

2.1 单片机

为了设计此系统,我们采用了89C51机作为控制芯片。它可以提供一个8位CPU ,4 KB的闪烁存储器Flash ROM,256字节RAM ,4个8位并行I/0端口、2个16位定时器/计数器、1个可编程全双工串行口、5个中断源、片内振荡电路和时钟电路,64KB总线扩展控制器。89C51制作工艺为HMOS,采用40管脚双列直插DIP封装。

2.2 温度传感器

对于粮仓所存储的粮食来说,其所储粮食的品质与温度密切相关。因而对于粮仓的温度检测很早就开始应用了。最开始是采用玻璃温度计,随着电子测控技术的发展,使用对温度敏感的元器件,如热敏电阻来进行测量。由单线多点温度传感器(如DS1820)构成的单线多点温度测量系统,虽然引线很少,但传输距离(不超过20米)。AD 590是一种电压输入、电流输出型集成温敏传感器,测温范围为-55℃―+150℃,输出电流与绝对温度成正比,因而不必考虑多路模拟开关引入的附加电阻造成的误差。该系统选用若干个集成温度传感器AD590接成矩阵形式,构成多点测温系统。

2.3 多路模拟开关

常用的模拟开关有机电式和电子式两类。机电式开关具有良好的通、断性能,信号畸变小,但切换过渡时间较长。电子式开关切换时间很短,但通、断性能不够理想。切换模拟信号时,开关的非理想特性将引入误差,并产生延时。CC4051是单八路模拟开关。它是由电平位移电路、带禁止端INH的8选1译码器和由该译码器对各个输出分别加以控制的8个CMOS双向模拟开关组成。

AD590矩阵的行、列分别与两个CC4051相连,通过三位行、列选择数字码(由单片微机89C51产生)就可使矩阵被测点中的任何一个传感器接入测控电路。

2.4 模拟小信号放大电路

被测物理量经传感器转换得到的电信号的幅度往往很小,无法进行A/D转换,因此,需对这些模拟电信号进行放大处理。一般都采用集成运放。

该系统选用斩波稳零集成运放ICL7650构成高增益、低漂移放大器,用于放大AD590的输出信号。ICL7650内部有一个震荡为200Hz的振荡器,在这个震荡器的控制下运放分节拍工作。每个振荡周期分两个节拍,第一个拍将输入失调采集并存于一个点容器中,第二节拍采样和放大信号,并将此刻的失调相抵消,所以运放总的失调和温度极小,性能极为优越和稳定。

2.5 A/D转换器

从放大器输出的信号经过A/D转换器,转换成数字信号,才能进入89C51单片机测控系统。目前,国内外双积分A/D转换器集成电路芯片很多,大部分是用于数字测量仪器上。文章选择常用的3.5位双积分A/D转换器MC14433,其精度高,抗干扰性能好。

2.6 键盘显示接口

在单片机应用系统中,同时需要使用键盘与显示器接口时,为了节省I/0口线,常常把键盘和显示电路做在一起,构成实用的键盘、显示电路。文章采用8155并行扩展口构成键盘、显示电路。

为了较少键盘与单片机接口时所占用的I/0线的数目,在键数较多时,通常都将键盘排列成行列矩阵形式。4个LED显示器采用共阴极方式,段选码由8155口提供,位控信号由PA口提供。键盘的列扫描输出也由PA口提供,查询行输入由PCO~PC1提供。LED采用动态显示软件译码,键盘采用逐列扫描查询工作方式。

3 系统的软件设计

系统的各部分程序主要包括程序、A/D转换程序、键盘扫描程序、打印程序、显示程序等。(见图2)

4 结束语

由于系统采用了全数字化的温度、湿度传感器,直接输出的是表示温度和湿度的数字信号,不存在由模拟量到数字量转换的中间环节,所以该系统具有稳定可靠、测量精度高、一致性好、无需任何调整、信号线长短不会影响其性能等优点。实现粮食仓储过程中的温度控制。

参考文献

[1]李朝青.单片机原理及接口技术网[M].北京:北京航天航空人学出版社,2005:38-47.

[2]何立民.MCS-51系列单片机应用系统设计(第1版)[M].北京:,北京航空航天技术出版社,2002.

第3篇

【关键词】电站;温度;在线监测系统

1 系统概述

电站分A、B厂,总装机容量240万千瓦,安装8台机组。采用西门子S7 400的PLC从温度传感器直接进行数据采集,并将采集到的数据通过MODBUS发送到计算机监控系统,考虑需要将数据接入到办公网络,已在西门子S7 PLC中安装网卡模块。

针对电站温度采集系统现状,构建温度在线监测系统的最终目的是实现机组温度数据的采集,搭建数据实时显示和分析,提供对机组运行状态的实时显示和温度变化的分析,方便员工的远程办公以及进一步提升“无人值守”的电站管理原则,实现远程办公需要。

2 构建方案

硬件部分,在AB厂房机房各新增1台工控机,通过局域网连与西门子S7 PLC连接,工控机另一端连接办公网络。服务器新增应用服务器,保证与新增工控机数据通讯正常,接收并保存工控机采集到的数据。

软件部分,工控机端安装专业工控软件WINCC,通过WINCC配置测点,编写的数据采集程序,采集WINCC中的测点数据并通过UDP协议发送至办公网络应用服务器。应用服务器端部署UDP数据接收程序、应用服务及开发新的应用程序,实时展现最新测点数据及其他统计分析功能。

系统数据源来自运行核心区,数据通讯采用单向UDP模式。工控机安装有WINCC工控软件,负责对S7 PLC进行硬件组态及对测点进行部署,工控机编写有数据采集程序,连接WINCC软件获取测点数据并通过UDP协议往办公网络发送数据。

应用服务器安装有UDP数据接收程序,接收并存储工控机发送过来的测点数据供应用功能实时展现及其他统计分析使用。根据电力二次安防的防护要求,在工控机和应用服务器之间安装增加隔离网闸,对生产区和信息区进行隔离。

数据通讯结构图如下所示:

使用UDP协议进行数据传输,但是UDP本身是种不稳定的协议,为了保证数据能够正确传输到服务器,避免数据丢失,设计UDP数据交互流程规则。

在发送收到数据至应用服务器之前会先与应用服务器进行第一次握手,即发送数据准备信号,当在一定时间内未收到应用服务器的确认信号,工控机重发数据准备信号,正确收到应用服务器确认信号,将收到温度数据发送至应用服务器,服务器收到数据后,会将收到数据的大小返回至工控机,工控机收到会与发送数据大小做比较,如果数据大小一致,发送数据一致命令至服务器,然后等待下次数据传输,如果数据大小不一致,会通知服务器进行数据重新传输。

3 业务功能

根据实际生产的需求,系统的功能设计如下:

WINCC数据采集,工控机端部署数据采集程序,连接WINCC软件采集其部署的测点数据,全部为设备的温度量,包括:发电机冷风温度、铁芯温度、线圈温度、下导油温、水泵油温、发电油温、推力热油、推力冷油、推力瓦温、水导瓦温、水导油温、主轴密封温度、迷宫环上温度、迷宫环下温度、上导油温、上导瓦温等。

工控机数据发送与服务器数据存储,应用服务器部署数据接收程序并进行存储。通过UDP协议接收工控机端发送过来的最新数据,并对数据精度存储进行定义,保存存储的最新数据及时有效。

实时数据图形显示,基于图型的方式实时显示对应采集点的温度数据,方便电站专业人员对上导、下导、水导等设备运行状态的查看。

实时数据曲线显示,提供以曲线的方式实时查看温度的变化情况。

历史数据查询功能,统计分析功能实现以下几个方面的功能特点:

各种数据统计报表功能

多种统计数据视图曲线

快捷查询某个测点历史数据

温度量可以任意查询变量及时间

可选择和配置各数据存储时间和历史存储时间段,数据存储默认为时间为5秒,但可以由用户进行归档时间设定。

对于历史数据可以分多种模式进行统计,如曲线图形分析,数据报表分析等等。

4 结束语

通过构建温度在线监测系统,对机组温度数据进行采集,搭建数据实时显示和分析,提供对机组运行状态的实时显示和温度变化的分析,实现了远程办公的需要,对电站实行高效科学的管理具有积极意义。

第4篇

关键词:高压开关柜;在线监测;温度;状态维修

1引言

高压开关柜设备是非常重要的输配电设备,主要用于电力系统的控制和保护,保证电网中无故障部分的正常运行及设备、运行维修人员的安全。大多数高压开关设备采用封闭结构,散热条件差,而且长时间工作于高电压、大电流等恶劣环境中,很容易引起热量的积累而导致其内部温度升高。开关柜温度过高可能会引起大范围停电严重者还会诱发火灾,这些都将给社会造成巨大的经济损失。因此设计出一套可靠有效的开关柜温度在线监测系统对电力系统安全、稳定的运行具有十分重要的意义。

目前高压开关柜温度在线监测方法主要有CCD摄像头监测示温蜡片测温法、红外测温法、光纤测温法和无线网络法,这些方法没有考虑开关柜实际运行环境和负荷等信息,都只孤立地对温度进行测量,属于预防性维修和试验的范畴。本系统分析了传统开关柜监测方法的缺点和不足,并且为达到状态维修的目的,提出两组新的监测量,系统结构简单、性能可靠,能够很大程度上提高高压开关柜运行水平,降低事故发生率。

2系统设计方案

高压开关内部结构分为母线室、开关室、电缆室,本设计系统的数据采集模块分别采集和实时监测三室的温度、外界环境温度以及通过开关柜的电流,并在这五组参数的基础上根据温度和电流的关系以及一定时间内温度变化对三室的影响提出了两组新的监测量进行实时监测。

2.1系统结构

本设计系统主要包括数据采集模块,通讯模块,上位机监控中心3大部分,如图1所示。数据采集模块由温度和电流采集模块组成,四路温度传感器选用薄膜铂电阻,分别传输母线室温度、开关室温度、电缆室温度和环境温度;电流传感器选用闭环霍尔电流传感器,传输开关柜的三相交流电。整个系统的数据采集模块和上位机监控中心通过RS-485总线通信,上位机监控中心提供友好的交互界面,供用户进行监控和操作。

2.2监测量

对开关柜各室温度进行单独越限报警虽然简单,但通常情况下某室出现温度异常时,开关柜已接近或处于故障状态。为尽早发现各种随机因素引起的故障,降低维修成本,我们提出两组新的监测量:

(1)监测系统上电开始采集后每1h内每隔6min分别对各室测一次温度t,同时记录此刻通过开关柜的电流I和外部环境温度t环温。根据温度变化和电流平方成正相关原理,提出参数P:

P=(P8+P9+P10)/3

其中,各室P取每小时后三个记录点Pn的平均值。Pn=(t-t环温)/I2,n=1,2,…,10。

若P>(1+5%)P0,则触发报警(P0表示监测系统开始采集后第一个小时内P的计算值)。

(2)监测系统上电开始采集后每隔1h分别对母线室、开关室、电缆室各测一次温度记为:t0、t1、t2,同时记录此刻开关柜外部环境温度t环温。经研究发现开关柜内部相邻两室之间温度变化的比值对开关柜的运行也会造成一定影响,因此提出K参数:

K1=-(t0-t环温)/(t1-t环温)

K2-(t1-t环温)/(t2-t环温)

K3-(t2-t环温)/(t0-t环温)

Kn分别代表母线室、开关室、电缆室的K值,n=1,2,3。

若Kn>(1+9%)K0,则触发报警(K0表示监测系统开始采集后第一个小时内K的计算值)。

3系统硬件设计

系统硬件主要负责温度和电流的采集,并把数据通过RS485总线传输给上位机,进行后续处理。其主要分为温度采集模块和电流采集模块。

3.1温度采集模块

温度采集模块选用集智达公司6通道热电阻输入模块RemoDAQ-8036,特性参数如表1所示。

3.2电流采集模块

电流采集模块为自行设计,处理器采用的是意法半导体推出的STM32F103ZET6微控制器。该微控制器采用高性能的ARM Cortex-M3内核,它的最高工作频率为72MHz,内置高速存储器。整个电流采集模块由AD转换电路、信号调理电路、通信状态指示灯、电源电路、RS485电路、前端滤波电路等组成。模块硬件结构如图2所示。

3.2.1AD7606芯片与STM32的接口设计

模数转换芯片采用8通道16位同步采样的AD7606,其所有通道均能以高达200kSPS的速率进行采样,具有可编程的数字滤波器且数据传输接口可选择为并行模式和串行模式,采用5V单电源供电不再需要正负双电源并支持真正的双极性信号输入,而且输入端箝位保护电路可以承受最高达±16.5V的电压。

本设计使用前三个通道进行同步采集,其与微控制器数据传输采用并行工作模式,数据输出端与STM32的D组GPIO连接,这样STM32通过对D组GPIO口整体操作很容易读取一个通道的数据。把AD7606的RANGE端接地,使其采集电压范围为±5V。由下位机程序来控制过采样。AD7606与STM32的连接如图3所示。

3.2.2STM32与RS485接口的设计

STM32收发TTL电平信号而RS485总线收发差分信号,因此需要设计一个接口使两者无障碍传输数据。本模块中把RS-485通信模式设置成半双工工作模式,把STM32F103的串口1接口转化成RS-485接口,用STM32的GPIOA7口来作为控制数据传输方向,我们选用的电平转换芯片是SN75LBC184,在差分输出间接一个100欧的电阻。电路连接如图4所示。

4系统软件设计

系统的上位机监控软件基于Delphi 2007完成,通过发送相关指令,采用轮询的方式对总线上不同地址的采集模块进行操作。监控软件运用模块化设计思路,如图5所示。系统设置模块主要用于设置各硬件模块地址、额定电流、各监测量报警阈值等信息;串口通信模块负责命令的发送和数据的接收及解析;数据分析模块基于五个直接监测量算出p、k值,达到越限报警的在线监测目的;数据存储模块完成数据存储、回放、制表打印等功能。经过多次试验测试,系统运行稳定可靠,如图6所示,截取了部分现场试验数据。

第5篇

关键词:潜油电泵井下温度压力监测;星点等势法;电流传输信号'

1 概述

潜油电泵井下压力和温度参数的监测对提升采油技术水平,实现对机组进行故障预测与健康管理,保证潜油电泵持续高效稳定的工作,具有着重要的实际价值。

2 总体方案

综合潜油电泵的特点,系统利用星点等势法为井下供电。在井上制作一个三相电抗器作为工星点,并且保证该电抗器的三个绕组各相的参数相同,在电抗器的对称性足够好的情况下,星点相当于零点,电机绕组的中性点与地面电抗器的中性点等电势,三相电抗器可以消除三相高电压不平衡对系统造成的损害,同时在地面星点处叠加直流电压,可以对井下进行直流供电。信号传输通道原理如图1所示。在潜油电泵井下工作环境下,电压容易受到干扰,而且在远距离传输时电缆的阻抗会对传输信号有所影响,而电流信号相对稳定,因此潜油电泵井下温度压力参数监测系统采用两线制4~20mA电流信号进行数据传输。本系统利用铠皮作为地线进行信号传输通道,具有较强的抗干扰能力,无需单独铺设电缆,降低成本。

潜油电泵井下温度压力参数监测系统内部硬件按功能主要可分为供电电路、通道切换电路、滤波电路和数据采集电路等。如图2所示为系统原理图。地面对井下电路进行分时供电,对数据进行采集;滤波单元减小交流电压对监测系统的危害;井下通道切换电路根据地面供电电压不同来切换测量通路;温度和压力变送器输出的电流信号分时通过电缆铠皮传输至地面,并通过三相动力电缆和铠皮连成一个回路。

3 系统硬件设计

3.1 温度压力变送器选型

变送器的性能对潜油电泵井下参数监测系统的信号检测精度和稳定性有着极大的影响,对变送器的选型应满足工作温度下稳定工作,且满足系统设计的性能指标。本文选用西安新敏电子科技有限公司生产的CYB15压力变送器和SBYW温度变送器,这两款变送器均为直流电压供电,二线制4~20mA电流信号输出,适合石油化工领域的工业检测和控制使用。

3.2 通道切换电路

由于系统需要采集温度和压力两个信号量,因此需要在井下设计一个通道切换电路。本系统采用的通道切换电路是由多通道模拟选择开关和电压检测电路两部分所组成。以电流信号作为传输媒介,对温度和压力进行分时数据采集。如D3所示为通道切换电路。ADG5404是一款互补金属氧化物半导体(CMOS)模拟选择开关,内置4个单通道。并且它具有转换时间快、小于10欧姆导通阻抗、工作输入电压范围宽等特点。导通电阻曲线在整个模拟输入范围都非常平坦,可确保开关信号时拥有出色的线性度和低失真性能,完全符合本系统研制要求。

采用LM293芯片是因为其产生的时序时间可控,本系统设置切换时间为20s。在上位机程序上采用的是切断井下供电延时1s再重新启动来达到消除时间累积的目的。ADG5405芯片通过加载在A0与A1端的时序信号来选通具体的导通端口。本系统应用的是两个参数,只需要两路导通即可,所以应用LM293作为ADG5404的时序触发信号,在LM293的第3引脚输出信号并连接到ADG5405的A0与A1管脚,如此便产生了00与11的时序信号,以此来导通S1与S4两个端口,从而实现通道的选择,使得温度和压力可以分时段切换传输。

3.3 滤波电路设计

潜油电泵井下监测系统需要滤波器来消除变频供电在电机星点中产生的高电压和三相短路接地时在星点产生的极高脉冲电压,保证装置的长时间高效稳定的工作。滤波电路如图4所示。本文采用串联电抗及并联电容的方法来抑制高电压和高脉冲电压,从而有效地保护井下温度压力变送器。

3.4 温度压力采集电路设计

温度压力采集电路主要通过AD7705芯片和LPC2378单片机来完成。AD7705采用了Σ-Δ技术,可以获得16位无误码数据输出。具有两个全差分输入通道,可编程单极性或双极性输入,前端可编程增益等功能。AD7705具有高分辨率、抗噪声、自校准、低功耗等特点,十分适合仪表测量和工业控制等领域的应用。图5所示为本系统数据采集电路。

LPC2378是通过模拟的SPI通信方式以普通I/O接口与AD7705进行连接。D1是稳压管,D2是肖特基二极管,其作用是为了防止电流过大将AD芯片烧坏。选择R1、R2是为了增加采样精度。AIN(+)为信号输入端,AIN(-)通过+5V电压、固定电阻R4、R5和可调电阻R3形成一个伪差分通道。通过调节R3可防止数据在输入端和输出端边界时导致转换的数据失真,使AD转换的精度到达最高从而使其适应每套系统下不同的电流。

4 系统软件设计

本系统软件部分采用C语言编程实现,程序采用模块化研制,具有可读性强、移植性高的特点。潜油电泵井下温度压力参数监测系统使用NXP公司的LPC2378,该芯片具有抗干扰性强、支持在线编程、低功耗、价格低等特点。其软件部分主要分为两部分,其中一部分控制井下电源信号的变化,用于数字滤波、参数采样和数据发送。另一部分主要完成信号采样、故障处理等功能。如图6所示就是主程序的软件流程图。系统上电后,先进行初始化系统配置,然后开始读取当时的时间参数,此时单片机控制继电器接通60V直流电,开始测量温度参数,测量20s后,将采集到的时间和温度参数进行发送。然后将继电器切换到90V直流电通道,开始测量压力参数。再将压力参数进行发送。

5 实验结果

本文设计的潜油电泵井下温度压力参数监测系统在实验室中进行了模拟工作试验。试验采集了大量有效数据,数据分析表明该系统具有较高的精确度和稳定性,可以证明本文中所研究的系统可以在正常的工作环境下稳定工作,并且能够保持温度压力测量的准确性。经过多次测试,该系统表现稳定可靠。所测得的数据如表1所示。

6 结束语

本文对潜油电泵井下温度压力参数监测的硬件主要模块和软件主程序做了详细讲述。结合潜油电泵的特点,提出采用两线制电流信号传输井下数据,通过地面系统对井下监测系统进行供电,通道切换电路对温度和压力进行分时采集。电路调试已经完成,实验所得数据满足需求,并且具有较高的稳定性和精确度,具备现场的试验条件。

参考文献

[1]张文.井下信号传输与调理方法研究[D].哈尔滨工程大学,2013.

[2]叶欣.潜油电泵井下温度压力在线监测系统研究[D].西安石油大学,2013.

[3]付岳峰.潜油电泵井井下压力温度测试系统研究[D].西安:西安石油大学,2008.

[4]王志平.井下数据采集与传输方法研究[D].黑龙江:哈尔滨工程大学,2011.

[5]蒙丽娜.电泵井下测试系统研究[D].西安:西安石油大学,2010.

作者简介:白山(1959-),男,教授级高工,硕士生导师,研究方向为特种电机及其控制。

第6篇

【关键词】ZigBee;星形网;温度采集;远程监控

1.引言

温度监测系统广泛应用于对温度敏感的工业、农业、医学等现场,如通信基站机房、矿井、粮仓、智能家居等环境中。传统的温度监测系统需在所监测区域布置大量的信号传输线,体积宠大,成本相对较高,且不能实现远程监测。如何解决传统温度监测系统采用的有线网络所带来铺设、维护等诸多不便已成为目前研究的热点。本文提出一种基于ZigBee技术的远程温度监测系统,能有效解决上述的问题。ZigBee技术是一种低功耗、低成本、低速率、低复杂度的双向的无线通信技术,它是无线传感网络的主流技术[1-5]。以ZigBee技术组成无线温度传感器网络,由部署在监测范围内的微型温度传感器节点通过无线电通信构成的一个多跳的自组织网络[6],能够实时地感知、收集和处理网络覆盖范围内的温度信息,并通过汇聚节点处理并在服务器Web网页上,用户可以登陆网页进行实时监控。

2.系统总体结构

2.1 系统的结构

本系统采用ZigBee技术自组网的特性,测温节点与协调节点节点自动组成一个星型网进行通信[5],移动终端(手机、平板电脑以及个人电脑)通过连接指定网络后通过Web浏览器访问温度数据的网页面显示界面。如图1所示。

图1 系统框图

2.2 系统的功能

本系统分为三大模块:1)温度感知模块;2)控制处理以及射频收发模块;3)数据接收显示模块。主要有两大功能:1)环境温度数据无线采集功能:测温节点自动采集所探测环境的温度数据,通过无线传输的方式把采集到的温度数据都发送给协调器节点。2)环境温度数据远程实时监测功能:系统采用的是B/S(Browser/Server)结构,只需一个可以访问网页的终端即可远程监测环境温度数据。另外可以在网页显示界面上按需设置监测环境温度的上限值和下限值,环境温度一旦超过所设置的上限值或者低于设置的下限值就会有相对应警报提醒。

3.硬件设计

本系统采用TI公司开发的2.4GHz ZigBee片上系统解决方案CC2530的无线单片机方案。TI公司免费提供了ZigBee联盟认证的全面兼容IEEE802.15.4与ZigBee2007协议规范的协议栈代码和开发文档,并为提供了丰富的开发调试工具[2-4]。

CC2530 结合了领先的RF 收发器的优良性能,业界标准的增强型8051 CPU,系统内可编程闪存[2],8-KB RAM 和许多其他强大的功能。CC2530 具有不同的运行模式,使得它尤其适应超低功耗要求的系统。CC2530具有21个可用I/O、4个定时器、ADC 、随机数发生器、AES加密/解密内核、DAC、DMA、Flash控制器、RF射频收发器等众多外设[4]。

图2 CC2530电路

节点硬件设计:

测温的节点由CC2530与DS18B20数字温度传感器组成,采用电池进行供电[7]。CC2530通过单总线通信协议控制DS18B20数字温度传感器并获取实时的环境温度值,再发送到协议器节点。DS18B20数字温度传感器与CC2530接口示意图如图3所示。

图3 硬件框架图

协调器节点直接由上位机通过USB数据线供电。协调器节点接收所有测温节点发送过来的数据,经过片内程序进行数据处理后,通过CC2530 ZigBee开发底板USB口把数据上传到上位机。

4.软件设计

系统实现ZigBee星形拓扑结构的网络通信,涉及到协调器与终端节点的编程[7]。协议器负责建立网络并进行维护,接收各不同的终端节点发送过来的温度信息融合后再进行控制。终端节点必须加入协调器组建的网络中,并开始定期采集温度并发送到协调器上。协调器把融合后的温度经过串口在Web服务器上,供指定用户登陆站点进行访问。

协调器上电后,根据编译时指定的参数,选择适合当前通信环境的网络号以及信道来建立星形网[6]。协调器的程序图如图4所示。

终端节点上电并初始化硬件以及协议栈后,会搜索是否存在着对应编号的ZigBee网络[3],如果存在则加入对应的无线网络,然后启动定期采集温度数据,并发送至协调器。

图4 协调器与终端节点软件流程图

Web服务器显示界面是基于MyEclipse Enterprise Workbench 9.0平台的,用Jsp技术实现的基于Web的串口通信方法。页面利用Jsp技术实现了数据的显示功能,然后利用JavaBean和Servlet在后台获取串口的数据,并通过Json对象将数据传送到前端页面。最后利用Ajax技术实现了页面的定时自动刷新更新数据,以及利用JavaScript技术实现了页面按钮和功能事件的触发。

5.显示界面

网页显示界面分为数据显示区域和参数设置区域两大部分。显示区域内分别显示传感器编号、获取时间以及温度值共三项数据内容。参数设置区域里需要设置的主要参数有四个,分别是串口号、波特率、高温警告和低温警告,其他均保持默认即可。显示界面可以获取各个节点发送回来的温度数据,且用户通过高温警告与低温警告来进行温度保护。

图5 工作界面

6.结论

本文通过实现基于ZigBee的远程温度监测系统,实现对温度敏感的环境实施远程监控。可以通过布置多个终端节点来监控多个区域的温度,可以应用的范围的很广,该系统具有低功耗,低成本,结构简单,无人值守,检测准确度高,抗干扰能力等优点,能够长时间稳定地工作,具有很高的应用价值。

参考文献

[1]王小强,欧阳骏,黄宁淋.ZigBee无线传感器网络设计与实现[M].北京:化学工业出版社,2012,05.

[2]李文促,段朝玉.ZigBee2007/PRO协议栈实验与实践[M].北京:北京航空航空大学出版社,2009.

[3]Shahin Farahani.ZigBee Wirless Networks and Transceivers[M].北京:北京航天航空大学出版社,2013,08.

[4]高守玮,吴灿阳.ZigBee技术实践教程[M].北京:北京航空航天大学出版社,2009,06.

[5]蒋挺,赵成林.紫蜂技术及其应用[M].北京:北京邮电大学出版社,2006.

[6]孙利民,李建中,陈渝,等.无线传感网络[M].北京:清华大学华出版社,2005.

[7]武风波,强云霄.基于ZigBee技术的远程无线温湿度测控系统的设计[J].西北大学学报(自然科学版),20084,38(5).

本文属广州市教改项目(No.2013A022)资助;华软校级项目(No.ky201206)资助。

作者简介:

第7篇

关键词:数据融合; DSl8B20;风机;监测;算术平均值

     随着煤炭产业的发展及其开采的深度延伸,矿井里瓦斯涌出量不断上升,加之环境温度变化反差大,增加了井下隔爆风机温度监测的难度,而由风机温度升高引发的爆炸事故频繁,因而对煤矿井下通风隔爆电机的监测系统的研究变得尤为紧迫和重要。为此,我们在对煤矿井下隔爆风机及其工作环境进行了深入地调研和仔细地分析后发现:目前井下隔爆通风电机温度监测的难点主要集中在观测点难以确定、测量方法单一,测量过程出现不确定性以及准确性低等。针对这些问题,我们选择了电机温度变化显著的部位及其工作环境温度变化明显的不同空间位置为观测点,对电机进行内外环境温度同时独立采集,然后采用数据融合算法,在时间域上求得一组融合值,再进行优化处理,寻找出其温度与时间的动态规律性,并对其进行温度监控,便可提高温度监测的准确性和稳定性。第一作者的姓名、性别、出生年、民族、职称、学位、研究方向、联系电话请在稿件首页页脚注明。     1.数据融合简介

数据融合技术即采用计算机技术对按时序获得的若干观测信息,在一定准则下加以自动分析、综合,以完成所需的决策和评计任务而进行的信息处理过程。按其融合方法分为基于统计理论融合、基于信息论融合和基于认识模型融合等。

数据融合在现代传测控技术中应用,主要利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在空间或时间上的冗余或互补的信息依据某种准则进行组合,以获得被测对象一致性解释或描述。可见,数据融合的硬件基础是多传感器系统,加工对象是源信息,核心是协调优化与综合处理。其基本目标就是通过数据的组合推导出更多的信息,最佳的协同作用结果,提高传感器系统的有效性和被控系统的稳定性。

    2.温度监测系统

    2.1控制方案的确定

由于采用等准确度的传感器进行温度测量,其测量结果具有正态分布的特点,所以温度检测元件我们选用了具有等准确度的DSl8B20,在风机的三相定子绕组的每相埋设两个传感器以及风机的两端轴承处各埋设一个,共用8个传感器;同时在隔爆风机的工作环境,即采煤工作面的不同空间位置选了8个观测点,各埋设了一个传感器,便获取16路独立的温度数据,再将16路数据通过数据总线送入主机PLC的CPU进行数据融合处理,获得真实值,再进行系统结构优化,参数的修正等,并通过RS-845联机通信,实现对井下隔爆风机温度的智能化在线监控,原理图如图2-1所示。

          

                  图2-1温度检测与控制原理结构图

 

    2.2 温度采集电路的设计

由于数字温度传感器(DSl8820)能够独立完成信号调理或线性化,且测量温度范围为[-55,+125] 0C,能够满足矿井温度范围变化大的要求,并可通过数据总线直接与主机PLC相连,节省设计时间,因此本系统的检测元件采用DSl8820,采集电路如图2-2所示。

            

                                图2-2  十六路Sl8820与PLC的总线接线图

     2.3 温度数据融合算法规则

     为了避免传统的单一的算术平均值算法的不足,本系统对采集数据采用数据融合算法,即将由16路传感器测得值送入PLC的CPU中,通过分布图法剔除疏失误差后得出一致性测量数据,然后按传感器所在空间位置不相邻的准则将其分成两组,先求出两组数据的算术平均值,再进行分批估计算法,估计出温度真实值的融合值T,从而消除测量过程不确定性,获得采煤工作面的温度测量真实值,具体步骤如下:

     设被测温度真值为T0, H为测量温度方程系数矩阵,V为误差向量,则测量温度方程可表示为:T=HT0+V

    

         式(2-1)及(2-2)中的i,j分别是第一、二组中传感器的编号,则对应的标准误差分别是:

      

     根据分批估计理论,分批估计后得温度的融合值的标准误差是:

    

     (2-8)公式说明:若实际测量数据误差越大,即分得的两组数据误差越大,则公式 (2-8)对改善误差的效果越明显;反之,其相对于求算术平均值的优越性也就不显着了,所以此测温方法适合于温度反差变化大的环境场所。

    3.实验验证

    3.1数据采集

为了使实验设计能够充分满足数据融合法规的要求,我们把淮南矿业集团的新庄孜煤矿井下3#采煤工段的隔爆风机为研究对象,在风机的内外变化温度明显处选择了16个测视点,各埋设一个DSl8B20,同时进行独立的温度测量,共获得16路数据,温度采集电路如上图2-2所示。通过显示器(LCD)获得不同时刻的真实值,即融合值,∈ [8 、12.5、15、 16.6、18、19.7 、20、 21.5、 22、23、24.6、 25、26] 0C,对应的融合时间t∈[1、2、3、4、5、6、7、8、9、10、11、12、13、14]h,对应的关系图如3-1所示.

                   

                  

此图表明:采用数据融合技术计算的测量结果较接近于线性测量,可把温度的非线性测量转换为线性测量,大大降低了测量控制的难度.

   3.2 数据处理

   采用先进的应用软件,如MATALAB对通过多次反复数据融合值进行线性拟合,并进行反复调试、优化,得到最佳的温度监测动态关系式为:

       y=at+b       (3-1)

这里的a,b对于某一测控对象是确定的值,但当测量对象发生变化时,其值需要通过实验进行修正. 我们在新庄孜矿1#采煤区求得实验拟合函数式为:

     y=1.133t+11.4813     (3-2)

t为实际温度动态跟踪的数据融合值,对应的温度监测波形如3-2所示.此图表明: 采用多传感器数据融合的动态模型计算温度值,用此值拟合出温度检测系统的函数, 再反控被测对象,提高了控制的准确性和稳定性.

    4.总结

    理论分析和实践检验表明: 该系统与传统的温度监测系统相比,实时性较强,计算量较小,适用于数字化温度采集系统。特别是被控对象在环境温度恶劣的条件下作业,如煤矿井下隔爆风机,采用多路传感器融合技术实现温度在线测量,便可获得可靠的实时性的测量数据,不仅可以消除测量过程中的不确定性,而且能够提高测量结果的准确性和可靠性,值得进一步推广与研究。

参考文献:

[1]韩芳,朱玉琴.煤矿风机智能化监控系统[J].煤矿机械,2009,30(2):142-143.

[2]郑晓东,朱玉琴等.一种防爆对旋式风机智能器动器[J].煤矿机电.2009,2(1):89-91.

[3] 隋明发.电机实时温度测量技术的研究[D].沈阳理工大学 硕士学位论文,2008.1.