时间:2023-03-07 15:15:28
序论:在您撰写有理数的减法教案时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
由于教学对象知识、经验的积累有限,因此,小学低年段的美术教学相较于中高年段难度要大得多,尤其是教师自身的专业学习和艺术实践过程中接触比较少的教学内容更是如此。民间玩具便是绝大部分中小学美术教师很少接触的,因此,面向小学二年级的学生进行这一内容的教学,对教师来说是个不小的挑战。所以,在笔者看来,陈钧老师以《民间玩具世界》一课参加“第六届全国中小学美术课现场评选”这样的“顶级赛事”,勇气可嘉。
通过认真阅读教学案例文本,并反复观看教学视频,笔者觉得,从总体上来说,陈老师对教学做了充分的准备,三维教学目标的制定较为具体;在此基础上的教学重点、难点的把握也很准确;教学流程的设计也能紧扣教学目标,各个环节之间环环相扣、层层推进;教学过程张弛有度,有着较强的节奏感,学生的兴趣得到很好的激发和保持;教学策略、教学方法运用能有效地服务于教学目标,因而达成了教师预期的教学效果。关于本节课具体的优点和值得商榷之处,参与评课的同行们已经发表了不少颇有见地和价值的见解,在此不再赘言。现想借本案例,谈谈对于美术教学切入的角度、内容的深度和拓展的宽度的思考。
一、切入的角度
面对—个具体的教学课题,执教者一般都会做一番思考,分析该课题的内容属性(即所属的学习领域),揣摩教材的编写意图,以寻找教学实施的落脚点,即切入教学内容的角度,这事关教学目标的制定、教学内容的组织和作业任务的设计。这便是通常所说的“教材分析”。以《民间玩具世界》为例,本课属于“欣赏·评述”学习领域,课题的文字表述由“民间”“玩具”“世界”三个概念组成。由于教材提供的内容较为有限,编者的意图也没有明确的表述,所以,就需要教师在这三个概念中寻找教学的落脚点,思考该从哪个角度切人教学。就字面看,本课的编写意图可以作两种理解,一是欣赏民间风格的玩具,玩具是主体;二是以欣赏民间玩具为手段,了解民间美术的艺术特征和文化内涵,玩具是载体。从本案例“教材分析”“教学目标”及“教学过程”等方面我们不难看出,陈老师选取的是后者,这也是大多数老师的教学取向。笔者不否认民间玩具属于民间艺术,但从基础教育阶段美术课程的系统性和小学低年段儿童的身心发展规律角度思考,本人对此有不同的理解,想与同仁们商榷。
“世界”是个普遍适用的概念,与美术课程关系并不紧密,因此,本课的切入点主要在“民间”和“玩具”二者中产生。通观整套教材,关于民间美术的课题不少,而关于玩具的内容主要出现在本册教材(本课为第一课,此外还有第二课《现代玩具世界》和第三课《我的玩具伙伴》),所以,从整个小学美术课程系统看,本课应该将“玩具”作为内容组织和教学实施的核心词,“民间”则作为规定“玩具”来源、范围和特征的定语。而玩具的最主要特征是“玩”,对于儿童来说,玩具具有开发智力、锻炼体格、抚慰情感、丰富生活、文化熏陶等多重价值,因此,在欣赏(中国)民间玩具时,可涉及玩具的功能、造型、色彩、装饰纹样、制作材料与方法、文化内涵等方面。“玩”是儿童的天性,这正是“在玩中学”教学理念(游戏教学法)提出的基础。基于这一点,笔者认为,对玩具功能的了解和体验应该是本课的重中之重,孩子们在愉快地玩玩具的过程中,自然会不知不觉地关注其造型、色彩、纹样,琢磨其制作材料和制作方法。陈老师在教学中注意到了这一点,在“新课导入”环节安排了学生玩醒狮活动,在“摸一摸、玩一玩”环节让学生分小组赏玩不同的玩具,在“小结拓展”环节让孩子们跟观摩的教师们一起玩玩具。但从整个教学过程来看,陈老师似乎志不在此,而是在玩具的功能、造型、色彩、纹样、制作、文化内涵之间摇摆,尤其“赏一赏、画一画”环节的安排,给人感觉本课的重点是在玩具的装饰纹样,故有以偏概全之嫌。
二、内容的深度
根据维果茨基的最近发展区理论,儿童的发展有两种水平:一种是已经达到的发展水平;另一种是儿童可能达到的发展水平,表现为“儿童还不能独立地完成任务,但在成人的帮助下,在集体活动中,通过模仿,却能够完成这些任务”。这两种水平之间的距离,就是“最近发展区”。教学的本质目的就是帮助儿童顺利过“最近发展区”。这个理论不仅适用于知识的教学,也适用于技能的教学。对于融知识与技能为一体的美术教学来说,其指导价值不言而喻。因此,教师在选择和组织教学内容时,既要充分掌握学生既有的知识和技能状况,也要准确分析通过教学学生能够达到的知识与技能水平,从而找准“最近发展区”,为确定内容的难度提供依据。
就本课而言,正如陈钧老师在“学情分析”中所说,学生经过一年的美术课程学习,了解了一些常用的美术词汇,但由于本案例的实施是“异地教学”,陈老师对这些学生并不是很了解,他们“了解”了哪些美术词汇,是否了解民间美术、民间玩具的相关“词汇”似乎不好把握,所以,他们在这两个方面“已经达到的水平”难以评估,“可能达到的水平”也不好预测,这就给“最近发展区”的判断和教学内容难度的确定带来了很大的困难。正因为如此,在教学中,不可避免地出现了学生对教师提出的问题难以把握,师生对话无法顺畅地展开,教师不得不自己揭晓答案的状况。如,教师在让学生根据自己所画的纹样猜一猜这些纹样“所蕴含的中国民间传统文化中的吉祥寓意”时,面对“桃子”“蝙蝠”“莲花”“公鸡”“大象”“葫芦”等形象,学生几乎无话可说,因为这对二年级的城市孩子来说太遥远、太高深,难度太大了。当然,了解这些纹样的吉祥寓意,对于二年级学生来说,既非无必要,因为美术学科的人文性特征要求在美术教学(尤其是“欣赏·评述”教学)中渗透人文教育;电非不可能,因为以二年级学生的智力发展水平,完全可以接受和理解这些知识。问题的关键在于他们从未接触过这些知识,让他们无师自通地说出来未免强人所难。如果改变一下思路,教师做一些必要的提示,或者将相对应的吉祥语(长寿、福、禄、连年有余、吉、祥)列出来,让学生选择或连线,则可大大降低知识的难度。
三、拓展的宽度
教学的拓展具有拓宽学生视野、发展开放式思维、促进知识迁移、延伸学习空间、提升教学效率、增强学习内容的关联度等多重价值,因此,这是一个很重要的教学环节。在本课“小结拓展”环节,陈老师让学生创造新的玩法,拿着玩具和观摩教师一起玩,并请教他们“是否有好的创意”。这样的拓展还是值得探讨的:整个教学过程中,并未将“玩法”作为重点,学生基本上不知道这些玩具的“老玩法”,如何“创谴新玩法”?因此,在课堂上难免会出现学生草草应付的情况,观摩者也会对能“创造”出怎样的“新玩法”产生疑问。
关键词:初中数学 教学 引入
新课引入是课堂教学的先导,良好的开端是成功的一半,怎样在课堂教学中培养学生的学习兴趣、激活情感、启迪智慧、诱发思维呢?我们要紧紧抓住新课引入这一环节,教师从实际出发的精心安排的新课引入,可以为新课创设教学意境,使学生迅速进入角色,按教师的要求进行学习、思索,可以为新课的教学需要激起学生的探索欲望,从而形成良好的心理动态,可以为新课突出重点、突破难点、埋设教学措施的引线,成为新课启发教学的先导 。
一、制定符合学情的教学方案
我们在教学中要从学生的学情出发制定符合学生实际情况的教学方案。只有这样才能搞好初中数学的教与学。学情,是学生学习知识、形成技能、发展智能的客观过程。它又可分为本质学情和具体学情。本质学情指的是学生学习书本知识的实际情况;具体学情指的是一个学生或一类学生甚至一个班学生的学习活动中所反映出来的比较稳定的具体的学习特征。教师在钻研教材、按新课标要求进行备课时应根据学生的学情基础设计教案,突出重点、抓住关键、解决难点,克服教学工作中的主观盲目性。
二、课堂上发挥学生的主体性
我们不应当把课堂当成教师的一言堂,而应当让学生成为课堂的主人,成为学习的主体。教师通过创设问题情境,激发学生的好奇心和求知欲,从而自觉主动地观察、思考,并让学生动手做、动口说。教师应鼓励和启发学生打破常规,对一个问题要从多方面、采用不同的方法寻求答案,使学生潜在的创造力在教师的指导下得到应有的培养与发展,从而发挥学生的主体性和教师的主导作用,使学生积极主动地参与教学的全过程,成为学习的真正主人。
三、加强学法指导,积极开发学生智能
新课标要求我们不但要重视知识的传授与技能的培养,注重发展学生智力,而且要把培养学生的自学能力和创造能力摆在教学活动的首位。要培养学生的自学能力,就必须加强学法指导。为此应抓好以下几个主面:如何看书、预习、听课、做笔记;如何做作业、复习、小结;如何发现问题、质疑;如何有效思考等。只有掌握了科学的学习方法,学生才能学到广博的知识,进而发展智力、提高能力。
四、引入新课的方法
1.练习,讨论,归纳引入新课艺术
通过练习,讨论,然后再对数学对象进行不完全归纳的方法引入新课。这是常用的方法。对于新课标的要求:可以使用多媒体,有时会省时,省力,同时能增加课堂容量。也便于学生`比较观察。如果暂时没有条件的地区也可以事先设计一些题目在随堂练习上进行归纳。比如引入平方差公式的一组多项式乘法练习。
(1) (x+1) (x-1) = ?
(2) (x+1) (x-1) =?
(3) (a+2) (a-2) =?
(4) (3a+b) (3a-b) = ?
(5) (4+a) (4-a) =?
可以让学生先做,然后点击答案并用不同色彩引导学生观察,比较等式左右两边的特点,通过练习,归纳,猜想的方式引出平方差公式。这样引入新课的方法往往是应用于有关公式的新课上,有利于培养学生数学发现的能力。但选取的例子不要太难。只要能便于学生观察,发现结论即可。
2.设置悬念引入新课艺术
悬念就是灵感集成的火花,它能使人们产生心理追踪,造成一种“欲与知不得,欲罢不能”急切期待的心理状态,具有强烈的诱惑力,诱导人们兴致勃勃地去猜想,激起探索追求的浓后兴趣,乃至非要弄个水落石出不可。悬念的设置,在技巧上应是“引而不发”,令人深思,富有余味。
如数学上一些缺乏趣味性的内容,教师就需要有意设置悬念,使学生产生探求问题奥秘所在的心理。即“疑中生趣”,比如讲一元二次方程根与系数关系时,可以让学生先思考这样题目:“方程5 x 2-x-4=0的一个根为x =1,不解方程求出另一根x = ?”教师可以先给出提示请同学们验算。当学生得到答案正确时,就激发了学生的好奇心理,就使学生产生急于想弄清“为什么?”此时教师接着说明“一元二次方程根与系数之间其实存在一种特殊关系,也正是我们今天要学习的”,只是简单的几句话,就激发了学生学习兴趣,如果再使用现代多媒体手段辅助教学更能“锦上添花”。
当然,设置悬念要掌握分寸,不“悬”学生不思其解。就达不到调动学生积极性的目的。太“悬”学生望而生畏,也达不应有的效果。
3.“开门见山” 新课艺术
可能有的老师有时上课并没有绕圈子,而是直接说出本节课要学习的主要内容。就象洋思中学的经验一上课就出示本节课要学习的目标并且讲述教学目标再指导学生自学。这样做教学重点突出,能使学生很快地把注意力集中在教学内容最本质最重要的问题研究之上。如在学习“有理数减法”时可这样引入“在学习了有理数加法的基础上,我们来学习有理数减法,那么有理数减法法则是什么?它跟有理数加法有联系吗?这就是我们这节课要研究的主要问题。”
4.趣味性实验引入新课艺术
用趣味性实验引入新课旨在激趣。如在讲乘方运算时用“拉面”引入新课,一是有趣、二是易接受。学生可以在课前后去拉面馆去观察厨师操作。或要求学生用一张报纸对折再对折(报纸不得撕裂)直到无法对折为止。让学生猜猜看这时报纸有几层?再把结果表示出来引出乘方概念。
一、制定符合学情的教学方案
我们在教学中要从学生的学情出发制定符合学生实际情况的教学方案。只有这样才能搞好初中数学的教与学。学情,是学生学习知识、形成技能、发展智能的客观过程。它又可分为本质学情和具体学情。本质学情指的是学生学习书本知识的实际情况;具体学情指的是一个学生或一类学生甚至一个班学生的学习活动中所反映出来的比较稳定的具体的学习特征。教师在钻研教材、按新课标要求进行备课时应根据学生的学情基础设计教案,突出重点、抓住关键、解决难点,克服教学工作中的主观盲目性。
二、课堂上发挥学生的主体性
我们不应当把课堂当成教师的一言堂,而应当让学生成为课堂的主人,成为学习的主体。教师通过创设问题情境,激发学生的好奇心和求知欲,从而自觉主动地观察、思考,并让学生动手做、动口说。教师应鼓励和启发学生打破常规,对一个问题要从多方面、采用不同的方法寻求答案,使学生潜在的创造力在教师的指导下得到应有的培养与发展,从而发挥学生的主体性和教师的主导作用,使学生积极主动地参与教学的全过程,成为学习的真正主人。
三、加强学法指导,积极开发学生智能
新课标要求我们不但要重视知识的传授与技能的培养,注重发展学生智力,而且要把培养学生的自学能力和创造能力摆在教学活动的首位。要培养学生的自学能力,就必须加强学法指导。为此应抓好以下几个主面:如何看书、预习、听课、做笔记;如何做作业、复习、小结;如何发现问题、质疑;如何有效思考等。只有掌握了科学的学习方法,学生才能学到广博的知识,进而发展智力、提高能力。
四、引入新课的方法
1.练习,讨论,归纳引入新课艺术
通过练习,讨论,然后再对数学对象进行不完全归纳的方法引入新课。这是常用的方法。对于新课标的要求:可以使用多媒体,有时会省时,省力,同时能增加课堂容量。也便于学生`比较观察。如果暂时没有条件的地区也可以事先设计一些题目在随堂练习上进行归纳。比如引入平方差公式的一组多项式乘法练习。
(1) (x+1) (x-1) = ?
(2) (x+1) (x-1) =?
(3) (a+2) (a-2) =? 转贴于
(4) (3a+b) (3a-b) = ?
(5) (4+a) (4-a) =?
可以让学生先做,然后点击答案并用不同色彩引导学生观察,比较等式左右两边的特点,通过练习,归纳,猜想的方式引出平方差公式。这样引入新课的方法往往是应用于有关公式的新课上,有利于培养学生数学发现的能力。但选取的例子不要太难。只要能便于学生观察,发现结论即可。
2.设置悬念引入新课艺术
悬念就是灵感集成的火花,它能使人们产生心理追踪,造成一种“欲与知不得,欲罢不能”急切期待的心理状态,具有强烈的诱惑力,诱导人们兴致勃勃地去猜想,激起探索追求的浓后兴趣,乃至非要弄个水落石出不可。悬念的设置,在技巧上应是“引而不发”,令人深思,富有余味。
如数学上一些缺乏趣味性的内容,教师就需要有意设置悬念,使学生产生探求问题奥秘所在的心理。即“疑中生趣”,比如讲一元二次方程根与系数关系时,可以让学生先思考这样题目:“方程5 x 2-x-4=0的一个根为x =1,不解方程求出另一根x = ?”教师可以先给出提示请同学们验算。当学生得到答案正确时,就激发了学生的好奇心理,就使学生产生急于想弄清“为什么?”此时教师接着说明“一元二次方程根与系数之间其实存在一种特殊关系,也正是我们今天要学习的”,只是简单的几句话,就激发了学生学习兴趣,如果再使用现代多媒体手段辅助教学更能“锦上添花”。
当然,设置悬念要掌握分寸,不“悬”学生不思其解。就达不到调动学生积极性的目的。太“悬”学生望而生畏,也达不应有的效果。
3.“开门见山” 新课艺术
可能有的老师有时上课并没有绕圈子,而是直接说出本节课要学习的主要内容。就象洋思中学的经验一上课就出示本节课要学习的目标并且讲述教学目标再指导学生自学。这样做教学重点突出,能使学生很快地把注意力集中在教学内容最本质最重要的问题研究之上。如在学习“有理数减法”时可这样引入“在学习了有理数加法的基础上,我们来学习有理数减法,那么有理数减法法则是什么?它跟有理数加法有联系吗?这就是我们这节课要研究的主要问题。”
4.趣味性实验引入新课艺术
用趣味性实验引入新课旨在激趣。如在讲乘方运算时用“拉面”引入新课,一是有趣、二是易接受。学生可以在课前后去拉面馆去观察厨师操作。或要求学生用一张报纸对折再对折(报纸不得撕裂)直到无法对折为止。让学生猜猜看这时报纸有几层?再把结果表示出来引出乘方概念。
摘要:教学反思是一种良好的教学习惯,美国心理学家波斯纳提出了一个教师成长的公式:成长=经验+反思。这句话反映出教学反思对教师专业发展的重要性。
关键词:数学 教学反思 重要作用
所谓教学反思,是教师以自己教学活动为对象,对自己的教学方法、教学行为、教学过程及其结果作审视和解剖,分析教学理论和教学实践中的各种问题,以问题推动教学。我国学者熊川武教授认为:“反思性教学是教学主体借助行动研究,不断探究与解决自身和教学目的,以及教学工具等方面的问题,将‘学会教学’与‘学会学习’结合起来,努力提升教学实践合理性,使自己成为学者型教师的过程。”美国心理学家波斯纳认为,没有反思的经验是狭隘的经验,至多只能形成肤浅的认识,只有经过反思,教师的经验方能上升到一定的高度,并对今后的未继行为产生深刻的影响,他提出了一个教师成长的公式:成长=经验+反思。在我们的教学上,只教不研,就会成为教死书的教书匠;只研不教,就会成为纸上谈兵的空谈者。只有成为一名科研型的教师,边教边总结,边教边反思,才能“百尺竿头更进一步。”本文将就数学教学反思谈一些看法。
一、教学前反思
教学前进行反思,才能使教学成为一种有目的、有组织、有意义的实践活动。在教学前进行的反思主要结合以前的教学经验,考虑自己以往是如何准备的,在教学过程中曾出现过什么问题,课堂反应如何,学生接受情况如何,是否有有待于改进的地方……这样的反思能总结以往的教训,在以往的基础上进行改进,这样可以扬长避短,把自己的教学水平提高到一个新的境界。例如笔者在七年级下册的《整式的乘法》时,本章同底数幂的乘法:am×an=am+n;幂的乘方:(am)n=am;积的乘方:(ab)n=anbn。在上每一节内容时,学生的反应是相当好的,作业情况也都非常好,可一旦把这些知识点综合在一起(包括以前学习的合并同类项: ma+ na =( m+ n)a),那学生对指数到底该进行怎样的运算就开始糊涂,导致对于例如(1)、10a5b2+(-7a3)(ab)2;(2)、(x6)2+(-x)6x6这类混合运算的错误率非常高。针对以往的这种情况,笔者在备课时归纳了其中的规律:指数的运算相对于式子本身的运算要低一级(乘方、开方为三级运算,乘法、除法为二级运算,加法、减法为一级运算)即:合并同类项时,式子本身是加减,那么指数不参与运算;同底数幂的乘法式子本身是乘法,那么指数进行加法运算;幂的乘方和积的乘方式子本身是乘方,那么指数进行乘法运算;直到以后的同底数幂的除法,指数进行减法运算;开方运算,指数进行除法运算。当学生掌握了这样的规律后,知识点再怎么综合都不会搞错了。
二、教学中反思
教学中反思意味着教师面对实际中的学生可能出现的新情况、新问题或有些没有预先考虑到的事情随机作出判断,并及时调整教与学的行为。教师在课堂上要及时反思,不断调整,不能按照课前制定的教学方案一成不变的上下去,而要按照课堂中学生的学习兴趣、学习情绪、参与方式、探究效果、整体状态进行灵活的引导。教学中反思有两个关键的反思:第一,难点是否已经通过分析进行解决,提问和例子是否恰当,是否需再补充实例,再进行讲解。第二,反思问题情境是否得当,所取问题或例子是否更能激发学生学习兴趣,激活学生思维。例如笔者在上《有理数的大小比较》这堂课时,在与学生共同探讨得出有理数大小的两种比较方法后,通过课堂练习时的巡视,笔者发现绝大部分的学生都已把这两种方法掌握并能熟练应用,如果再进行这方面的练习,不仅已没有这个必要,还可能引起部分学生的厌烦,于是笔者临时补充了这几题练习:1、试求出绝对值小于2006的所有整数的和与积(把绝对值的概念与有理数大小比较进行有机结合);2、利用数轴求不小于-2.5,并且不大于5的整数(旨在渗透不小于和不大于的概念的基础上再认识有理数的大小比较);3、已知a,b在数轴上的位置如图,试用“<”号连
接-a,a,-b,b(既对有理数的大小比较进行巩固,又对有理数相反数的几何意义进行了复习).这样既极大地调动了学生的学习积极性,又通过铺垫对知识点进行了层层深入。
三、教学后反思
“教然后而知不足”,教学后的反思会发现许多不尽人意的地方,从而促使自己不断学习,进一步地激发自己向更高的目标迈进。教学后反思意味着教师对刚刚结束的一节课总结得与失,以促进一步完善。教师总结上一节课得失的渠道来自于两个方面:其一是来自于教师本身,教师要在课后总结自己本节课的精彩点在何处、有无创新点,这节课最大的失败是什么等等;其二是来自于学生,教师在下课后通过批改作业等手段了解学生的课堂掌握情况。教师在总结自己的体会与学生的反馈的基础上,找出二者的结合点,然后在师生观点共有的基础上创新,发现新的教学契机,为下一节课打下良好的基础。笔者在上《实数》这一节课时,是用两个边长为1的正方形通过剪拼成一个面积为2的正方形,从而得到这个新正方形的边长为■,并用这个方法来完成■在数轴上的表示,自以为已经讲得很形象很到位,可是讲到■,■,■在数轴上的表示时学生仍然在此处出现了问题,怎么引导也不会,当时笔者很急,一看时间也不多了,就草草收场了,自己把它们的表示方法说了出来,笔者分明看到了学生迷茫的眼神,课下在做练习的时候笔者知道那节课是一节“夹生饭”。课后笔者反思,其实笔者根本就不必为了完成教学进度而把知识点给草草收场,知识点没掌握,下次肯定还要再讲,可是再怎么讲,“夹生饭”都不能再变成一锅好饭了。
总之,只要我们养成思考的习惯,在教完每一节课后都能将经验和教训记录在教案上,将成功和不足作为调整教学的依据,使课堂教学不断优化和成熟,使教学水平、教学能力和教学效果明显提高。从反思中感悟,从反思中积累,长期坚持,必有所得。
参考文献:
[1]熊川武.《反思性教学》教授华东师范大学出版社.2004年出版
[2]李国汉.《天津教育-关于反思的讨论》.2008 第3期
关于两级分化的形成原因,笔者认为主要有以下三点。
其一:循序渐进、越来越难的数学学习规律是形成两级分化的根源所在。任何一门学科的学习过程都是由浅入深,循序渐进、越来越难的,数学学习也不例外。随着年龄的增加,年级的增高,需要学习掌握的数学知识也越来越难。尤其是刚进入初中以后,由小学的三门学科一下子变成了七门学科的学习,任务量加大了许多;再加上初中数学的学习内容较小学数学的学习内容在难度和深度上都有较大程度的提升,一节课的知识容量也较小学有较大的增加,而初中教师的授课方式也与小学教师的授课方式有较大的不同,这时候再拿小学时的学习方法去应付初中数学的学习肯定会受到影响。不能迅速适应初中数学学习生活及畏难心理使得学生逐渐丧失学习信心,从而使一部分学生的数学成绩逐渐开始下降,从而开始了两极分化。
其二:数学的学科特点是形成两级分化的重要因素之一。数学因其连贯性、严密性、逻辑性、抽象性而著称。但是,也正是数学学科的这些特点,从而导致了数学的学习的诸多障碍。常言道:兴趣是最好的老师。很难想象能够让每一个学生都对如此抽象、枯燥的计算、推理等都感兴趣。虽然新课标教材一而再再而三的进行了改革,但是其枯燥乏味,脱离生活实际的内容还是数学学习的最主要内容,再加上教师们的授课水平差异很大,大多数教师还是就题讲题,照本宣科,不能够对教学内容进行加工,能够用学生喜闻乐见的方式展现出来,从而使学生认为学习数学就是一味的计算、推理、做不完的题……
其三:其他客观因素是形成两极分化的催化剂。造成两级分化的客观原因比较多,主要集中在教师和学生两个方面。在教师方面,一般一个班级有50至60多个学生,这些学生的学习是有很大的差异的。他们的基础情况、接受新知识的速度、抽象思维能力等都有很大的差异,但是现行教育制度下让一个教师在一节课、一个教案的前提下把五、六十个学生的学习状况都照顾得到自然是不现实的。而在学生方面,由于每个学生的个体特点不一样,除了基础、接受新知识的速度及思维能力的差异外,还有学习意志、学习品质、努力程度等诸多方面的差异也是导致两极分化状况日益严重的重要因素。
那么,怎样尽可能的避免两极分化现象,并尽可能缩小他们的差距呢?笔者认为,主要要做好以下五点:
首先,要做好衔接教学,防患于未然。作为新初一的数学教师,不仅仅要研究新初一的教材,整个初中的教材,掌握整个初中的数学教学体系,更要研究小学数学教材,研究小学数学教学体系,力争站在小学生的心理、学习特点来设计教学内容,组织授课。教师除了要上号学期开始的第一课,做好衔接之外,也要在每一个新章节、新知识的第一课上下功夫,做好衔接教学。教师要明白学生在现有的认知水平上已经具备了哪些知识,新知识的学习有可能造成学生学习的哪些障碍。教学中要根据学生的认知规律,由浅入深,循序渐进的增加难度,让学生在不知不觉中渐入佳境,顺利的过渡到初中。
其次,要努力提高学生学习数学的兴趣。教师在教学中要根据教学内容尽可能的将书本上的知识加以研究,使之变为形象、生动、有趣的问题,甚至可以让学生亲自动手操作,在游戏中、实践中学到知识。
第三,注重对学生进行数学思想方法的训练与指导,帮助学生找到规律,扫清学习障碍,克服学习困难。譬如在初一讲授有理数的加减运算时,学生对符号问题老师弄不清楚,容易出错。我们除了讲清楚课本上的加法法则和减法法则外,更要让学生弄清楚运用转化思想,把有理数的减法转化为加法的基本思想。甚至还要指导学生探究,运用分类思想把有理数的加法分成“正数+正数”、“正数+负数”、“负数+正数”、“负数+负数”的类别进行分别计算。对于有理数的减法分成“正数-正数”、“正数-负数”、“负数-正数”、“负数-负数”的类别进行分别计算。这样帮助学生找到了规律,使得运算大大简化,既降低了学习难度,增强了学习数学的信心,又提高了学生学习数学的兴趣,掌握了研究数学、学习数学的基本思想方法。
第四,注重数学学习习惯和学习品质的培养。学生在学习过程中难免会有困难,有障碍,教师除了在数学教学中应注重多引导、多表扬鼓励,少批评、少讽刺、不歧视外,还要不断地发现他们身上的长处和闪光点,鼓励他们的点滴进步;既要教会学生对待学习那种锲而不舍,勇于挑战的勇气,更要教会他们通过学习认识到自己的不足,并会扬长避短,不断进步的技巧与精神。教师要在教学中需要做的就是要帮助学生树立自信心,鼓励他们学会克服困难,逐渐走向成功之路,使每一位学生经常感受到成功的喜悦。
教学案例1:《合并同类项》一节(实习生上)
教师:(讲完同类项的概念并进行练习后,给出书上的引例:有两个小长方形组成一个大长方形,求这个长方形的面积。学生很快就用代数式表示出了结果:8n+5n。怎么计算呢?)
学生:13n.
教师:对,我们计算8n+5n时,可以先将它们的系数相加,再乘n就可以了。用乘法分配律也可以得到这样的结果:8n+5n=(8+5)n=13n。
接着教师给出了合并同类项的定义和合并同类项的法则,并给出了合并同类项的练习题。通过练习,总结出了合并同类项的步骤:(1)找出同类项,(2)合并同类项。(后面是大量的练习。)
结果,我从作业中发现了这样的问题:x-f+5x-4f=(1+5)x-(1-4)f=6x+3f。自习课上,我就用这样的方法来解释:x-f+5x- 4f=x+(-f)+5x+(-4f)=(1+5)x+(-1-4)f=6x-5f,但是上述错误仍然屡禁不止。于是,我开始思考:问题出在哪儿?怎样解决这个问题呢?
后来,与学生共同分析研究发现:合并同类项的关键是将同类项的系数相加减,字母和字母的指数不变。如果我们将它们的系数“拎”出来,在草稿纸上计算,即1+5=6,-1-4=-5,计算过程就可以直接写成x-f+5x-4f=6x-5f。学生易于理解,错误也少多了。
教学案例2:《去括号》一节(实习生上)
教师:(用小黑板给出书上的引例:用火柴搭正方形时,计算搭x个正方形需要火柴棒的根数的三种不同方法。)
学生思考说出答案:4+3(x-1),4x-(x-1),3x+1。
教师:(引导学生利用乘法分配律去括号,并比较运算结果。4+3(x-1)=4+3x-3=
3x+1;4x-(x-1)=4x+(-1)x+(-1)(-1)=4x-x+1=3x+1,发现这三个代数式是相等的。)
教师:(引导学生分析去括号前后,括号里各项的符号变化,从而得出去括号法则。后面是练习。)
学生应用去括号法则对诸如:(1)4a-(a-3b),(2)a+(5a-3b)-(a-2b)等题目的练习,逐步地熟悉和掌握了法则。但后来发现对3x+1-2(4-x)这一类题目出现了多种错误,如3x+1-2(4-x)=3x+1-8-2x,3x+1-
2(4-x)=3x+1-8+x,3x+1-2(4-x)=3x+1-8-x,3x+1-2(4-x)=3x+1-8-2+x.
分析以上错误,才发现学生去括号时,存在的问题有:(1)不是忘了变号就是忘了乘以2,顾头不顾尾的现象很普遍。(2)2与x相乘不知道怎样表示,就像2a×3b不知道等于什么。这是什么原因?怎么办呢?自习课上,对2a×3b等类型的题目进行练习后,把问题又回到了根本上:利用乘法分配律,3x+1-2(4-x)=3x+1+(-2)(4-x)=3x+1+(-8)+2x=3x+1-8+2x,但这样做显然“喧宾夺主”了,用它是为了帮助学生归纳去括号法则,目的是培养学生的代数推理能力。后来我认真思考一下,去括号应该是乘法分配律运用的另外一种形式(含有字母),是一种升华,而不能用它去“独当一面”,为什么不能继续发挥乘法分配律的优势,用学生易于接受的方式去解决问题呢?
于是,先复习用乘法分配律计算:3(-x+1),-2(4-x);有理数乘法:(-2)×4,(-3)×x,在此基础上,对上述题目直接用乘法分配律来去括号,结果错误就大大地减少了。
教学反思:反思这两个教学案例,发现有许多值得思考的地方:其一,新课程的理念强调知识与能力、过程与方法、情感态度价值观三方面的相辅相成、相互渗透。在数学教学中,应该通过积极有效的参与,学生自主地去理解和感受知识,在这个过程中,既获得了知识,又产生情感、激发想象、启迪思维,形成一定的学习态度,所有这一切都体现在学生对知识的理解和感受过程中。在上述两个案例中,教师较注重知识产生的背景,但是在知识形成的过程中,学生思考交流的时间太少,几乎没有参与其中,合并同类项的定义和法则,去括号法则,都是学生在稍稍观察,未来得及弄明白时,老师就直截了当地告诉了学生,而不是通过引例让学生自己去发现、归纳,去理解消化。所以,学生出现众多错误也是必然的。最后把练习运用法则当作本节课的重点,那么学生自然就变成了运算的机器,毫无情感价值观和发展可言了。其二,合并同类项运用了有理数加减运算,在省去将减法统一成加法和不讲添括号的情况下,将同类项的各项系数“拎”出来进行有理数加减,不失为一种简便且易掌握的方法。去括号运算运用乘法对加法的分配律,效果显而易见。用这种“回归自然”抓本质的方法,既体现了数学的基本方法:类比,又让学生体会到数学并不难且变化万千,如果在此基础上教师能引导学生把自己的认知结构加以优化,“帮新知识找到家”,学生会感到其乐无穷。其三,新课改要求教师要树立课程意识,通过教学,把学生培养成一个完整的人,而不是让学生成为接受知识的容器。它要求教师在吃透教材的基础上灵活处理教材内容,开发和利用教材。所以,教学不能照搬书本,应该根据学生的认知特点和实际情况,用灵活多样的方法,挖掘教学内容的实质,才能做到融会贯通,让学生成为学习的真正主人。
开局是一堂课的序幕,设计开局的基本思路可归结为8个字:承上启下,导情引思。
讲:"后次复习前次的概念",说的是承上启下,复习前次的哪些概念呢?应该是那些最基本的对后次的学习起作用的概念,通过这些概念的复习或再学习,自然地过渡到新课。例如:在讲无理方程的解法时,可设计如下一组复习旧知识的提问:1·什么叫方程,方程的解和解方程?2·你都学过哪些方程?解这些方程的基本思想是什么?主要步骤是什么?3·在解这些方程的过程中,解哪一种方程时必须验根?为什么要进行验根?这组问题,实际上为理解新课作了必要的准备,使得新知识--无理方程和它的解法--成为整个"方程"这段知识整体结构的一个自然发展,使得新知识成为一个容易从旧知识"进入"的"最近发展区"。这样,解无理方程的关键步骤--去根号,可以由解分式方程的关键步骤--去分母进行联想,由去分母可能产生增根,联想到去根号可能产生增根等。
所谓导情引思,就是要激发学生的认知兴趣和积极情感,启发和引导学生的思维,让学生用最短的时间进入课堂教学的最佳状态。如讲"勾股定理",利用多媒体制作,画面1:漆黑的宇宙中闪烁着无数颗星星,老师提问:大家有没有见过外星人呢?茫茫的宇宙中究竟有没有外星人呢?该如何与他们联系呢?此时出现画面2:科学家从地球上向宇宙不断的发射信号:如A、B、C等语言,高山流水等音乐,以及各种图形,最后画面定格在一张"勾三股四弦五"的图形上。追问:这张图形究竟包含着什么信息呢?立即把学生思维兴趣引向对这个问题的探索上。
开局的关键在于造成认知冲突,以讲"轴对称及轴对称图形"为例,提出问题:妈妈买了一只蛋糕为一对双胞胎兄弟过生日,请问如何把这个蛋糕一分为二呢?学生由生活中的经验知道只要过中心切一刀,理由是什么呢?学生感到以前学过的知识无济于事,形成认知冲突,由此引出轴对称及轴对称图形的课题。又如讲相似多边形时,先提出问题,在一块长方形黑板的四周,镶上等宽的木条,得到一块新的长方形,内外两个长方形是否相似?学生往往由生活中的错误经验出发认为一定相似,老师干脆回答:"不对!"以此来促使学生产生学习新知识的需求。
二、充实饱满的中坚
现行《教学大纲》中,对一般的课堂教学过程明确地指出"坚持启发式,提倡讨论式,反对注入式",这是由"要结合知识教学、技能训练充分培养学生能力"的要求,引出现代教育理论中的"要把学生学习知识的过程当作认识事物的过程来进行教学"的观点而决定的,充实饱满的中坚,关键是落实三个"点"。即突出重点、排除难点、抓住关键(知识点)。下面仅谈谈排除难点的问题。大家知道,难点是由学生原有数学认知结构与学习新内容之间的矛盾而产生的,既有教学内容的原因,也有学生认识和接受能力方面的原因,因此,要分析难点产生的原因,有针对性的实施解决难点的对策。
1·因素:内容过于抽象,学生理解困难
对策:抽象理论具体化
例如:在讲"反比例函数的概念"这个抽象的难点时,我是这样处理的:手拿一张一百元的新版人民币,提问:把它换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?由此让学生归纳得出反比例函数的定义是亲切自然,水到渠成。
2·因素:知识的综合性强,学生掌握起来易出现"积累误差"
对策:分散难点
在"有理数的运算"中,有理数的减法是一个难点,这是因为有理数的减法是有一定的综合性。表现在①减法要转化为加法来做;②与算术数的运算比较,算术数只是单方面的计算,而有理数则扩充到符号和绝对值两方面的运算,这里涉及"转化"、"符号运算"、"绝对值运算",再加上对题目特点的识别,正是这几方面的"积累误差",使有理数减法形成了难点,这就需要有一个过渡与适应的过程,在指导学生认识法则合理性的前提下,通过恰当的层次训练和及时反馈使"转化"、"符号运算"、"绝对值运算"各个击破。
3·因素:知识所及的过程复杂,学生不好把握
对策:理出线索,类比联想
例如用尺规作图作一个角等于已知角,完全可以类比着用量角器去画一个角等于已知角,具体做法如下:第一步画一条射线,第二步,量角器的中心与已知角的顶点重合,量角器的零刻度线与已知角的一边重合,就是用圆规以已知角的顶点为圆心,任意长为半径为弧,第三步是在量角器上读出已知角另一边所对的刻度,就是用圆规在已知角上量取这段弧,第四步是把量角器的中心对准射线的端点,,零刻度线对准射线,就是用圆规以射线端点为圆心,以同样长为半径画弧,第五步在量角器已知刻度的地方画一点,相同地用圆规量取在等弧的地方画一个点,最后过端点和这个点画一条射线,这样我们通过类比,理出线索,很好的解决了这个难点。
4·因素:新旧知识缺乏联系
对策:培植知识的"生长点"
新知识都是从旧知识的基础上孕育产生的,教学必须利用学生头脑中的已有知识,去培育新知识的"生长点"。比如,在去括号和添括号法则,由于法则和依据缺乏联系,学生掌握起来较困难,但如果把去括号和添括号看作乘法分配律的一个应用,就容易被学生接受,即去括号时,括号前面是"+"号,就视为"+1"与括号中的式子相乘,括号前面是"-",就视为"-1"与括号中的式了相乘,这是乘法分配律的正用,添括号法则是乘法分配律的逆用,这就是说利用运算律进行数的运算是去括号和添括号的"生长点",在有理数教学中就要注意培养这一"生长点"。
三、留有余味的结局
一个高明的设计,常把最重要、最有趣的东西放在"末场",越是临近"终场",学生的注意力越是被情节吸引,结局的形式有多种,常见的有以下类:
1.总结式结局:将本课内容简明、扼要且有条理的归纳总结,指出重点、难点,引起学生注意,这是老师最常用的一种形式。如"同类项"一节小结如下:①今天这节课要求同学们掌握两项技能:(1)能迅速准确地找出同类项;(2)会合并同类项。②初学合并同类项时,四步缺一不可;③合并同类项的四步中,要特别注意第二步:带着符号。
2.呼应式结局:以解答开局时所提问题的方式结束全课。比如"用代入法解二元一次方程组",开局时提出一组题目,主体部分讲用代入法解二元一次方程组的思想和步骤,结局时由同学们解答上述题目,再如"全等三角形判定(三)",开局时提出在窗架的一角钉上一根小木条,有何用处?主体部分讲全等三角形判定三:边边边公理及其初步运用,结局时由同学们用边边边公理来解释三角形的稳定性。
3.探究式结局:留下问题,让学生去研究,比如讲完勾股定理后,出示我国著名的斜拉式大桥--南浦大桥的图案,要求学生利用勾股定理,设计求一根根斜拉的钢索的长度的方法.再如,讲完全等三角形第三个判定公理后,给出问题:判断三角形全等需三个元素,其中至少有一边,那么假如两个三角形有两边和一条边的对角相等,这两个三角形是否全等?这些问题,不必要求学生立即明确对否,而是留有余地,让学生去探究。
4.衔接式结局:创设一种情境,使学生急于求知下次课的内容,比如在结束"一元二次方程的根的判别式"时,可写出一个系数十分"麻烦"的二次方程,比如说1998x2+999x-3996=0,让学生判别根的情况,并要求学生求其根的平方和,学生最初的想法是直接求根,然后计算,但系数之繁使他们为难。进而指出,下节课还有系数更加繁复的一元二次方程,也要我们求根的平方和,这种结局给学生一种暗示:不能硬算,需要寻求新的关系--这就为下节课"一元二次方程的根与系数的关系"作了铺垫。
5.开放式结局:比如说讲完"反比例函数及其图象"后,我提出3个问题让学生自主归纳:①今天你学会了什么?②你觉得数学有趣吗?③你感受到数学美吗?这样将学生获取知识、掌握技能、提高能力和培养数学素养统一起来,真正体现了以学生为主体,教师为引导的启发式教学。
上述三个环节的核心是让学生最大限度地参与教学活动,充分发挥学生在教学过程中的主体作用。
附一.教师基本素养
教师基本素养,指的就是通常所说的教师在课堂教学中的"教学基本功",主要有以下几个方面:
1.口头表达能力。简言之,即要求教师的语言要正确,要通俗,要简炼,要有感染力,说到这方面的能力,提问是一个很重要的环节,大家知道,提问是启发思维的重要方式,思维由问题开始,由问题而进行思考,由思考而提出问题,是青少年的一个重要心理特征。因此在设计问题时应考虑四个条件:一是问题必须与数学思维有关,揭示教材或学生学习活动中的实质矛盾,围绕教学中的重点,难点设计问题,二是问题必须适合学生,根据学生的实际水平和个性特点,提出不同类型、不同层次的问题.三是考虑教育上"合理"的提问。原苏联数学教育家斯托利亚认为提问方法的问题,是一个复杂的远没有解决的教育学生的问题,他要求采用"教育上合理的提问方式",如果提问引起学生的积极思维活动,并且学生又不可能照搬课本上的答案,就可以认为,进行了"教育上合理"提问,例如:"过不在一条直线上的三个点可以画几个圆?"对这个问题,学生可以毫无困难的回答:"一个",这个问题不是教育上合理的提问,可是如果提问:"经过三点可以画几个圆?"学生在课本上找不到现成的答案,他必须自已对三个点可能有的位置关系加以研究和组合,考虑"三个点在一条直线上"的情况和"三个点不在一条直线上"的情况,并且分别对每一种情况作出结论,因为这个问题的信息量处于最适当的程度,所以,它是"教育上合理"的提问,但如果进一步问:"现在有五个点,可作几个圆,使每个圆上至少有三个点?"对初学"过三点的圆"的学生而言,这个问题会有其它信息的干扰,也不是教育上合理的提问,最后,还要考虑如何通过提问来教会学生提问--这也是主体性教学法的首要任务之一。
2.书面表达能力。大家知道,板书是符号性质的辅语言,是知识的凝炼和浓缩,板书设计应注意"五性",保持教学内容的系统性,教学内容的概括性,揭示知识的规律性,给学生的示范性和形式的新异性。
3.观察能力。这里主要包含两个方面,一方面是能迅速地发现学生的课上特别是板演中书写的问题,答案中的差误,并能较准确地看出产生差误的主要原因,以便有的放矢地引导学生自己改正差误,另一方面是能随时观察学生动态,如发现有"瞠目状态"(可能对教师的讲解或引导难以理解)或"不屑听取状态"(可能对教师所讲感到过于浅显而繁琐)时,应采取及时反馈措施,以便对原设计的教学过程进行必要的调节,也称之为"二次备课"。
4.聆听能力。这里指的是准确地听清学生的口头提出问题的能力,准确地听清学生口头回答问题的内容的能力和准确地听清学生间互相讨论的内容的能力,由于年级越低的学生,一般地说,他们的口头表达能力也是越低的,常常是"词不达意"的,因此,教师必须能分辨清学生口头语言实质的正误,才能准确地答疑、补充或矫正错误而不致挫伤学生的学习积极性。
5.教态。这里指的是要求教师在教学中,使学生能充分发挥学习积极性应持有的态度,不妨借用《学记》中指出的,要在"道而弗夺,强而弗抑"的基础上表现出负责的精神、和蔼的态度,以及高度感染的凝聚力(这与语言的通俗性--能说出学生习惯的语言,说出学生心中所想的问题有密切的关系),以使学生感到分外亲切,始终保持高度的学习积极性。