时间:2022-09-16 20:20:55
序论:在您撰写数字电路分析论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:数字信号处理器;三电平;PWM整流器;功率因数校正
引言
三电平(ThreeLevel,TL)整流器是一种可用于高压大功率的PWM整流器,具有功率因数接近1,且开关电压应力比两电平减小一半的优点。文献[1]及[2]提到一种三电平Boost电路,用于对整流桥进行功率因数校正,但由于二极管整流电路的不可逆性,无法实现功率流的双向流动。文献[3],[4]及[5]提到了几种三电平PWM整流器,尽管实现了三电平,但开关管上电压应力减少一半的优点没有实现。三电平整流器尽管比两电平整流器开关数量多,控制复杂,但?具有两电平整流器所不具备的特点:
1)电平数的增加使之具有更小的直流侧电压脉动和更佳的动态性能,在开关频率很低时,如300~500Hz就能满足对电流谐波的要求;
2)电平数的增加也使电源侧电流比两电平中的电流更接近正弦,且随着电平数的增加,正弦性越好,功率因数更高;
3)开关的增加也有利于降低开关管上的电压压应力,提高装置工作的稳定性,适用于对电压要求较高的场合。
1TL整流器工作原理
TL整流器主电路如图1所示,由8个开关管V11~V42组成三电平桥式电路。假定u1=u2=ud/2,则每只开关管将承担直流侧电压的一半。
以左半桥臂为例,1态时,当电流is为正值时,电流从A点流经VD11及VD12到输出端;当is为负值时,电流从A点流经V11及V12到输出端,因此,无论is为何值,均有uAG=uCG=+ud/2,D1防止了电容C1被V11(VD11)短接。同理,在0态时,有uAG=0;在-1态时,有uAG=uDG=-ud/2,D2防止了电容C2被V22(VD22)短接。
右半桥臂原理类似,因此A及B端电压波形如图2所示,从而在交流侧电压uAB上产生五个电平:+ud,+ud/2,0,-ud/2,-ud。
每个半桥均有三种工作状态,整个TL桥共有32=9个状态。分别如下:
状态0(1,1)开关管V11,V12,V31,V32开通,变换器交流侧电压uAB等于0,电容通过直流侧负载放电,线路电流is的大小随主电路电压us的变化而增加或减小。
状态1(1,0)开关管V11,V12,V32,V41开通,交流侧输入电压uAB等于ud/2,输入端电感电压等于us-u1。电容C1电压被正向(或反向)电流充电(u1<us,或放电us<u1),C2通过直流侧负载放电。
状态2(1,-1)开关管V11,V12,V41,V42开通,输入电压uAB=ud,正向(或反向)电流对电容C1及C2充电(或放电),由于输入电感电压反向,电流is逐渐减小。
状态3(0,1)开关管V12,V21,V31,V32开通,交流侧输入电压uAB等于-ud/2,输入电感上电压等于us+u1。电容电压被正向(或反向)电流充电(或放电)。
状态4(0,0)开关管V12,V21,V32,V41开通,输入端电压为0,电容通过直流侧负载放电,线路电流is的大小随主电路电压us的变化而增加或减小。
状态5(0,-1)开关管V12,V21,V41,V42开通,交流侧电压为ud/2,正向(或反向)电流对电容C2充电(或放电),电容C1通过负载电流放电。
状态6(-1,1)开关管V21,V22,V31,V32开通,uAB=-ud,正向(或反向)线电流对两个电容C1及C2充电(或放电),由于升压电感电压正向,线电流将逐渐增加。
状态7(-1,0)开关管V21,V22,V32,V41开通,交流侧电压电平为-ud/2,正向(或反向)电流对电容C2充电(或放电),电容C1通过负载电流放电。
状态8(-1,-1)开关管V21,V22,V41,V42开通,输入端电压为0,升压电感电压等于us,两个电容C1及C2均通过负载电流放电。电流is根据电压us的变化而增加(或减小)。
2硬件电路设计
从图2可以看出,在输入电压频率恒定的情况下,要在变换器交流侧产生一个三电平电压波形,输入电压一个周期内应定义两个操作范围:区域1和区域2,如图3所示。
在区域1,电压大于-ud/2,并且小于ud/2,在电压uAB上产生三个电平:-ud/2,0,ud/2。同理,在区域2,电压绝对值大于ud/2,并小于直流侧电压ud,在电压正半周期(或负半周期)上产生两个电平:ud/2和ud(或-ud/2和-ud)。相应电平的工作区域如表1所列。
表1相应电平的工作区域
工作区域
1
2
1
2
us>0
us<0
us>0
us<0
高电平
ud/2
ud
-ud/2
低电平
-ud/2
ud/2
-ud
为方便控制,这里定义两个控制变量SA及SB,其中
根据表1可以设计一个开关查询表,如表2所列,将其存储在DSP中,当进行实时控制时,便可根据输入电压、电流信号,从表中查询所需采取的开关策略。
表2查询表
SA
SB
V11
V12
V21
V22
V31
V32
V41
V42
uAB
1
1
1
1
1
1
1
1
1
1
1
ud/2
1
-1
1
1
1
1
ud
1
1
1
1
1
-ud/2
1
1
1
1
-1
1
1
1
1
ud/2
-1
1
1
1
1
1
-ud
-1
1
1
1
1
-ud/2
-1
-1
1
1
1
1
整个控制系统以一片DSP为核心,控制框图如图4所示。
锁相环电路产生一个与电源电压同相位的单位正弦波形,ud的采样信号通过低速电压外环调节器进行调节,电流is的采样信号通过高速电流内环G1进行调节,电容C1端直流电压u1与电容C2端直流电压u2分别通过两个PI调节器进行调节,补偿环G2用于补偿两只电容电压的不平衡。
检测的线电流命令is与参考电流is*比较,产生的电流误差信号送至电流内环G1,以跟踪电源电流变化,产生的线电流波形将与主电压同相位。
3软件设计
系统采用两个通用定时器GPT1及GPT2来产生周期性的CPU中断,其中GPT1用于PWM信号产生、ADC采样和高频电流环控制(20kHz),GPT2用于低频电压环的控制(10kHz),两者均采用连续升/降计数模式。低速电压环的采样时间为100μs,高速电流环采样时间为50μs。中断屏蔽寄存器IMR,EVIMRA和EVIMRB使GPT1在下降沿和特定周期产生中断,GPT2则仅在下降沿产生中断。
整个程序分为主程序模块、初始化模块、电流控制环计算模块、电压控制环计算模块、PWM信号产生模块等五大部份。程序流程如图5所示。
4仿真结果及实验
仿真参数如下:输入电压us交流220V,50Hz,输出功率1kW,开关管GTO,开关频率500Hz。整流状态和逆变状态下电源电压us、电源电流is、交流侧电压uAB波形分别如图6及图7所示。实验结果也证实了设计的正确性,在采用GTO管、开关频率较低(500Hz)时,输入侧电流波形仍然非常接近正弦,装置得到了接近1的功率因数,同时开关上的电压应力减少了一半。
电子束炉按正常程序操作熔炼钽金属时,40KV高压电源突然断电,操作面板上出现报警显示:“HvTransformerBUCHHOLZ”(高压变压器瓦斯继电保护动作)。打开变压器的放气阀放气,报警消失,此时变压器能产生40kv直流电压,但高压既不能保持又不能带负载,2到3分钟后,同样的报警信号再次出现,变压器主回路电源断开,停止工作。
2故障检查
2.1变压器的外部检查
(1)检查油枕内和充油套管内油面的高度,发现油位正常,封闭处无渗漏油现象;
(2)检查变压器的响声,发现噪音稍大,但未有异常声音出现;
(3)检查变压器的绝缘套管及瓷瓶,未发现有破损裂纹及放电烧伤痕迹;
(4)检查一、二次母线,接头接触良好,不过热,外壳接地良好;
(5)检查呼吸器,气路畅通,硅胶的颜色为淡红色,吸潮未达到饱和。
2.2变压器负荷检查
(1)用钳形电流表测量变压器空载时一次绕组的三相空载电流,A相:IA=160.8A;B相:IB=55.8A;C相:IC=5.7A。
(2)故障发生时,用红外线测温仪测量变压器外壳不同区域的温度,温度为55℃左右,一分钟温升超过5℃。
2.3气相色谱分析检查
采集变压器本体油、瓦斯油、瓦斯气进行气相色谱分析检查,结果见表1。
本体油瓦斯油瓦斯气
氢11091710373350
氧211652119021345
一氧化碳21016528235
二氧化碳53011458570
甲烷309.53284.512659
乙烷38.5947.56592
乙烯535.511309.514516
乙炔380.339860.020725.0
总烃1264.019528.054492.0
表1油样气相色谱分析表
3故障现象及分析
变压器的故障一般分为电路故障和磁路故障。常见的电路故障有线圈绝缘老化、受潮,材料质量及制造工艺不良,二次系统短路引起的故障等。磁路故障常见的有硅钢片短路、穿芯螺丝与铁芯间的绝缘损坏以及铁芯接地不良引起的放电等。
3.1三相电流不平衡
当变压器二次绕组开路,一次绕组施加额定频率的额定电压时,一次绕组中的电流称空载电流I0。通常I0与额定电流IN的关系可表示为:
i0%=(I0/IN)*100=1-3%
该变压器的额定电流为577A,空载电流I0应在5.77A到17.3A之间,而实测的一次绕组三相空载电流IA=160.8A,IB=55.8A,IC=5.7A。三相电流极大的不平衡,初步推断为变压器绕组局部发生匝间和层间短路,产生很大的短路电流。
3.2变压器油温不断升高
油温不断升高可能由以下几个方面引起:
(1)涡流使铁芯长期过热而引起硅钢片间的绝缘破坏,铁损增大,油温升高;
(2)穿芯螺丝绝缘破坏后,与硅钢片短接,有很大的电流通过,使螺丝发热,油温升高;
(3)绕组局部发生匝间和层间短路,二次线路上有大电阻短路等,也会使油温升高。
3.3瓦斯继电保护动作
瓦斯保护是变压器的主要保护,它能监视变压器内部发生的大部分故障。继电保护动作的原因有以下几个方面:
(1)滤油、加油和冷却系统不严密,致使空气进入变压器;
(2)变压器内部故障、短路,产生少量的气体;
(3)保护装置二次回路故障。
外部检查未发现变压器有异常现象,应查明瓦斯继电器中气体的性质。从表1瓦斯气体中氢、一氧化碳、甲烷等可燃气体含量剧增,说明变压器内部有故障。气体颜色为灰色和黑色,有焦油味,则说明油因过热分解或油内层发生过闪络故障。
上述分析对变压器内的潜伏性故障还不能作出正确的判断,还需要结合气相色谱法判断:
从表1中可以看出氢、烃类含量急剧增加,而一氧化碳,二氧化碳含量增加也不大,这就表明了变压器裸金属方面及固体绝缘物(木质、纸、纸板)的过热性故障不存在;甲烷,乙烷,乙烯气体有所增加,而乙炔含量很高,这表明变压器内出现过电弧放电,使油分解而产生乙烷、乙烯和乙炔,可能为绕组匝间和层间短路放电性故障导致。为更加明确故障点,需要对变压器进行吊芯检查。
4吊芯检查与维修
拆开变压器,用20吨吊车吊出变压器芯部作如下检查:
(1)用万用表依次测量一、二次绕组每个线圈对地的绝缘情况,发现一次绕组U、V相线圈与地及铁芯接通,其他线圈绝缘良好。
(2)用万用表测量硅钢片间、穿芯螺丝与铁芯间的绝缘良好,铁芯接地良好。
(3)检查保护装置二次回路,将保护开关、保护线路及整流阻容作检查,全部良好。
通过检查与分析,断定变压器故障为一次绕组U、V相线圈绝缘层损怀,匝间短路放电、油过热分解使瓦斯继电保护动作,断开变压器主回路电源。联系变压器生产厂家德国MUNK公司,定购两组线圈,各种费用总计25万元人民币。更换两组线圈后,由国内变压器生产厂家对油进行过滤、干燥处理,对变压器芯部作24小时的烘干处理。安装调试后,变压器恢复正常工作。
5结束语
通过上述分析,可以发现变压器油样气相色谱分析报告中的氢、烃类含量急剧增加,乙炔含量很高,一次绕组空载电流不平衡,油温不断升高等现象。所有这些都说明变压器内部出现了绕组匝间和层间短路的放电性故障。本文介绍的故障检查与分析方法简单、实用、成本低廉,为单位节约资金约20万元,值得同行业用户借鉴。
关键词:TSA5526;频率合成器;分频器;电荷泵
1概述
频率合成技术是近代无线电技术发展中的一门新技术,也是现代通信系统中的关键技术之一,它通常利用一块晶体或少量晶体组成标准频率源,然后通过合成方法产生各种所需的频率信号。这些频率信号与标准频率源具有相同的频率稳定度和准确度。使用该技术构成的电路在通信设备中称为频率合成器。频率合成器的种类很多,目前普遍采用的是数字式频率合成器。数字式频率合成器由晶体振荡器、固定分频器、鉴相器、滤波器和VCO等组成,晶体振荡器输出的频率信号经固定分频器后得到标准频率,而VCO输出的频率信号经可变分频器分频后得到实际频率信号,两信号在鉴相器中经相位比较产生的环路锁定控制电压将通过滤波器加到VCO上,以对实际频率信号进行控制和校正,直到环路锁定。当所需信号频率较高时,该电路的设计、制作和调试难度较大,通常只能依靠专业厂家来完成,不仅成本高,而且生产周期长。TSA5526芯片是Philips公司推出的通用数字频率合成集成电路,它将晶体振荡器、固定分频器、鉴相器、滤波器等电路集成在一块芯片上,其主要特性参数如下:
输入射频信号的频率为:64~1300MHz;
输入射频信号的电平为:-28~3dBm;
输出误差调整电压为:4.5~33V;
具有锁定检测功能;
内置可编程的15bit分频器;
通过程序控制可在512、640和1024中选择基准信号分频比,在外接4MHz晶振时,则可获得3.90625kHz、6.25kHz和7.8125kHz的频率精度;
可选择I2C总线和3总线进行数据传输;
采用单电源供电,电源电压为4.5~5.5V。
2引脚功能
TSA5526有SSOP16和SO16两种封装,引脚排列如图1所示,各引脚功能见表1所列。
表1TSA5526的引脚功能
引脚名称功能应用说明
1RF射频信号RF输入通常接本振输出
2VEE地
3VCC1电源电压1芯片电源,接+5V
4VCC2电源电压2开关控制电源,通常接+12V
5BS4电子开关BS4输出PNP三极管OC输出
6BS3电子开关BS3输出PNP三极管OC输出
7BS2电子开关BS2输出PNP三极管OC输出
8VS1电子开关BS1输出PNP三极管OC输出
9CP环路滤波器外接RC滤波网络
10Vtune误差控制电压输出通过上拉电阻输出直流电压并加到VCO
11SW总线选择开关接地时选择I2C总线方式;悬空时选择3总线方式
12LOCK/ADC锁定标志/ADC输入3总线方式时为锁定标志,低电平有效;I2C总线方式时5为电平ADC输入端
13SCL串行时钟下降沿时将SDA输出的数据锁存
14SDA串行数据在3总线方式时,18bit、19bit和27bit三种数据可供选择
15CE片选信号高电平有效
16XTAL基准振荡输入通常外接4MHz晶体
表2写状态数据格式
字节MSB数据字节LSB
地址字节(ADB)11000MA1MA0
分频字节(DI1)0N14N13N12N11N10N9N8
分频字节2(DB2)N7N6N5N4N3N2N1N0
控制字节(CB)1CPT2T1T0RSARSB0S
电子开字节(BB)空空空空BS4BS3BS2BS1
3内部结构和工作原理
TSA5526的内部结构框图如图2所示,它包括射频信号处理单元、基准信号处理单元、相位比较和输出单元以及接口控制单元等四部分。射频信号处理单元对输入的射频小信号进行放大和8分频,再送到15bit可编程分频器,分频比的大小可根据输入射频信号的频率来确定。基准信号处理单元中的基准振荡器通过外接晶体产生基准信号,同时经基准分频器产生基准信号。基准分频器通过编程可选512、640和1024三种分频比。经过分频处理后的两路信号同时加到数字式相位比较器,然后经电荷泵、放大器和驱动三极管后得到误差控制电压输出。接口控制单元用于实现微处理器与该器件的通信,它一方面接收微处理器送来的数据并在内部处理以形成各种控制指令;另一方面将本器件的状态送往微处理器。通过SW端信号的不同连接,可选择两种串行通信方式:I2C总线方式和3总线方式。
图2
3.1I2C总线方式
a.写状态R/W=0
在写状态时,对TSA5526编程需要四个数据字节,并应在地址字节传输后将数据字节送入芯片。当地址字节第一字节传输后,I2C总线的收发会使地址字节和数据字节连在一起,并在一个传输过程中传输完毕。如果地址字节后的第一个数据字节为分频字节或控制字节,则芯片将被部分编程。表2是其数据字节定义。表中,MA1和MA0是可编程地址位,用于控制加到片选端的电压。N14~N0为可编程分频比,其分频比为:
N=N14×214+N13×213+…+N1×2+N0
CP为控制电荷泵电流大小位,CP为0,对应电流为60μA,CP为1时,电流为280μA缺省值。T2~T0代表测试位。RSA和RSB为基准分频比选择位。0S为可调放大器控制位,0S位为0时,可调放大器接通缺省值,0S位为1时断开。BS4~BS1是PNP电子开关控制位,其对应关系是:当BSn为0时,电子开关n接通;当BSn为1时,电子开关n断开。
表3读状态数据格式
字节MSB数据字节LSB
地址字节11000MA1MA2R/W=1
状态字节PORFLACPS11A2A1A0
表43总线方式数据格式
数据形式D0D3D4D17D18D19D20D21D22D23D24D25D26
18位BS4BS1N13N0
19位BS4BS1N14N1N0
27位BS4BS1N14N1N0-CPT2T1T0RSARSB0S
b.读状态R/W=1
表3所列为读状态数据格式。当辅助地址位被识别之后,将自动产生一个响应脉冲到SDA线上。SDA线上的数据在SCL时钟信号为高电平时有效,数据字节在SDA线上产生应答信号之后从器件中读出;如果没有主应答信号产生,传输过程就会结束,此时芯片将释放数据线从而使微控制器产生终止条件。当上电时,POR标志被置为1,当检测到数据结束标志时,POR标志被复位读周期的结束。FL为进入锁存标志,用于表示何时循环建立起来。通过对FL置1或清零可对循环进行控制。ACPS为自动充电电流转换标志,当自动充电电流转换打开且循环锁定时,此标志为0,此时充电电流被强制为低。在其它条件下,ACPS为逻辑1。在I2C总线状态下,内置的A/D转换器可将自动频率微调模拟电平转换成数字量并送往微控制器。
3.23总线方式
在3总线方式下,该器件接收的数据有18位、19位和27位三种,参见表4。在该方式下,当片选引脚CE由低电平变为高电平时,SCL引脚输入时钟脉冲的下降沿会将SDA引脚上的数据送入数据寄存器,数据的前四位用来控制电子开关的通断,在第五个时钟脉冲的上升沿,这四位数据被送入内部电子开关控制寄存器。如果传输的是18或19位数据字,那么,在片选线上电平由高向低转换时,频率位将被送入频率寄存器。在上电复位状态下,电荷泵电流为280μA,调谐电压输出被关断;而在标准模式下,当ACPS标志为高电位时,测试位T2~T0被置为001,此时将禁止TSA5526输出。当传输的是27位数据字时,在时钟脉冲的第20个上升沿到来时,频率位将被送入频率寄存器,而控制位则在片选引脚CE从高电平向低电平转换时送入控制寄存器。在这种方式下,基准分频比由RSA和RSB位确定,测试位(T2、T1、T0)、电荷泵控制位CP、分频比选择位(RSA、RSB)以及0S位只能进行27位的传输。图3所示是3总线方式时的时序图。
表5AT89C51内RAM中20H、21H、22H、23H的定义
字节地址D7D6D5D4D3D2D1D0
20HBS4BS3BS2BS1N14N13N12N11
21HN10N9N8N7N6N5N4N3
22HN2N1N011000
23H01000000
4应用
TSA5526在某航空电子设备检查仪中的应用电路如图4所示,图中,单片机与TSA5526采用3总线方式进行通信。P1.0与SCL引脚相连,用于串行时钟输出。P1.1与SDA引脚相连,用于串行数据输出。P1.2与CE引脚相连以进行片选控制;电子开关BS1~BS4用于通过VCO产生4种不同频率信号,VCO的输出将通过C6送到TSA5526的RF引脚,并经分频后与基准信号进行相位比较。Vtune输出的误差控制电压经电阻R3、电容C5加到VCO。R1、C4的数值可用于决定微调的快慢。当频率锁定后,LOCK引脚将变为低电平,并将该电平通过AT89C51的P1.3引脚送入单片机进行检测。本电路采用27位数据格式,发送的数据存放在单片机AT89C51中RAM的20H、21H、22H、23H四个单元中,各位定义见表5所列。其具体程序清单如下:
Rfegadj:CLRP1.0
SETBP1.2
MOVR0,#08H
Fregadj1:MOVA,20H
CLRC
RRCA
MOVP1.1,C
SETBP1.0
NOP
CLRP1.0
DJNZR0,Fregadj1
MOVR0#08H
Fregadj2:MOVA,21H
CLRC
RRCA
MOVP1.1,C
SETBP1.0
NOP
CLRP1.0
DJNZR0,Fregadj2
MOVR0,#08H
Fregadj3:MOVA,22H
CLRC
RRCA
MOVP1.1,C
SETBP1.0
NOP
CLRP1.0
DJNZR0,Fregadj3
MOVR0,#03H
Fregadj4:MOVA,23H
CLRC
RRCA
MOVP1.1,C
SETBP1.0
NOP
CLRP1.0
关键词:电网;高压输电线路;绝缘子;选型
Abstract:Thecorrectselectionandapplicationoftransmissionlineinsulatoraretheguaranteeforlinesoperationrelaibility.Forthis,thepracticaloperationsituationandthecharacterof500kVtransmissionlineinsulatorinJiangsupowernetworkareana_lysed,thesuggestionshowtoselectandusethelineinsulatorareproposed.
Keywords:powernetwork;high_voltagetransmissionline;insulator;typeselection
近几年江苏电网发展迅速,截至2001年底,全省投运的500kV线路3174km、500kV变电站11座。线路使用的绝缘子种类繁多,目前输电线路使用的绝缘子按型式主要分为盘式绝缘子和长棒型绝缘子。下面介绍这2种绝缘子的特点。
1盘式绝缘子的特点
盘式绝缘子按材质可分为盘式瓷绝缘子和钢化玻璃绝缘子。
1.1盘式瓷绝缘子
盘式瓷绝缘子是最早用在线路上的绝缘子,已有一百多年的历史。它具有良好的绝缘性能、抗气候变化的性能、耐热性和组装灵活等优点,被广泛用于各种电压等级的线路。盘式瓷绝缘子是属于可击穿型的,它是采用水泥将物理、化学性能各异的瓷件与金属件胶装而构成的,在长期经受电场、机械负荷和大自然的阳光、风、雨、雪、雾等的作用,会逐步劣化,对电网的安全运行带来威胁。特别是含有劣化绝缘子的绝缘子串发生闪络(由于雷击或污闪等原因)时,可能会使劣化的绝缘子头部瞬间发热爆炸,造成导线落地的事故。华东电网在1996年底的大污闪事故中,500kV系统有11条线路因雾闪发生72次跳闸。其中,3条线路因零值绝缘子爆炸造成导线落地;2条线路多串绝缘子结构中有1串因零值绝缘子爆炸断串。
2000年9月22日,江苏省220kV溧阳变电站220kV旁母、正母瓷瓶发生因大量低值绝缘子的存在而导致的掉串事故。所以劣化绝缘子的检测工作非常重要,前系统停电是较难的,即使线路停电,也无足够的时间和人力进行全线绝缘子的检测工作。因劣化绝缘子的安装位置和分布区域的原因,向来是绝缘在线检测的一个难点。目前常用短路叉法和火花间隙法检测,这些方法易于检测零值绝缘子,测试方法简单,但准确性较低,对低值绝缘子,特别是1串中存在多片低值的情况下,则很难作出正确的判断。瓷绝缘子的老化率随其运行时间的延长而逐年上升。
1.2钢化玻璃绝缘子
钢化玻璃绝缘子具有较好的机电性能,其抗拉强度、耐电击穿性能、耐振动疲劳、耐电弧烧伤和耐冷热冲击性能等都优于瓷绝缘子。且与瓷绝缘子不同,玻璃绝缘子具有零值自爆的绝缘自我淘汰能力,这样就很容易被发现,无需对其进行绝缘测试。自爆率通常在前3年较高,这与瓷绝缘子相反。数十年的运行和试验数据证明,钢化玻璃绝缘子具有长期稳定的机电性能和较长的使用寿命。防污型玻璃绝缘子为取得较大的爬电距离,只有在伞裙下表面增加数个深棱来实现(由于工艺的原因,无法像瓷绝缘子通过双伞或三伞增加爬距)。当用于粉尘污染较严重的地区,因这种钟罩深棱的伞型自洁能力差、清扫不便,下表面结垢严重,造成耐污闪能力大大降低。从江苏电网运行情况来看,钟罩深棱型绝缘子(包括瓷的和玻璃的)不适合江苏地区这种以粉尘污染为主、污染较重的地区使用,如果使用,应充分考虑其爬电距离的有效利用系数。1999-2002年,江苏省500kV线路污闪跳闸中,只有7%(一次跳闸)是瓷双伞绝缘子,其余都是玻璃绝缘子。这里针对的是悬垂串绝缘子,全省尚未发生过耐张串绝缘子的污闪跳闸。
2长棒型绝缘子的特点
长棒型绝缘子按材质可分为合成绝缘子和长棒瓷绝缘子。
2.1合成绝缘子
合成绝缘子具有质量小、强度高、耐污性能好、维护工作量小等诸多优点。硅橡胶合成绝缘子表面具有憎水性,且附着在伞裙表面的污染层也具有憎水性(即硅橡胶的憎水性迁移),这大大提高了合成绝缘子的抗污能力。从国内的使用情况来看,历次的大面积污闪事故中,合成绝缘子都表现出优异的抗污闪能力,在外绝缘水平偏低和污染较重的情况下,合成绝缘子是个较好的选择对象。国外合成绝缘子的研制和挂网较早,使用范围很广泛,已取得成功的运行经验。国内合成绝缘子生产厂家经过数代产品的改进,生产技术水平大大提高,主绝缘成型技术已达到国际先进水平。合成绝缘子端头的连接型式是多种型式并存,但逐步趋向国际先进的探伤监控下的压接式,其结构简单、美观,产品质量的人为分散性得到控制。合成绝缘子的长期机械可靠性主要依靠:芯棒的质量和截面尺寸、金属端部附件特性以及附件与芯棒的连接质量。伞套为芯棒提供保护,并提供必要的爬电距离,要求它有长期的憎水性、较好的抗气候变化的性能、较高的撕裂强度等,常采用一些试验(如5000h加速老化试验),可检验伞套的长期性能。为改善端部电场分布,降低无线电干扰程度,提高电晕起始电压等原因,500kV合成绝缘子两端都装有均压环,但均压环的存在降低了放电距离。
从合成绝缘子运行中发生的事故、故障情况来看,大部分是雷击闪络,这可通过增加干弧距离来解决。其次是不明原因的闪络,不明原因的闪络是指闪络发生在系统无任何过电压的情况下,且发生闪络后的绝缘子送到试验室检验时,各项试验结果均合格。目前对不明原因的闪络问题尚无统一的认识,有的认为是绝缘子由于污湿原因,其憎水性会暂时消失;也有的认为是鸟粪引起的。从事故后果的严重性来看,最严重的是合成绝缘子的脆断问题,从20世纪70年代开始,有些合成绝缘子就发生了脆断事故。这种现象是由环氧树脂玻璃纤维芯棒的玻璃纤维受酸蚀引起的,一般在暴露于酸性环境中的玻璃纤维芯棒承受机械负载时发生的。华东电网在1998年发生了2例典型的500kV合成绝缘子脆断事故。一起是1998年3月,上海500kV渡南5101线发现1支合成绝缘子折断,该绝缘子是进口产品,运行时间仅4年多。该产品芯棒的硅橡胶护套厚度仅1.5mm(通常为3~5mm),引起折断的原因是护套厚度太薄,在运行中出现破损,水分渗入至芯棒,最终导致芯棒酸蚀脆断。另一起是1998年8月,浙江500kV兰窑5404线1支国产合成绝缘子发生断裂,原因是该绝缘子金具端头连接密封结构为第一代型,密封层较薄,水气沿着金具与护套间的缝隙渗入芯棒后,形成酸性环境,芯棒在此酸性环境和应力的作用下发生脆断。制造厂和运行部门从多起脆断事故的经验教训中,已认识到伞裙护套与金具之间可靠密封的重要性。
2.2长棒瓷绝缘子
一般情况下,长棒型瓷绝缘子串110kV为1节,220kV为2节,500kV为3节,每节都带有均压环和招弧角。绝缘体由氧化铝高强度瓷制作。江苏省1997年在500kV斗渡线无锡段率先采用了德国CERAM公司的瓷棒绝缘子,98串用在直线塔两边相。运行一段时间后,测量所得盐密较低。盐密的测量结果见表1。
表1盐密测量结果
绝缘子投运时间测量时间测量部位盐密
型式(mg/cm2)
瓷棒1997年12月1998年11月A相上串第2个伞0.0081
A相上串第8个伞0.0098
A相上串第16个伞0.0124
1999年11月C相下串第2个伞0.0061
C相下串第8个伞0.0065
C相下串第16个伞0.0069
2000年3月A相下串第2个伞0.0105
A相下串第8个伞0.0105
A相下串第16个伞0.0184
500kV瓷棒绝缘子由3节组成,每节之间均有均压环和招弧角,与同样棒型的合成绝缘子相比,在相同的结构高度下,空气间隙缩短。如某合成绝缘子供货商提供的产品结构长度4450mm、干弧距离4135mm、负极性50%雷电冲击闪络电压为2540kV;而某瓷棒绝缘子厂商提品的连接长度4452mm、干弧距离4030mm、负极性50%雷电冲击闪络电压为1950kV。因此,要达到一般合成绝缘子所要求的雷电冲击耐受电压和操作冲击耐受电压,则瓷棒绝缘子的结构高度将大于合成绝缘子的,这就要求杆塔尺寸应选大一点,对于多雷区线路,作为悬垂串使用时,存在一定的局限性。
使用长棒瓷绝缘子时,需在运输和安装过程别小心。瓷件大而笨,在运输和安装时,有碰撞和损坏的危险。另外,如果制造过程中内部产生细微的缺陷,在运行中,热-机械应力的长期作用会降低绝缘子的机械强度,且巡线时对长棒瓷绝缘子串的观察和检测还不能发现故障绝缘子,这样会导致瓷件意外折断和导线落地。
3对江苏电网输电线路绝缘子选型的建议
(1)悬垂串绝缘子应选用防污型盘式瓷绝缘子或长棒型绝缘子。我国盘悬式瓷绝缘子的生产厂家多、产量大,但不同厂家的产品质量差异很大。输电线路的绝缘子选型时,应对不同厂家生产的瓷绝缘子的运行情况进行详细调查了解,选用高品质的瓷绝缘子。同时,对运行中的瓷绝缘子应加强检测,及时更换劣化绝缘子,确保电网安全运行。除耐张串可选用普通型的外,伞型的应选用双伞或三伞,而钟罩深棱型绝缘子不宜使用。
(2)瓷棒绝缘子的机械强度直接与瓷件有关,由于运输、安装过程中造成的损坏,或运行中外界偶然的撞击,或制造过程中形成的内部缺陷(要求产品有严格的质量检查、优良的制造工艺),可能会在运行中意外折断,所以瓷棒绝缘子应选择质量好的产品,并加强检验工作,小心运输、安装。
(3)钢化玻璃绝缘子具有零值自爆的优点,可节省大量的运行维护费用。由于钟罩深棱型绝缘子的固有缺陷以及江苏省的运行经验证明,这种型式的绝缘子不适合以粉尘污染为主、污染较重的地区使用,如果使用,应充分考虑其爬电距离的有效利用系数。普通型的玻璃绝缘子可在耐张串使用。
(4)合成绝缘子具有维护工作量小、质量小、耐污性能好等优点,这是瓷、钢化玻璃绝缘子不可相比的。目前在我国大气污染严重、输电线路外绝缘水平普遍偏低、塔头尺寸也限制了调爬的选择性的情况下,合成绝缘子应是污染严重地区的选择对象。但是,合成绝缘子运行时间短,运行经验尚嫌不足。对500kV合成绝缘子应慎重选择制造厂家及技术参数,积极研究考核其各项性能、寿命的技术指标及试验方法,对在线运行的合成绝缘子应加强监测。
(5)绝缘子爬电比距的配置应符合本地区审定后最新版污区图的要求,并应参照JB/T5895-91《污秽条件下绝缘子的使用导则》的要求,充分考虑其爬电距离的有效性和运行经验,绝缘子的污闪放电特性与结构造型及自然积污量有关。爬电距离有效利用系数应反映放电发展时爬电距离长度利用的有效性,又能反映绝缘子在运行条件下的积污性能。因此,在相同条件下和在相同的积污时间内,爬电距离有效利用系数应由被试绝缘子与基准绝缘子的污闪电压梯度相比较来确定,在绝缘子选型时应充分考虑。
参考文献:
[1]龚坚刚.长棒型绝缘子在超高压输电线路中的应用前景[J].浙江电力,2000,(5).
关键词:无线发射FSK射频发射器nRF902
1概述
nRF902是一个单片发射器芯片,工作频率范围为862~870MHz的ISM频带。该发射器由完全集成的频率合成器、功率放大器、晶体振荡器和调制器组成。由于nRF902使用了晶体振荡器和稳定的频率合成器,因此,频率漂移很低,完全比得上基于SAW谐振器的解决方案。nRF902的输出功率和频偏可通过外接电阻进行编程。电源电压范围为2.4~3.6V,输出功率为10dBm,电流消耗仅9mA。待机模式时的电源电流仅为10nA。采用FSK调制时的数据速率为50kbits/s。因此,该芯片适合于报警器、自动读表、家庭自动化、遥控、无线数字通讯应用。
2引脚功能和结构原理
nRF902采用SIOC-8封装,各引脚功能如表1所列。
表1nRF902的引脚功能
引脚端符号功能
1XTAL晶振连接端/PWR-UP控制
2REXT功率调节/时钟模式/ASK调制器字输入
3XO8基准时钟输出(时钟频率1/8)
4VDD电源电压(+3V)
5DIN数字数据输入
6ANT2天线端
7ANT1天线端
8VSS接地端(0V)
图1所示是nRF902的内部结构,从图中可以看出:该芯片内含频率合成器、功率放大器、晶体振荡器和调制器等电路。
通过nRF902的天线输出端可将平衡的射频信号输出到天线,该引脚同时必须通过直流通道连接到电源VDD,电源VDD可通过射频扼流圈或者环路天线的中心接入。ANT1/ANT2输出端之间的负载阻抗为200~700Ω。如果需要10dBm的输出功率,则应使用400Ω的负载阻抗。
调制可以通过牵引晶振的电容来完成。要达到规定的频偏,晶振的特性应满足:并联谐振频率fp应等于发射中心频率除以64,并联等效电容Co应小于7pF,晶振等效串联电阻ESR应小于60Ω,全部负载电容,包括印制板电容CL均应小于10pF。由于频率调制是通过牵引晶振的负载(内部的变容二极管)完成的,而外接电阻R4将改变变容二极管的电压,因此,改变R4的值可以改变频偏。
将偏置电阻R2从REXT端连接到电源端VDD对可输出功率进行调节。nRF902的工作模式可通过表2所列方法进行设置。
表2nPF902的工作模式设置
引脚
工作模式XTALREXTXO8DIN
低功耗模式(睡眠模式)GND---
时钟模式VDDGNDVDD-
ASK模式VDDASK数据VDD或者GNDVDD
FSK模式VDDVDDVDD或者GNDFSK数据
在FSK模式时,调制数据将从DIN端输入,这是nRF902的标准工作模式。
ASK调制可通过控制REXT端来实现。当R2连接到VDD时,芯片发射载波。当R2连接到地时,芯片内部的功率放大器关断。这两个状态可用ASK系统中的逻辑“1”和逻辑“0”来表示。在ASK模式,DIN端必须连接到VDD。
时钟模式可应用于外接微控制器的情况,nRF902可以给微控制器提供时钟。它可在XO8端输出基准时钟,XO8端输出的时钟信号频率是晶振频率的1/8。如晶振频率为13.567MHz,则XO8输出的时钟信号频率为1.695MHz。
在低功耗模式(睡眠模式),芯片的电流消耗仅10nA。在没有数据发射时,芯片可工作在低功耗模式以延长电池的使用时间。电路从低功耗模式转换到发射模式需要5ms的时间,从时钟模式转换到发射模式需要50μs的时间。
图2nRF902的应用电路
关键词:项目驱动;习情境;工学结合
作者简介:赵俊英(1981-),女,满族,河北保定人,天津电子信息职业技术学院电子技术系,讲师。(天津 300350)
中图分类号:G712?????文献标识码:A?????文章编号:1007-0079(2012)34-0095-02
在高职高专电子、通信类教学中,“数字电路分析与实践”课程作为专业基础课,是后继专业骨干课程的基础,其教学的效果直接关系到学生对后继课程的学习兴趣及学习能力。[1]建设该课程的精品课程,是推进高职电子技术及通信类人才培养的重要手段和必要环节。
一、课程设计思路
在课程建设中,将理论和实践相融合,将学生所学知识转化为技能,将技能用于实践,注重培养学生把技能应用于实践的能力。本课程的设计思路如下:
1.以培养学生职业能力和职业素养为原则构建教学内容
本课程融“教、学、做”三者于一体,采用“项目驱动”教学方法,构建模块化、组合型、进阶式训练体系。将综合能力分解成若干项小的基本能力,选择能涵盖基本能力要素的训练项目实施基本能力训练。通过模块项目训练,建立对电子电路的整体概念,从而全面掌握电子电路的分析能力,以此提高电子电路应用能力和创新能力。
2.产品调研,选取学习情境载体,设计工作任务
该课程共设计了5个学习情境,每个学习情境都围绕着真实的实际产品展开,每个情境由若干个任务组成,每个任务都按资讯—决策—计划—实施—检查—评估六大步骤实施教学。体现了课程的教学目标与社会需求相一致,教学情境与企业工作相一致,教学内容与企业工作任务相一致。学习内容从“单个到系统”,从“典型到一般”,从“简单到复杂”。技术复杂程度和学习难度逐渐增加,学生自主完成工作的程度逐渐增加,符合学习和技能的培养规律。
3.课程总体框架
“教学相长”是我们长期以来追求的目标,课程要有可持续发展性也是我们追寻的原则,所有这一切都需要学生有学习兴趣、积极性做前提。同样的设计题目可能有不同的实现方案,使用不同的数字电路芯片,设计不同的电路参数,但最终都会实现同样的功能。这样不仅充分发挥了学生学习的积极性、主动性,同时也加深了学生对基础知识的理解,为后继的专业课程学习打好坚实基础。
二、教学内容
1.根据项目和企业需要,分析工作任务,制定课程内容
“电子电路分析与实践”课程是一门理论性、实践性、基础性和应用性都很强的学科,根据市场对人才的专业需求和征求企业对课程内容、课程目标的意见分析,通过与企业专家研讨,并结合工业与信息化部和人力资源与社会保障部无线电调试技师职业资格的取证,以电子电路分析与设计流程为主线,提炼出了典型的工作任务。
2.以项目为载体实现课程内容综合化,具有很强的针对性和适用性
教学内容选择真实产品作为学习载体,这些产品必须包含职业岗位能力培养所需的全部知识,按照学生的认知规律、职业能力培养规律和产品的选择,从简单到复杂、从单一到综合,逐步培养学生的职业能力和自主学习能力。[2]本课程设置的教学情境如图1所示。
3.实践教学贯穿于整个教学活动中
本课程的实践性教学主要分为以下几个层次:任务模块实训、情境教学实践、开放性课题、学期项目、专业实习和顶岗实习。教学内容上包括了学习基础(验证)—提高(综合、设计)—创新研究(研究、应用开发)各个阶段,体现了循序渐进的教学过程。其中,既有课内内容,也有课外内容;既有指定性实训项目,也有学生自选的实训项目。同时结合学生专业社团活动,引导和指导部分学生进行项目的研发和研究,使得实践贯穿于整个教学过程,也贯穿于学生在校学习的整个过程。具体的实践环节如下:
(1)实训课。实训课是指随课堂教学的实践课程,包括任务模块实训和情境教学实践。每个实训模块均设有项目参考程序、必须完成的内容和选做的内容,选做部分是为学有余力和感兴趣的学生设计的,这样设计的目的是对具有不同能力的学生提出不同的要求,使每个学生都能学有收获,学有所长。
(2)学期项目。学期项目是指学生每学期依据所学知识,在教师指导下,以小组团队为单位,做一相关课题,课题可以是论文,也可以是具体项目,随着学生知识的增长,项目要求和难度不断增加,最终要完成完整的电子电路。
在“数字电路分析与实践”课程开设时,学生已经具备了一定的分析能力和设计能力,同时,学期项目的实施也巩固了该课程所要求的模电、电路基础知识。教师也可以提供给学生参考项目,由学生选题,学有余力的学生可以利用VHDL编程语言在PFGA或CPLD上实现电路设计。
(3)专业实习。为了提高学生的动手能力和巩固教学成果,在无线电装接和无线电调试实习中,分别安排了电子电路的装接和模块扩展的实习内容。通过课程实习,使学生初步建立正确的设计思想,学会获取信息的方法,并培养分析问题和解决实际问题的能力。在无线电调试实习中扩展模块的题目由教师指定或学生自主选题,题目要兼顾基础性、知识性、前沿性、实用性、可操作性等。并将该部分内容纳入无线电调试中级职业资格证书的考核内容。
(4)顶岗实习。顶岗实习的主要目的是培养学生吃苦耐劳、团结协作的精神,培养学生理论结合实践的能力,进一步增强学生的学习能力、分析解决问题的能力和应用能力,为学生以后更好的走向社会奠定坚实的基础。许多校内外顶岗实习课题是关于电子产品分析与开发的,这也更加突出了该课程在整个教学中的重要地位。
三、教学方法与手段
本课程的教学模式为“教、学、做、练、鉴”立体化教学模式。教学过程中,坚持“教、学、做一体化”,教师是工作过程的主导,学生是工作过程的主体。因此,学是首要因素。以项目为载体的情境化教学设计引导学生以做中学、学中做的方式在完成典型工作任务的过程中自主地完成学习过程。
考虑高职教育本身的教育规律以及学生的学习基础,任何单一的教学方法都难以达到好的教学效果,为此,本课程以工学结合为切入点,在教学过程中采取了以工作过程为导向的学习过程,综合运用基于工作过程的项目引导教学法、任务驱动法、案例分析法、分组讨论法、角色扮演法等教学方法开展教学。各种教学方法交错使用,互相融合。
1.启发式教学法
教学中注意启发式,[3]杜绝注入式。授课时应注意与学生进行交流:学生跟着教师的思路走(循序渐进,接受知识),教师跟着学生的表情走(察言观色,掌握学生听懂、接受的程度)。启发引导以教师为导向,锻炼学生独立思考问题、解决问题的能力。这是一种较高级的学习方法,能够让学生摆脱被动式学习,启发学生自主创新的精神,这也正是教育改革所要达到的真正目的。
2.项目驱动教学法
以工作任务单和计划、实施、评价工作单为引导,通过学习完成工作所需的知识,来完成工作任务,教学任务由师生共同完成。教学地点由传统的先课堂后实验室的模式改为课堂、实验、实训室一体化模式,学习过程在仿真的工厂实训环境中进行,学生可以在学习、实验、实训中将知识转化为技能,实现与企业岗位的零过渡。
3.项目小组教学法
将学生4~5人分为一组,部分教学内容采用学生分组讨论、互相评判,以小组为单位进行课程的讲授,其他学生进行补充的教学方式。引导学生积极思考、乐于实践。在课外开放实训室,小组共同讨论、解决问题,提出方案并共同完成项目。要求学生不断学习、自我完善,构建学习型项目小组团队。
4.学生自主学习
课堂上,在保证基本教学内容完成的基础上,鼓励学生自己拟订方案、方法,自创项目,经指导教师认可后独立完成,培养学生独立的工作能力和创新意识。
5.师生互动
课堂教学、课堂讨论、课后练习、开放性课题、实验、实训教学有机结合,互为补充。对带有普遍性的难题及时设立适当的习题课予以讲解,不积累问题。并采用课堂交流(提问、讨论)、课间交流、答疑、质疑、作业、辅导学生进行电子制作、电子邮件网上交流、QQ流、电话交流等多种方式与学生交流。
四、师资队伍建设
在本课程建设中,打造一支老中青结合、理论与实践结合的教师队伍是必要的、关键的。对教师的要求要满足以下几个方面:
(1)主讲教师师德好,学术造诣高,教学能力强,教学经验丰富,教学特色鲜明。
(2)所有理论教师均同时兼任理论课程和实践课程的教学工作。
(3)课题组一半以上教师都有过企业工作经历。
(4)课题组教师均要达到本科学历,其中,研究生学历要达到50%以上。
在实际的课程建设中,师资队伍要不断完善,教师应具有紧迫感,不断更新知识,不断探索行之有效的教学方法。
五、总结
本文对高职高专“数字电路分析与实践”课程设置、教学内容、教学方法与手段以及师资队伍建设等方面进行了探讨。结合实际项目,加强实践环节,寓教于乐,提高学生的学习兴趣,是本课程改革值得探索的方向。
参考文献:
[1]曹双兰,吴翠娟.高职高专“数字电子技术”课程教学改革初探[J].中国电力教育,2011,(13):60.
电子信息技术的迅猛发展,使得从事电子工程方向的人员要掌握更多、更新的专业知识。为了适应这种变化,高校如何在有限的总课时内将最核心、最有用的知识传授给学生,单纯靠增加新的专业课程是不能够解决问题的。因此,本文依据海口经济学院电子信息工程专业的教学现状,构建相应课程群体系,并进行实践探讨。
1 课程群的专业内涵
课程群是指内容联系紧密、内在逻辑性强、属于同一培养范畴的一类课程,课程群作为一种新的教学管理体系,打破了课程内容的归属性,弱化课程的独立性,强化课程之间的亲和性,使它们在一个更高的层面上连贯起来[1]。
2 电子信息工程专业课程群建设目标
从企业岗位需求的角度,结合民办本科院校以培养应用型、创新型人才为主的指导思想,研究海口经济学院电子信息工程专业的课程群建设,提出相应具体的改革措施。
课程群建设依据以下几点原则:
1) 明确课程群建设目标,合理进行课程内容的实施与分配,注重实践技能的培养,强化内容的融合、关联和交叉;
2)加强实践类课程群的建设,注重培养学生实践技能和综合素质;
3)从企业需求的人才和专业发展出发,设计更符合社会需要的课程群。
3 我校电子信息专业课程群建设
3.1 理论课程群的改革
通过将课程群里的课程内容进行分解和融合,在整体上进行优化,实现对教学资源的统一协调。因此学生培养计划、教学大纲应根据调整后的要求进行重新编写。
3.1.1 电子技术类课程群
电子技术类课程群的知识结构是以电路分析为基础,要求学生掌握常用的电路元件,熟悉常见的电路模型,能够熟练应用电路分析的基本方法分析基本电路。对基本、实用的模拟电路与数字电路进行分析和设计,使学生掌握电子电路的基本工作原理和分析与设计方法 [2] 。我校把《电路分析》《模拟电子技术》《数字逻辑电路》三门课程合并成一门《电路与电子技术》,分成2个学期教授,在数字电子技术课程中引入 EDA 的内容,将EDA和 数字电路有机地结合起来。课程中各门课程中的内容进行融合,精简课时。比如不再讲授一阶电路的冲击响应、拉普拉斯变换,加强讲解一阶电路时域和频域特性,以及稳态和瞬态特性。模拟部分不再讲授数字部分 “门电路”和“A/D、D/A 变换”等内容。
3.1.2 信号处理类课程群
信号处理类课程群中的各门课程在教学安排上时间前后连接,在内容方面相承前启后,逐步深入。《信号与系统》是信号处理、分析的基础,是《数字信号处理》重要的先导课程,内容包括连续时间信号和离散时间信号,以及线性时不变系统的基本理论和分析方法;《数字信号处理》 则是在《信号与系统》的基础上学习DFT(离散傅里叶变换)、FFT (快速傅里叶变换)、FIR和 IIR(数字滤波器)设计等数字信号处理的方法,是《DSP 原理与应用》的先修课程[3]。《DSP 原理与应用》可以编程实现《数字信号处理》的基本理论,主要涉及 DSP的软硬件设计、应用系统的开发方法。
例如在《信号与系统》课程中包含离散时间信号的时域分析和变换,那么在数字信号处理课程中就可以适当删减。如果在《信号与系统》课程中讲过了Z变换,那么在《数字信号处理》中可以简单复习,而加强滤波器设计内容的讲解,同时在《数字信号处理》课程中对信号处理基本理论也是简单回顾,不再花课时讲解。重点介绍在实际应用中的使用,减少复杂公式的推导,以理解概念、定性分析为主,突出MATLAB软件仿真和DSP硬件的实现。
3.2 课程群实践教学环节的改革
实验教学内容需要与理论教学内容紧密结合,更需要尽可能地锻炼学生分析问题、解决问题的思维和能力。因此,在开设基础实验的基础上,增加综合设计环节,对学生开放实验室,激发学生进行自主学习。在课程群课程体系和教学内容改革的基础上,构建层次实践教学新体系。
3.3 课程资源的网络化建设
“网络化时代的到来必然会引起教学的变革,变革的趋势是学生自主学习将加强,学生对教师的依赖将降低” [4]。因此,课程群建设要为学生留有自主的学习空间,进行教学资源网络化建设。每类课程群所涉及的课程教学大纲、进度表、教案、课件、授课录像等教学资源逐步实现上网。部分课程已经建立网上试题库、试卷库,进行教考分离,建立网络交互型高校电子信息类虚拟实验平台,教师与学生能够在网上互动答疑。课程群建设最大限度地实现了教学资源的共享化。
3.4 课程群的教学团队建设
课程群教师队伍由“课程负责人 + 骨干教师 + 任课教师”组成,在课程群背景下,应以科学发展观作为教学指导来建立教学团队与教学骨干,我们的教学团队是以双师型为主的“工程型”教学团队,多人有企业工作的经历。通过教学骨干培养对教学资源进行高效开发,并对教学内容及方法进行改革,以此促进教学团队间的教学研讨及经验交流。
注重以老带新,采用多种多样的师资培养模式,形成老、中、青相结合的教学科研队伍,比如选派青年教师到企业挂职锻炼,学习新知识、掌握新技术,挂职结束后进行严格的答辩。教学骨干每年都有机会到国内外做访问学者和到重点院校进修。组织专业教师参加学术会议、专业技能培训等活动,以提高科研与学术水平。鼓励教师参加国家、省、市级科研项目的申报,以科研促进教师教学水平的提高。
以教师在科学研究方面的相关科研成果作为确立教学团队中教学骨干的激励机制,有海口经济学院科研资助与教学科研奖励办法,比如针对省级期刊、核心期刊、检索期刊的论文有不同程度的资金奖励。并进行科研工作量按学时计量的方式对教师进行奖励和督促。