欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数学知识总结范文

时间:2023-03-06 16:02:52

序论:在您撰写数学知识总结时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数学知识总结

第1篇

一、基本知识

(一)、数与代数

1、有理数:正整数、0、负整数、分数、

画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

2无理数:无限不循环小数叫无理数

平方根:如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。如果一个数x的平方等于a,那么这个数x就叫做a的平方根。一个正数有2个平方根,0的平方根为0,负数没有平方根。求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:

如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

正数的立方根是正数、0的立方根是0、负数的立方根是负数。

求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:实数分有理数和无理数。

在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。每一个实数都可以在数轴上的一个点来表示。

(二)函数

1、概念

在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值

2、解析式法

用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系

3、图像法

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法

4、一次函数

在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k0)(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当b=0时称y是x的正比例函数

基本性质:

1、在正比例函数时,x与y的商一定(x≠0)

2、当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b);当y=0时,一次函数图像与x轴相交于(﹣b/k)

k>0时,图象从左到右上升,y随x的增大而增大。

k0:经过第一、二、四象限

k

k

函数的解析式

像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,

描述函数的常用方法,这种式子叫做函数的解析式

函数的图象

一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横纵

坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

提示

并不是所有的函数都能同时用三种表示方法表示哦

(比如气温与时间的关系)

一、正比例函数

一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y就叫做x的正比例函数。正比例函数是一次函数的特殊形式,即一次函数

y=kx+b

中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。

1.正比例函数的关系式表示为:y=kx(k为比例系数)

当K>0时(一三象限),K的绝对值越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大.

2.当K

特点1:单调性

特点2:对称性

特点3:正比例特点4:奇函数

图像:

正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的斜率是k,横、纵截距都为0。正比例函数的图像是一条过原点的直线。

正比例函数y=kx(k≠0),当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。

求正比例函数解析式:

正比例函数求法设该正比例函数的解析式为y=kx(k≠0),将已知点的坐标代入上式得到k,即可求出正比例函数的解析式。另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。

正比例函数图像的作法

1.在x允许的范围内取一个值,根据解析式求出y的值;

2.根据第一步求的x、y的值描出点;

3.作出第二步描出的点和原点的直线(因为两点确定一直线)。

温馨提示:正比例函数属于一次函数,但一次函数却不一定是正比例函数。

一次函数

知识点总结

一、基本概念:

1.变量:在一个变化过程中数值发生变化的量。常量:在一个变化过程中数值始终不变的量。

2.

函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

3、定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(即:自变量取值范围)

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

(或:用关于自变量的数学式子表示函数与自变量之间关系的式子叫做函数的解析式。)

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

6、函数图像的性质:

一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

7、函数的三种表示法及其优缺点

(1)解析法:

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

8、由函数解析式画其图像的一般步骤:

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

9、正比例函数和一次函数:所有一次函数或者正比例函数的图像都是一条直线。

(1)正比例函数定义:

一般地,形如

y=kx(k为常数,k≠0)y叫x的正比例函数)。k叫做比例系数。

当b=0时,一次函数y=kx+b

变为y=kx。正比例函数是一种特殊的一次函数。

(3)

正比例函数的图像:y=kx(k≠0)是经过点(0,0)和(1,k)的一条直线。一次函数的图象:y=kx+b(k≠0)是经过点(0,b)和的一条直线。

一次函数y=kx+b的图象的画法.

(5)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

(6)根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可

.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点。

(7)函数不是数,它是指某一变化过程中两个变量之间的关系。

(8)直线y=kx+b和直线y=kx的图象和性质与k、b的关系如下表所示:

(9)

b>0

b

b=0

k>0

经过第一、二、三象限

经过第一、三、四象限

经过第一、三象限

图象从左到右上升,y随x的增大而增大

k

经过第一、二、四象限

经过第二、三、四象限

经过第二、四象限

图象从左到右下降,y随x的增大而减小

总结如下:

(1)k>0时,y随x增大而增大,必过一、三象限。

(2)k>0,b>0时,

函数的图象经过一、二、三象限;(一次函数)

(3)k>0,b

函数的图象经过一、三、四象限;(一次函数)

(4)k>0,b=0时,

函数的图象经过一、三象限。

(正比例函数)

(5)k

y随x增大而减小,必过二、四象限。

(6)k0时,函数的图象经过一、二、四象限;(一次函数)

(7)k

(8)k

(正比例函数)

11、直线y1=kx+b与y2=kx图象的位置关系

0,b),(a,0)

扩展:1.求函数图像的k值:

(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.

(2)当b

11.在两个一次函数表达式中:

直线l1:y1=k1x+b1与l2:y2=k2x+b2

k相同,b也相同时,两一次函数图像重合;

k相同,b不相同时,两一次函数图像平行;

k不相同,b不相同时,两一次函数图像相交;

k不相同,b相同时,

两一次函数图像交于y轴上的同一点(0,b)。

12、特殊位置关系:直线l1:y1=k1x+b1与l2:y2=k2x+b2

两直线平行,其函数解析式中K值(即一次项系数)相等。

两直线垂直,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)。即:

13、直线平移规律:上加下减(y),左加右减(x)

1.向右平移n个单位y=k(x-n)+b

2.向左平移n个单位y=k(x+n)+b

3.向上平移n个单位y

=kx+b+n

4.向下平移n个单位y

=kx+b-n

14、待定系数法:先设待求函数的关系式(其中含未知系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

待定系数法求函数解析式步骤:

(1)根据已知条件写出含有待定系数的解析式y=kx或者y=kx+b;

(2)将x、y的几对值或图象上几个点的坐标代入上述解析式,得到待定系数为未知数的方程或方程组。

(3)解方程(组)得到待定系数的值。

(4)将求出的待定系数代回所求的函数解析式,得到所求函数的解析式。

如何设一次函数解析式:

点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)

两点式(y-y1)

/

(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点)

截距式(y=-b/ax+b

a、b分别为直线在x、y轴上的截距

,已知(0,b),(a,0)

(三)确定位置

1.平面内确定一个物体的位置需要2个数据。

2.平面内确定位置的几种方法:

(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。

(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。

平面直角坐标系

1.平面直角坐标系定义

在平面内,两条互相(垂直)且具有公共(焦点)的数轴组成平面直角坐标系。其中水平方向的数轴叫(X轴)或(横轴),向(右)为正方向;竖直方向的数轴叫(Y轴)或(纵轴),向(上)为正方向;两条数轴交点叫平面直角坐标系的(原点)。

2.平面内点的坐标

对于平面内任意一点P,过P分别向x轴、y

轴作垂线,x轴上的垂足对应的数a叫P的(横)坐标,y轴上的垂足对应的数b叫P的(纵)坐标。有序数对(a,b),叫点P的坐标。

若P的坐标为(a,b),则P到x轴距离为(|b|),到y轴距离为(|a|)

注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.

3.平面直角坐标系内点的坐标特征:

(2)坐标轴上的点不属于任何象限,它们的坐标特征

①在x轴上的点

(纵)坐标为0;

②在y轴上的点(横)坐标为0;

(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征

①点P(a,b)关于x轴对称点P1(a,-b);

②点

P(a,b)关于y轴对称点P2

(-a,b);

③点P(a,b)关于原点对称点P3

(-a,-b);

④若点P(a,b)关于一三象限角平分线对称点P4

(b,a);

⑤若点P(a,b)关于二四象限角平分线对称点P5

(-b,a);

4.平行于x轴的直线上的点(纵)坐标相同;平行于y轴的直线上的点(横)坐标相同。

轴对称与坐标变化

(1)若两个图形关于x轴对称,则对应各点横坐标不变,纵坐标互为相反数。

(2)若两个图形关于y轴对称,则对应各点纵坐标不变,横坐标互为相反数。

(3)若两个图形关于一三象限角平分线对称,则对应横坐标为原坐标的纵坐标,纵坐标为原坐标的横坐标。

(4)若两个图形关于二四象限角平分线对称,则对应横坐标为原坐标纵坐标的相反数,纵坐标为原坐标的横坐标。

(5)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标不变,纵坐标加上(或减去)n个单位。

(6)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标不变,横坐标加上(或减去)n个单位。

(7)纵坐标不变,横坐标分别变为原来的a倍,则图形为原来横向伸长的a倍(a>1)或图形横向缩短为原来的a倍(0

第2篇

高中数学难度更大,难度在于它的深度和广度,但如果能理清思路,抓住重点,多实践,变渣滓为暴君并非不可能。高中数学知识点总结有哪些你知道吗?共同阅读高中数学知识点总结,请您阅读!

高中数学知识点汇总1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5.平面向量:初等运算、坐标运算、数量积及其应用

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

12.导数:导数的概念、求导、导数的应用

13.复数:复数的概念与运算

高中数学学习要注意的方法1.用心感受数学,欣赏数学,掌握数学思想。

有位数学家曾说过:数学是用最小的空间集中了的理想。

2.要重视数学概念的理解。

高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

3.对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。

至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。

“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。

您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。

高中数学复习的五大要点分析一、端正态度,切忌浮躁,忌急于求成

在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:

(1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。

(2)复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。

(3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。

因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。

二、注重教材、注重基础,忌盲目做题

要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。

可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。

三、抓薄弱环节,做好复习的针对性,忌无计划

每个同学在数学学习上遇到的问题有共同点,更有不同点。在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。同时,也请同学们注意:在你问问题之前先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。

高三的复习一定是有计划、有目标的,所以千万不要盲目做题。第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。因此,仅靠简单做题是达不到一轮复习应该具有的效果。而且盲目做题没有针对性,更不会有全面性。在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。

四、在平时做题中要养成良好的解题习惯,忌不思

1.树立信心,养成良好的运算习惯。

部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

2.做好解题后的开拓引申,培养一题多解和举一反三的能力。

解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。

考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:

(1)把题目条件开拓引申。

①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。

(2)把题目结论开拓引申。

(3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。

3.提高解题速度,掌握解题技巧。

提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

五、学会总结、归纳,训练到位,忌题量不足

我在暑期上课的时候发现,很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。做题如果不注重思路的分析,知识点的运用,效果可想而知。因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。

实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。而解题能力不是三两道题就能提升的,而是要大量的反复的训练、认真细致的推敲才会有较大的提升。有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。

第3篇

2021年高三数学知识点总结有哪些?高三数学一直是学习的难点。对于高考生来说,总结高三的知识点非常重要。共同阅读2021年高三数学知识点总结,请您阅读!

高三数学知识点总结1.对于集合,一定要抓住集合的代表元素,及元素的确定性、互异性、无序性。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性质:

(3)德摩根定律:

4.你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

义域是_____________。

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?)

15.如何利用导数判断函数的单调性?

值是( )

A.0B.1C.2D.3

a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17.你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18.你掌握常用的图象变换了吗?

注意如下翻折变换:

19.你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①三个二次(二次函数、二次方程、二次不等式)的关系二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?

(赋值法、结构变换法)

22.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

23.你记得弧度的定义吗?能写出圆心角为,半径为R的弧长公式和扇形面积公式吗?

24.熟记三角函数的定义,单位圆中三角函数线的定义

25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27.在三角函数中求一个角时要注意两个方面先求出某一个三角函数值,再判定角的范围。

28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

图象?

30.熟练掌握同角三角函数关系和诱导公式了吗?

奇、偶指k取奇、偶数。

A.正值或负值B.负值C.非负值D.正值

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33.用反三角函数表示角时要注意角的范围。

34.不等式的性质有哪些?

答案:C

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下结论:

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

38.用穿轴法解高次不等式奇穿,偶切,从最大根的右上方开始

39.解含有参数的不等式要注意对字母参数的讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或问题)

43.等差数列的'定义与性质

0的二次函数)

项,即:

44.等比数列的定义与性质

46.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48.你知道储蓄、贷款问题吗?

零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

若按复利,如贷款问题按揭贷款的每期还款计算模型(按揭贷款分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p贷款数,r利率,n还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(mn)个元素并组成一组,叫做从n个不

50.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( )

A.24B.15C.12D.10

解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,有10种。

共有5+10=15(种)情况

51.二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52.你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):A与B不能同时发生叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),n=103

而至少有2件次品为恰有2次品和三件都是次品

(4)从中依次取5件恰有2件次品。

解析:一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;

系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56.你对向量的有关概念清楚吗?

(1)向量既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57.平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

58.线段的定比分点

.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

高中数学最易混淆知识点归纳1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

19.绝对值不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。

)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.

(3)点的平移公式:点P(x,y)按向量平移到点P'(x',y'),则x=x'+hy'=y+k.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

第4篇

初中数学知识点总结如下。

1、代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)

2、几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。

(来源:文章屋网 )

第5篇

7年级数学知识点第一章 有理数

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a (b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同级运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

7年级数学知识点第二章 一元一次方程

2.1从算式到方程

2.1.1一元一次方程

含有未知数的等式叫做方程。

只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2.1.2等式的性质

等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴

把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵

方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。

去分母:

⑴具体做法:方程两边都乘各分母的最小公倍数

⑵依据:等式性质2

⑶注意事项:①分子打上括号

第6篇

知识点1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置

1、直角坐标系中,点A(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点A(1,1)在第一象限。

4、直角坐标系中,点A(-2,3)在第四象限。

5、直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值

1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值为1。

知识点4:基本函数的概念及性质

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1、数据13,10,12,8,7的平均数是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知识点7:圆的基本性质

1、半圆或直径所对的圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中,相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1、直线与圆有唯一公共点时,叫做直线与圆相切。

2、三角形的外接圆的圆心叫做三角形的外心。

3、弦切角等于所夹的弧所对的圆心角。

4、三角形的内切圆的圆心叫做三角形的内心。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

第7篇

2021年高考数学知识点归纳总结你知道吗?高中数学在学习的过程中,有很多知识点常考点。共同阅读2021年高考数学知识点归纳总结,请您阅读!

高考数学的答题顺序是什么高考数学的答题顺序:先易后难

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

高考数学的答题顺序:先熟后生

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

高考数学的答题顺序:先同后异

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

点击查看:高中数学知识点总结及复习资料

高考数学的答题顺序:先小后大

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

高考数学的答题顺序:先点后面

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高考数学知识点归纳总结复习忌讳一

一忌“多而不精,顾此失彼”

许多同学(更多的是家长)为了在高考中领先于其它人,总是绞尽脑汁想方设法要比别人学得多,这无疑是件好事。但他们最后所采用的方法却往往是对他们最为不利的,那就是:购买和选择大量的复习资料和讲义,花去比别人多得多的时间,没日没夜的做,他们的精神非常可贵,他们的毅力非常惊人,其效果却让他们自己都非常伤心失望。有些家长甚至说:“我的小孩已经尽力了,还是没有进步,一定是太笨了”。其实,他们犯了很多科学性的错误,却不自知。

1.高中阶段所学的知识具有一定的范围,再多的复习资料、讲义,也只不过是这一范围内的知识的重复和变形。

你所做的很多题目都代表相同的知识点,代表相同的方法,对于那些你已经掌握的`知识、方法,做再多的题目还是于事无补,简单无聊的重复除了使你身陷题海,不能自拔,耗尽了你的精力不算,还使你失去了信心,因为你比别人努力,却没有得到相应的回报。

2.每一套复习资料都经过编纂人员的反复推敲,仔细研究,都很系统地将相应的知识点按照一定的规律和方法融会于其中。

所以同学只要研究好一两套具有代表性的复习资料,你该学的一定都能学到,该会的都能学会。

3.“丢了西瓜,捡了芝麻”的故事告诉我们,不能太贪心,这本资料也好,那本资料也不错,好的资料太多了,同学们的精力是有限的,而题目是无限的,以有限的精力去做无限的题目,永远没有尽头,必然导致你对每一套资料都没有很好的完成,都没有系统地研究,反而会因为各种资料的风格、体系的不同,而使你的学习失去全面性、系统性,多而不精,顾此失彼,是高三复习的大敌。

复习忌讳二

二忌“学而不思,囫囵吞枣”

导致很多同学身陷题海,不能自拔的另一个重要原因,就是“学而不思”,题目是知识的载体,有的同学做了很多题目,却仍然没有明白它们代表同一知识点,不但不能举一反三,甚至举三不能反一,其真正的原因,是他们没有养成思考、总结的习惯。华罗庚先生说过:“譬如我们读一本书,厚厚的一本,再加上我们自己的注解,就愈读愈厚,我们自己知道的东西也就‘由薄到厚’了”。“‘学’并不到此为止,‘懂’并不到此为透,所谓由厚到薄是消化提炼的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的东西来。”这段话充分说明了思考在学习过程中的重要性。以下是“学而不思”的几种具体表现,也许你就有过这样的经历。

1.上课以为自己听懂了,可你仍然作业不会做,去问老师的时候,老师告诉你,这就是上课讲的例题或例题的变形;总是感到有做不完的题目,觉得每个题目都很新鲜,常常遇到那种好象从未见过的题型;

2.从来不去想,怎样发展自己的强项,怎样弥补自己的不足,只知道老师叫干什么就干什么,布置了作业就做,发了试卷就考。

3.考试的时候突然觉得这就是老师讲的某个典型的东西,却有那种话到嘴边说不出的感觉,或者豁然开朗、猛然醒悟的感觉;

4.当老师要你总结一类题目的解题方法和策略或要你总结某一章所学内容的时候,你总是支支唔唔无话可说;

5.一个自己所犯的错误,只是轻轻的告诉自己,下次要注意,只简单地归结为粗心,但下次还是犯同样的错误。

学而不思,往往就囫囵吞枣,对于外界的东西,来者不拒,只知接受,不会挑选,只知记忆,不会总结。你没有在学习过程中“加入自己的注解”,怎能做到华罗庚先生说的“由薄到厚”,你不会“提炼出关键性的东西来”,就更不能“由厚到薄”,找到问题地本质,那么,你的学习就很难取得质的飞跃。

复习忌讳三

三忌“好高骛远,忽视双基”

很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。

有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。

最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。

四忌“敷衍了事,得过且过”

以下是对某校2020届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)

你做作业是为了什么?

检测自己究竟学会了没有占91/30.33%

因为老师要检查占143/47.67%

怕被家长、老师批评的占38/12.67%

说不清什么原因占28/9.33%

你的作业是怎样完成的?

复习,再联系课上内容独立完成占55/18.33%

高中高三数学的知识点归纳一、直线与圆:

1、直线的倾斜角

的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点

斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

4、,

,① ∥ , ; ② .

直线 与直线 的位置关系:

(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

5、点

到直线 的距离公式 ;

两条平行线 与 的距离是

6、圆的标准方程:

.⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①

相离② 相切③ 相交

9、解决直线与圆的关系问题时,要充分发挥圆的`平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)

直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆:

①方程 (a0)注意还有一个;②定义: |PF1|+|PF2|=2a ③ e= ④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2 ;

2、双曲线:①方程

(a,b0) 注意还有一个;②定义: ||PF1|-|PF2||=2a ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或 c2=a2+b2

3、抛物线

:①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

5、注意解析几何与向量结合问题:1、,

.(1) ;(2) .

2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos叫做a与b的数量积,记作ab,即

3、模的计算:|a|=