欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数学必修一公式总结范文

时间:2023-03-01 16:33:33

序论:在您撰写数学必修一公式总结时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数学必修一公式总结

第1篇

关键词: 高中数学教学 习题 数学思维能力

新教材的高中数学课后习题是经过专家学者潜心研究,精心设计的,具有典型的范例作用,渗透了新课标的思想,起着培养学生的数学思维能力的作用,极具探究价值。我通过人教必修五第二章数列课后习题的教学谈谈认识。

一、培养学生的归纳猜想能力

伟大的物理学家、数学家牛顿说:“没有大胆的猜想,就做不出伟大的发现。”猜想是一种创造性的思维活动,它可“导出”新颖独特的思维成果。在已知领域中有所创新,在未知的领域中有所发现或突破。在必修五第二章数列的课后习题教学中,应把“归纳”与“猜想”两种思想方法相结合,从而提高学生“归纳猜想”的能力。

例1(必修五31页习题)根据下面数列的前几项的值,写出数列的一个通项公式

例2(必修五教材第33页习题A组5题)根据下面的图形及相应的点数,在空格和括号中分别填上适当的图形和点数,并写出点数构成的数列的一个通项公式。

例3(必修五34页B 组)下图中的三个正方形块中,着色正方形的个数依次构成一个数列的前3项,请写出这个数列的前5项和数列的一个通项公式。(图形略)

后两道题不仅培养了学生的归纳猜想能力,还通过图形与数列的结合探究,实现了数学的美育功能。

二、培养学生的类比推理能力

波利亚曾说:“如果没有相似推理,那么无论是在初等数学还是在高等数学,甚至在其他任何领域中,本来可以发现的东西,也可能无从发现。”因此,作为基础教育之一的中学数学,在教学中必须重视培养学生的类比推理的能力。人教版必修五第二章,在等差数列、等比数列的教学设计上,明显体现出类比的思想,课后的习题设计也体现出这一思想。所以在习题课中,教师要领会新课程思想,培养学生的类比推理能力。

例如必修五第39页练习第4题,第5题。学生探究,老师引导得出相应的结论。所以在人教A必修五第53页等比数列习题中就可以让学生进行类比推理方法学习。等差数列与等比数列的类比学习,不仅可以促进学生对知识的掌握,还可以培养学生的类比推理能力。

三、培养学生应用数学解决实际问题的能力

《数学课程标准》明确指出:“使学生感受数学与现实生活的密切联系,使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”这一要求揭示了数学与实际生活之间的关系,即数学源于生活、寓于生活、用于生活。因此,在人教版A必修五数列的课后习题中,有大量的实际应用问题,如:购房问题等,使学生通过了解数学知识在实际中的广泛运用,培养学生用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。在教学中我尝试将数学和生活进行有效融合和连接,将抽象的数学本质生活化,从而大大激发了学生的学习兴趣,培养了学生将纯数学问题转化成解决具体实际问题的能力。

例如(人教必修五62页)

购房问题 :某家庭打算在2010年的年底花40万元购一套商品房,为此,计划从2004年初开始,每年年初存入一笔购房专用款,使这笔款到2010年底连本带息共有40万元,如果每年的存款数额相同,依年利息2%并按复利计算,问每年应该存入多少钱?

引导学生思考如何把实际问题化为数学模型,从而培养学生应用数学解决实际问题的能力。

四、培养学生探究总结的能力

高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。通过人教A必修五第二章习题的教学,培养学生探究总结的能力。

例如:必修五(人教版)第69页5题

引申:形如a=pa+q(p、q为常数,而且p≠0,p≠1),求通项a。

思路1:可用不完全归纳法猜想

思路2:迭代法 (过程略)

思路3:构造法 (过程略)

归纳总结:若数列{a}满足a=pa+q(p≠1,q为常数),则令a+λ=p(a+λ)来构造等比数列,并利用对应项相等求λ的值,求通项公式。

例如:必修5教材69页。本题是两次构造等比数列,最终用加减消元的方法确定数列的通项公式。又如:必修五45页练习2,引申:已知数列{a}的前项和为S,求这个数列的通项公式a,这些习题的引申拓展,能培养学生的探究总结能力。

五、培养学生的社会实践能力

荷兰著名数学家弗莱登塔尔认为:数学教育是一个活动过程,在整个活动过程中,学生应该处于一个积极、创造的状态 。学生首先要参与这个活动,感觉到创造的需要,他才有可能进行再创造。而教师的任务就是为学生的发展、创造提供自由广阔的天地,引导学生探索获得知识、技能的能力。

例如:人教A必修五62页第4题:收集本地区有关教育储蓄的信息问题,设计本题的目的是培养学生的社会实践能力,处理此题的时候,我提前布置课外作业,使学生有充足的时间进行社会调查,等下一周数学课的时候,采用合作交流的形式完成此题。此课结束后,学生异常兴奋,在实践中体验了学习数学的兴趣。不仅培养了学生的实践能力,还培养了学生的合作学习的精神。

必修五第二章中的一些习题还能培养学生利用“数形结合”“算法”等思想分析问题、解决问题的能力,所以在习题课的教学中我们应该有意识地挖掘,拓展习题的功效,达到通过练习培养学生的数学思维能力目的。

参考文献:

[1]高中数学必修4(人教A版)教材习题.

[2]波利亚.数学与猜想――数学中的归纳与类比[M].北京:科学出版社,2001,(7).

第2篇

关键词: 高中数学课程 变革方向 解三角形

在学校众多教育课程当中,数学教育有着重要位置,使学生思维更加清晰,表达思考更有条理,同时使学生掌握有关数学的基本思想、知识和技能,锻炼学生面对问题锲而不舍的求知精神及对问题实事求是的认真态度。教会学生运用数学知识认识世界和改造世界。我国高中数学新课程做出了重大尝试和改变,并且取得了一定的成果,是对数学课程主流改革方向的反映。

一、数学课程改革前后的异同点

解三角形是第一册下册里面的第二个板块,在平面向量之后包括正弦定理、余弦定理及解斜三角形的应用实例。在解三角形的应用部分的实习作业方面,补充一部分材料阅读,关于人们早期采用何种方式测量地球半径。这些内容都涵盖在解斜三角形的范围内,在教材139页到151页,共有十三页内容[1]。这些内容之前有关于向量的小结复习题,被安排在了高一下学期数学教材的最后一章。

现行新教材中有关解三角形的内容放在人民教育出版社出版的数学教材必修5的第一章《解三角形》内,其中第一章的内容包括正弦、余弦定理的探究和发现,是对有关解三角形内容的进一步讨论;应用举例,包含阅读思考内容;有课后复习题、实习作业和小结。内容从第1页到24页,总共24页,对三角形的编写篇幅增多,按出版社的意图从必修一学习到必修五,那么解三角形的内容在所有必修课本的最后一册,意味着学生要到高二才会学习这部分内容。但在实施过程中,大部分老师会按照自己的进度而不是课本必修1到必修5的顺序教学[2],从教师角度看,虽然新课程中有关解三角形的顺序有所改变,但教师还是按照以前的教学方式教学。

二、高中数学新课程变革方向

1.教材贴近生活,使数学生活化。

新课改之后的数学教材更能激发学生的学习乐趣,使学生由被动学习为主动学习,教材内容贴近生活,使学生在不厌烦数学学习的前提下更容易进入学习状态,激发探索研究意识,让学生知道学习这部分的原因,以及这部分对现实生活有什么作用,遇到实际问题该如何解决,使数学教学生活化,将生活数学化。

新教材中关于解斜三角形的知识点引用了中国古代的神话故事嫦娥奔月、十七世纪法国天文学家测出的月球与地球之间的距离,通过地月之间的距离该如何测量、轮船的航向和航速、海上岛屿的距离等引申出需要研究的内容。这些内容贴近生活,展现数学对生活的重要作用。

2.学生是课堂主人公,学习能力得到提高。

传统教学方式以教师课堂讲述为主,教师掌握课堂整体节奏,采用灌输式教学方式,这种方式并没有多大成效,而且会引发学生对数学课程的厌烦心理。新教材中更多地采用教师引导的方式,引导学生对问题进行探究,学生把握课堂整体节奏,成为课堂的主人公,更容易调动学生学习主动性。

旧教材中关于三角形的正弦定理在例题安排方面都是正弦定理的应用,没有涉及解三角形。因此,例1和例2中都试对三角形中的一个元素求解,例3涉及三角形的分类讨论。新教材在例题设置方面只安排了两个,内容涉及解三角形,例2涉及分类讨论,同时在第8页设置了关于解三角形的学习探究。这种探究方式为主并且引导学生思考是否可以运用其他方式对正弦定理进行证明,将重点放在学生对数学的学习上,而不是老师的教授。

3.适当设定问题,培养学生总结思考能力。

新课程改革之后更注重对学生思考总结能力的培养,通过增设问题引导学生思考其他方法对问题进行证明,逐渐培养学生的思考能力。同时对于同一问题的不同方法,教材要求学生对其进行利弊分析,并对三角形的问题进行分类总结。

在余弦定理方面,新老教材均设置了两个例题,而且难度相当,不同的是新教材使学生做题时有了选择性,在第7页的解三角形的问题中,可以对两种方法的利弊进行思考,同时让学生对三角形的问题类型进行总结,增强学生总结思考能力。

在距离测量和方向测量方面,新教材在例1、例2中都设置成距离测量,例1给出实际数据,例2进行灵活考察,是对学生思考能力的极大考验。新教材在距离问题方面设置了两个例题,在以老教材为基础的前提下,老教材例1和新教材练习2一样。在高度方面设置了3个例题,更具层次性,利于一步步发展学生思考能力。

4.将内容与几何知识挂钩,培养学生几何思维能力。

新课改之后的课本内容应用性更广,设计的层次感更强,更注重对学生思考能力的培养,而不仅仅是教会学生算题。通过设定一些较难的、水平较高的问题,加之增添一些其他相关的扩展内容,使学生的知识面得到扩展[3],能力得到真正提高。

关于对三角形面积公式的推理证明,老教材要求学生自己进行推导,新教材则直接给出公式,并将这一公式多次进行应用,同时在三角形的证明过程中,涉及中线长度及海伦公式等几何问题,例9设置了通过正余弦定理对三角形进行恒等证明,习题B组中12到14题均为三角形证明题,并多处运用面积公式。将这两者进行科学衔接有利于培养学生对数学的钻研精神及几何思维能力。

高中数学在新课程改革过程中将会更加注重学生学习能力的提高,引导学生摸索出适合自己的数学学习方法,通过教师的科学引导提高学生学习能力。

参考文献:

[1]王保艳.新课程理念下高中数学学习方式的研究[D].华中师范大学,2012.

第3篇

一、数学课程改革对比

在解三角形的应用举例部分的实习作业方面补充一部分材料阅读,关于人们早期采用何种方式测量地球半径。这些内容都涵盖在解斜三角形的范围内,在教材139页到151页共有十三页内容。这些内容之前有关于向量的小结复习题,被安排在高一下学期数学教材内容的最后一章。

现行新教材中有关解三角形的内容放在人民教育出版社出版的数学教材必修5的第一章《解三角形》内,其中第一章的内容包括正弦、余弦定理的探究和发现,是对有关解三角形内容的进一步讨论;应用举例,包含阅读思考内容;有课后的复习题、实习作业和小结。内容从第1页到24页总共24页的内容,对三角形的编写篇幅增大,按出版社的意图从必修一学习到必修五,那么解三角形内容在所有必修课本的最后一册,意味着学生要到高二才会学习这部分内容。但在实施过程中,大部分老师会按照自己的进度而不是课本必修1到必修5的顺序教学,从教师角度看,虽然新课程中有关解三角形的顺序有所改变,教师还是按照以前的教学方式进行教学。

二、基于解三角形的高中数学新课程变革策略

(一)教材贴近生活,使数学生活化。

新课改之后的数学教材更能激发学生的学习乐趣,使学生将数学学习化被动为主动,教材内容贴近生活,使学生在不对数学学习感到厌烦的前提下更容易进入学习状态,激发学生的探索研究意识,让学生知道学习这部分内容的原因,以及在现实生活中有什么作用,遇到实际问题该如何解决,使数学教学生活化,将生活数学化。

新教材中解斜三角形的知识点引用了中国古代神话故事嫦娥奔月、十七世纪法国天文学家测出的月球与地球之间的距离,通过对地月之间的距离该如何测量、轮船的航向和航速、海上岛屿的距离等引申出需要研究的内容。这些内容贴近生活,展现数学对生活的重要作用。

(二)学生是课堂主人公,学习能力得到提高。

传统教学方式是以教师课堂讲述为主,教师掌控课堂整体节奏,采用灌输式教育,这种方式并没有多大成效,而且会引发学生对数学课程的厌烦心理。新教材中更多的是采用教师引导的方式,引导学生对问题进行探究,学生把握课堂整体节奏,成为课堂的主人公,更容易激发学生学习主动性。

老教材在例题安排方面都是关于正弦定理的应用,并不涉及解三角形。因此,例1和例2中都试对三角形中的一个元素求解,例3涉及三角形的分类讨论。新教材中在例题设置方面只安排了两个,内容都涉及解三角形,例2也涉及分类讨论,同时在第8页设置了关于解三角形的学习探究。这种探究方式引导学生思考是否可以运用其他方式对正弦定理进行证明,将重点放在学生对数学的学习上,而不是老师的教授上。

(三)适当设定问题,培养学生总结思考能力。

新课程改革之后更注重对学生思考总结能力的培养,通过增设问题引导学生思考其他方法对问题进行证明,逐渐培养学生的思考能力。同时同一问题有不同方法,教材要求学生对其进行利弊分析,并将三角形的问题进行分类总结。

在余弦定理方面,新老教材均设置了两道例题,而且难度相当,不同的是新教材使学生做题时有了选择性,在第7页的解三角形的问题中,可以对两种方法的利弊进行思考,让学生对三角形的问题类型进行总结,提高学生的总结思考能力。

在距离测量和方向测量方面,新教材在例1、例2中设置成距离测量,例1给出实际数据,例2进行灵活考查,是对学生思考能力的极大考验。新教材在距离问题方面设置了两道例题,在以老教材为基础的前提下,老教材例1和新教材练习2一样,在高度方面设置了3个例题,更具层次性,利于一步步培养学生思考能力。

(四)将内容与几何知识挂钩,培养学生的几何思维能力。

新课改之后的课本内容应用性更广,设计层次感更强,更注重对学生思考能力的培养,而不仅仅是教会学生算题。通过设定一些较难的、水平较高的问题,加之增添其他相关扩展内容,使学生的知识面得到扩大,能力得到真正提高。

关于三角形面积公式的推理证明,老教材要求学生自己推导,新教材则直接给出公式,并将这一公式进行多次应用,同时三角形证明过程中涉及中线长度及海伦公式等几何问题,例9设置通过正余弦定理对三角形进行恒等证明,习题B组中第12到14题均为三角形证明题,并多处运用面积公式。将这两者进行科学衔接有利于培养学生对数学的钻研精神及几何思维能力。

高中数学在新课程改革过程中将更注重学生学习能力的提高,引导学生摸索出适合的数学学习方法,通过教师的科学引导提高学生学习能力。

参考文献:

[1]李小蛟.从教材对比看高中数学新课程改革――以《解三角形》章节为例[J].中学数学杂志:高中版,2013(3):10-11.

第4篇

【关键词】 定位;知识呈现;严格性水平;综合程度;衔接

函数是高中数学知识框架中最重要的支柱,三角函数是函数知识的重要组成部分.大家知道,大学微积分是以函数研究为对象的.因此,三角函数知识的强化或弱化对大学微积分学习影响较大.究竟高中教材对三角函数应做怎样的取舍,才能不对后续学习产生负面的影响呢?我们不妨研究一下香港教材.香港数学教育一向受英美影响较深,很有成绩.

本文研究选取的是朗文香港教育出版社2009年出版的《新高中数学与生活》[1]系列教材,其中与三角函数有关的两本教材是《新高中数学与生活(必修部分)4B》(下文简称《必修4B》)与《新高中数学与生活(延伸部分)单元二――代数与微积分1》(下文简称《微积分1》).《新高中数学》教材系列在香港影响较大.希望通过我们的研究,能让教材与教参编写者有所借鉴,对一线教师有所裨益.

1 三角函数在高中教材中的定位

香港目前使用的各种版本的高中数学教材,都是依据2007年制订的《数学课程及评估指引(中四至中六)》编写的.教材内容分必修部分和延伸部分.朗文香港教育出版公司出版的必修教材共6本,《必修4B》是其中的一本,包涵了三角函数最基础的知识及简单应用.《必修4B》的序言指出:“为所有学生提供必要的数学基础,配合他们日后在不同领域进修的需要.”延伸部分备有两个选修单元,单元一有教材2本,单元二有教材3本.《微积分1》是单元二的第1本教材,属选修教材,包涵的三角函数知识是《必修4B》所选三角函数内容的加深与拓展,绝大部分知识与大学数学衔接有关联.《微积分1》的序言指出:“集中在更深层次的数学上,为希望学习高等数学的学生奠下巩固的代数与微积分基础”;“冀能对学生日后升学或从事与数学有关联的专业,有所裨益”.从这里可以看出,《微积分1》是供相当于大陆的理科学生选修的.

香港教材将“三角函数”最基础的一部分内容定位为必修内容,将难度稍大且与大学数学衔接的内容定位为选修内容,对以后不同方向发展的学生作了不同的要求.反观大陆2007年编写的“人教A版”高中数学教材,将三角函数定位为必修内容,学生高中阶段所学的所有三角函数知识全编写在《必修4》[2]中.

2 三角函数知识在教材中的具体呈现

《必修4B》中的三角函数内容有132页(每页接近4A纸大小),大约18课时;《微积分1》中的三角函数内容有90页,大约14课时.两本书共有三角函数内容222页,大约共需32课时.

《必修4B》中三角函数知识呈现在第10章“续三角”与第11章“三角学的应用:二维空间”.第10章的具体编排是:基础知识重温;101旋转角:处于标准位置上的角,四个象限;102 任意角的三角比:任意角的三角比的定义,三角比的正负值;103三角函数的图像:y=sinθ的图像,y=cosθ的图像,y=tanθ的图像,三角函数的周期性;104三角方程的图解法;105三角恒等式:(180°-θ)的三角比,(180°+θ)的三角比,(360°-θ)的三角比,(360°+θ)的三角比,(90°+θ)的三角比;106 利用代数方法解三角方程;数学探究:直角三角形的正切值;IT活动:三角比的正负值,利用单位圆绘画y=sinθ的图像;点滴分享知多些:交流电与三角学在港灯电力供应中的应用;答案.第11章的具体编排是:基础知识重温;111 三角形面积:三角形面积,海伦公式;112正弦定理;113 余弦定理;114 三角学上的二维空间应用题:回顾,二维空间的应用题;数学探究:圆内接四边形的面积;答案.

《微积分1》中三角函数知识呈现在第4章“续三角函数(一)”与第5章“续三角函数(二)”中.第4章的具体编排是:41弧度制:度与弧度制的转换,透视弧度法求弧长及扇形的面积;42三角函数:三角函数定义,三角关系,三角函数的图像;43解简易三角方程;答案.第5章的具体编排是:51 复角公式:正弦的复角公式,余弦的复角公式,正切的复角公式;52 二倍角公式;53 积化和差公式与和差化积公式;答案.

《必修4B》介绍了海伦公式:ABC的面积=s(s-a)(s-b)(s-c),教材还不避繁琐用代数方法严格地证明了海伦公式.《微积分1》第4章介绍了y=cscθ与y=secx两个函数.这样,诱导公式中多了1+cot2θ=csc2θ、secθ=1cosθ等公式.这些都是人教A版《必修4》中没有的知识. 《微积分1》第5章介绍了积化和差公式与和差化积公式,并给予了简单的证明.因为有了这些公式,《微积分1》中出现了:在XYZ中,证明sinX+sinY+sinZ=4cosX2cosY2cosZ2这类例题,也出现了:化简

sinπ9cosπ9+cosπ3+cos5π9+cos7π9这类习题.人教A版《必修4》给出了例题: 证明(1)sinαcosβ=12sin(α+β)+sin(α-β);(2)sinθ+sinφ=2sinθ+φ2cosθ-φ2.这是积化和差与和差化积两个公式,其他6个公式的证明放在习题中,但教材没有配套与这8个公式相应的练习题.

三角方程内容在《必修4B》和《微积分1》中都出现过,由于没有编排反三角函数的知识,三角方程都是比较简单的,若不是特殊函数值就需查三角函数值表来解决.《微积分1》在《必修4B》的基础上,介绍了y=cotx、y=cscθ、y=secx的图像、周期性以及定义域与值域,但没介绍这些函数的单调性.人教A版《必修4》介绍了正弦、余弦、正切三个函数的单调性,并介绍了三角函数更一般形式的单调性的求法.恒等式证明在《必修4B》与《微e分1》中都有涉及.《必修4B》的恒等式证明大多利用诱导公式完成,难度较小;因《微积分1》介绍过积化和差与和差化积公式,所以《微积分1》中给出的恒等式证明题,若从难度上讲,大多比人教A版《必修4》中的恒等式证明题难度要大.

3 知识的呈现模式与严格性水平

3.1 章首与章尾的内容与结构

《必修4B》与《微积分1》呈现的三角内容共有4章.每章章首都标明了学习重点,并给出与本章内容密切相关的一个生活中的实际例子,起提纲挚领及导入新知识的作用;每章章尾附有本章摘要,起归纳总结的作用.以《微积分1》的第5章“续三角函数(二)”为例,章首标明的学习重点有3点;生活中的实际例子是“声波之总和”:在大自然中,声波之传播可以用正弦函数表示.当几个声波交叠r,只要把代表各声音的波加起恚便可得出合波.对于两个相同振幅的声波W1和W2,其合波可写成函数y=sinu+sinv.这样就很自然地连接上和差化e公式.章末有重要词汇与重要概念.重要词汇有4条,均是中英文对照;重要概念包含19个重要公式.知识结构完整,内容前后呼应.

人教A版《必修4》每章章首有类似于导言的文字,章末有小结.“导言”简明扼要,也起到了提纲挚领的作用.章末有小结,包含本章知识结构及回顾与思考两个方面.知识结构一般用框图形式呈现出来;回顾与思考有3点,回顾了本章的重要知识点,还提出了几个相关的问题,这对进一步巩固学生所学知识起到了较好的作用.

3.2 重要概念的引入与公式的推导

《必修4B》与《微积分1》在重要概念的引入上,一般是在旧知识的基础上拓展到新知识,从特殊情形拓展到一般情形.比如任意角的三角比定义,《必修4B》先从锐角θ说起,利用直角三角形写出锐角θ的三角比,再定义一般角θ的三角比:将任意角θ放在坐标平面上,设P(x,y)是角θ终边上的任一点(异于角的顶点),定义sinθ=yr,cosθ=xr,tanθ=yxx≠0,其中r=x2+y2.这种引入重要概念的方法符合学生的认知规律.人教A版《必修4》的做法是,设角θ的终边与单位圆的交点为P(x,y),于是sinθ=y,cosθ=x,定义表述很简洁.比较而言,《必修4B》比人教A版《必修4》在细节的处理上要到位一些.教材中比较清晰地讨论了特殊角0°、90°、180°、270°和360°的三角比,利用数形结合的方法使基础一般的学生能很好地理解与记忆.

在重要公式的推导上,《必修4B》与《微积分1》的做法与人教A版《必修4》有些不同.例如推导复角公式,《微积分1》先推导sin(A+B)的结论:设在OPQ中,过顶点O作ORPQ,R是垂足,并设∠POR=A,∠ROQ=B.利用POQ面积=POR面积+ROQ面积,证明了sin(A+B)=sinAcosB+cosAsinB.教材在此处提示了该公式对任意角也成立.因为角A与角B不是任意角,这样的推导过程不够严谨.人教A版《必修4》第三章是先推导cos(α-β)的结论的,证明过程中设α、β是任意角,利用单位圆和向量的方法完成了证明.这样证明难度稍大,但证明过程非常严谨.

3.3 定理、法则与公式的严格性水平

严格性一般划分为四个水平层次:水平1:直接给出理论,没有任何解释或证明;水平2:通过例子解释理论;水平3:较为严格地解释理论的正确性,但不进行证明;水平4:严格地证明理论.

《必修4B》与《微积分1》两本教材中,正弦的两角和公式实际是由特例解释的,算不上严格的证明,达到严格性水平2;诱导公式、海伦公式、正弦定理、余弦定理、弧长公式、扇形面积公式、同角三角函数关系式、正弦两角差公式、余弦的两角和与两角差公式、正切的两角和与两角差公式、二倍角公式、积化和差公式、和差化积公式,均是通过严格证明得到的,达到了严格性水平4.

人教A版《必修4》中,与-α和π-α相关的诱导公式、正弦的两角和与两角差公式、正切的两角和与两角差公式、正弦与余弦的二倍角公式都是直接给出的,没有严格证明,达到严格性水平1;与π2+α相关的诱导公式只给出了严格的解释,并没有证明,达到了严格性水平3;与π+α和π2-α相关的诱导公式、余弦的两角和与两角差公式均通过了严格的证明,达到了严格性水平4.

可见香港教材的严格性水平整体比较高.人教A版《必修4》的不少公式是直接给出,可能编者认为这些公式的证明并不难,学生可以举一反三自己完成.

4 例习题的设置及综合性程度

4.1 例习题的设置比较

《必修4B》与《微积分1》的例习题编写很有特色,层次分明,坡度合理.课内有例题,大多深入浅出,展示不同的数学技巧.紧跟例题后面有即时练习,是些与例题一一对应的题目,以巩固学生的知识,有时后面还配有综合性稍强的跟进练习或课内练习.课后一般配有不少的练习题,按程度分为初阶和进阶,并备有开放式题目.每章末配有总复习题,按程度分为初阶、进阶、多项选择题及公开试题目,并为能力较强的学生提供香港数学竞赛题目.总复习外还配有少量的数学探究题与IT活动题.设置数学探究题的目的是透过富有趣味性的题目,培养学生数学解难题技巧,激发学生探索与研究的兴趣;设置IT活动题的目的是让学生熟悉新技术的运用,帮助学生对数学问题的深度理解.

以《必修4B》的第10章“续三角”为例统计:例题19个,即时练习题19个,跟进练习题15个,课堂练习题5个.课外练习中,初阶练习题53个,其中有4个开放式练习题;进阶练习题48个.本章总复习题中,初阶练习题19个,其中有1个开放式练习题;进阶练习题26个,多项选择题14个,公开试题目5个,香港竞赛题4个,数学探究问题2个,IT活动题目6个.

对应地对人教A版《必修4》第1章“三角函数”进行统计:例题25个,课内习题58个,课外练习A组题61个,B组题15个,探究题7个,IT活动题目1个.由此可见,人教A版《必修4》课内练习还是做的很扎实.课外练习共76个题,比《必修4B》的第10章“续三角”课外练习159个少了83个.

4.2 例习题的综合性程度

例习题的综合性分为四种类型:类型1:与三角领域内其他知识的综合;类型2:与数学其他领域内知识的综合;类型3:与其他学科知识的综合;类型4:与具有实际生活背景的问题综合.

仍以《必修4B》的第10章“续三角”为例,根据上述综合性的分类标准来统计:例题中属类型1有14个,类型2有2个,类型3有2个,类型4有1个;习题中属类型1有159个,类型2有30个,类型3有14个,类型4有12个.由此可见,《必修4B》的第10章“续三角”中的例习题,主要体现了三角知识在三角领域内的运用,突出对三角知识的理解与掌握,同时也兼顾到数学学科内各分支知识的联系,以及三角知识在其他学科上的综合应用.

人教A版《必修4》第1章“三角函数”中,例题中属于类型1的18个,类型2的3个,类型3的2个,类型4的4个;习题中属类型1的61个,类型2的3个,类型3的2个,类型4的6个.可见,人教A版《必修4》主要关注学生对三角基础知识的理解和掌握,也注重三角知识在实际生活中的应用.

5 启示

5.1 香港教材内容丰富详实、系统性较强

相对于英国和美国的三角函数教材,香港教材少了反三角函数内容.但相对于人教A版《必修4》,香港教材多了简单的三角方程、海伦公式、余切函数、正割函数、余割函数等.人教A版《必修4》虽然也出现过积化和差与和差化积8个公式,但因这8个公式只出现在例题和习题中,教材并没有把它们当公式用,也没有编排相应的巩固练习题,加之高考又不考,所以,这8个公式学生学了等于没学,在学生的知识链上没有留下多少记忆的痕迹.这样看,其实香港教材还多了积化和差与和差化积公式.我们常将三角学划分为“三角函数与方程”、“三角恒等变换”和“三角学的应用”.相对于这种划分,香港三角函数教材内容是完整的、丰富详实的,系统性较强.人教A版《必修4》相对于香港教材和2003年前的大陆旧教材,删减内容过多.没有了简单的三角方程,学生连已知三角函数值求角都不会做,因而连一些简单的三角函数应用问题也处理不了;不学积化和差与和差化积公式,若有稍微综合一点的三角恒等变形或证明问题,W生是没办法处理的.我们新的课程标准和新教材编写,要借鉴香港教材对三角函数内容的取舍方法.

5.2 关注三角函数知识与大学数学的衔接

我们都知道,无论是大学文科数学或理工科数学,在学习微积分内容时,都会学习求函数的定义域、值域、极限、微分、积分等知识,都会用到6个三角函数和4个反三角函数的知识及恒等变换技巧.从2003年开始,虽然高校出版的大学微积分教材多少会参照高中的课程标准,但是很少能找到衔接好高中知识的大学教材,因此大多数微积分教材得不到大一与大二学生的认可.由于高校的录取数量逐年增加,参加高考的学生75%以上都能被不同层次的各类大学录取,因此,不少二本或三本大学新生的数学基础并不算好,也不具备自学高中三角函数知识的能力;加之大学没有安排时间补习那些被弱化和被删减的知识,这样,相当一部分学生学学微积分很吃力,甚至不及格.参考英美各国教材和香港的教材,我们要树立长远的课程和教材理念,不要过度弱化或删减高中三角函数核心内容,为使学生学好大学微积分,高中应为他们打好相应的基础.

5.3 进一步凸显习题设置的层次性

习题既是知识的应用,又是知识和能力的再生.从上文研究可以看出,香港教材在习题设置上很有创意,内容丰富、层次感强.这种细化分层具有一定的弹性,照顾到了不同基础学生的意愿,让他们有很大余地去选择课内与课外的练习题;同时,这种细化分层使习题具有很好的坡度,知识点要求从单一到综合,技巧要求从易到难,容易使学生达到巩固和提高的目的.而且书中还附有答案,学生在练习过程中可以得到及时反馈,便于学生自学.我们的教材中习题分层简单,习题量小,因此学生的选择余地就小.不少老师为了弥补这一缺陷,就组织学生去找书商购买课外参考资料.经常因这些参考资料的质量参差不齐,影响了学生的课外学习.我们的教材编写者应该向香港的同行学习,学习他们对习题设置的理念与方法,能使我们的教材进一步凸显习题的层次性,发挥习题应有的功能和价值.

参考文献

第5篇

(1)通过具体数列,观察发现等差数列的特征.

(2)归纳等差数列的通项公式.

(3)通过实例,探索并掌握等差数列的通项公式,并尝试用相关知识解决相应问题.

教学重点与难点:

理解等差数列的概念,认识数列是反映自然规律的基本数字模型,探索并掌握数列的几种简单表示法.

教学方法:学案导学,启发式教学

教学工具:投影仪

一、 课堂实录

1.等差数列概念形成

师:你能否给上面的数列下一个定义呢?

生:我认为这些数列每一项和前一项的差值都相同,所以我将其称为等差数列.

师:我们给这个数列下一个确切的定义:如果一个数列,从第二项起,每一项与前一项的差等于同一个常数,

这样的数列就是等差数列.

(点评:教师在规范数列定义时,要强调“从第二项起”使学生感受数学定义的严谨性.)

师:我们怎样用数学符号语言表示等差数列的定义呢?

生:用{an }表示"数列",n≥2表示"从第二项起",an-an-1=d表示"每一项和前一项的差为同一个常数 ".

师:这种表示方式很好!但是我们观察一下这个表达式,脚标必须从n=2开始取起,但是很多数学问题都是研究当 n=1时的情况,那我们该怎样表示?

生:an+1-an=d

师:数学表达式

这个常数d叫做公差.

(点评:怎样从文字语言转化为数学的符号语言表示是一项重要的数学思维能力,不可忽略这一步,在活动安排 上突出学生的主体地位。)

2.等差数列定义运用

师:判断an=3n-7是否为等差数列.

生:列举当n=1,2,3...的情况,观察得到这个数列从第二项每一项和前一项的差等于常数3,所以这个数列是等差数列.

师:其他同学有没有其他方法?

生:我是根据定义计算

所以这个数列是等差数列,公差d=3。

师:很好!还有没有其他方法?

生:还可以根据来进行判断.

(点评:第一种方法是例举法,学生们很容易想到,教师应给予肯定.第二种方法是等差数列定义的应用,教师应该引导学生重视利用定义解决问题的方法.)

3.等差数列通项公式的应用

师:尝试解决下列问题:

例1、解决刚才那个问题,求等差数列的第2012项。

并判断501是不是这个数列中的项,若是,是第几项?

生:求出等差数列的通项公式,a1=-10,d=2所以an=2n-12

假设501是数列中的项,则满足501=2n-12,解得,这与不符合

故501不是该数列的项。

例2、在等差数列{an }中,已知a5=10,a12=31,求首项a1 及公差d。

生:由已知可得,解得:。

(点评:例2还可以有其他解法,但是在等差数列第一节课,尽量采用一般方法求解,当然关于其他解法可以留给学有余力的同学发挥.)

4.反思小结,布置作业

师:大家和上课本,本节课你都学到了什么?

生:知道什么是等差数列,等差数列通项公式,怎样用通项公式解决问题

师:其他同学还有补充吗?

生:等差数列定义的表达形式,等差数列通项公式的推到方法:叠加法,对于一类问题我们可以先进行猜想,但是一定要经过论证才能应用。

(点评:对于第一类学生的总结,相信学生们是不难完成的,但是老师应引导学生完成第二类学生的总结,后者更能体现学生们的数学思维过程,应重视.)

师:很好!看来大家都从这节课中有所收获!今天的作业是学案上的练习题,还有等差数列通项的推导过程,你是否能够顺利复述?

生:没问题!

师:好,这节课我们就上到这里,下课!

二、 教学反思

这节课是数学必修5A版教材的学习内容,教学课时是两课时,本节课是第一课时的内容.

等差数列作为一类特殊数列,是必修五的重要内容.所以在这节课的设计上应重点突出对于这种特殊数列的认识,让学生们发现这类特殊是数列数值之间的关系.开篇引入的数列非常容易观察,要让学生通过自己的观察总结这类数列的特征.

第6篇

【关键词】高中数学;学习方法;初高中衔接

一、高中数学的特点

(一)知识内容方面

高中数学知识内容丰富、广泛。既是初中的数学知识的推广和延伸,也是对初中数学知识的完善。如我们在初中学习三角函数的定义是在直角三角形中的,对边比邻边,对边比斜边,这就意味着我们定义的三角函数是锐角的三角函数,但实际生活中,我们遇到的角经常会超出这个范围,包括我们要研究的三角函数。初中学的角的概念只是在0~180范围内的,这显然是不够的,为此高中将把角的概念推广到任意角,角的概念加以推广后,三角函数的定义也随之重新定义了,用角的坐标来定义。再如,我们在以前学的实数范围之内,如x2=-1,显然是无解的。但是随之实际生产、生活的需要,数的发展要高于同学们现在认识的范畴,为了解决这样方程根的问题而引入了虚数单位i,i2=-1,引入i之后,将实数集扩展到复数集,这都是我们在高中阶段所要学习的内容。当然,还有很多其他的知识,以上只是简单的举了几个例子,让大家认识到高中知识与我们以往学的小学、初中知识有了哪些的变化。

(二)学习方法方面

在之前所积累的学习数学的经验都是有用的,不过进入高中之后要更新,改进自己的学习方法,适应高中新的数学知识。

第一、教师的引导与讲授,它是非常重要的环节。虽然老师讲的大部分知识书本上都有,但是我们同学通常不选择在家自学,都去学校学习,为什么呢?一个是学校有一个大的学习环境,另外一个很重要一点是学校里有优秀的老师,老师不但能讲清楚课本上所涉及的知识,还能补充课本上所没有的知识点。一方面,老师的职业就是专门研究怎样能让学生学好、学会的方法,老师的经验是很丰富的,你可以站在前人的肩膀上继续去登高,这就是老师的作用。另一方面,老师是经过职业训练的,他们知道我们高中数学教学应该带给学生们什么东西,比如数学思想方法、数学能力的培养,这些我们要通过教师的讲授,老师在给你传授知识的过程当中从老师身上得到,所以教师的传授、引导仍然是非常重要的。

第二、模仿与创新。模仿,同学们是很有经验的,初中数学的学习过程当中,比如,一元一次不等式的解法,在讲解时先举例说明,然后变换不等式中各种数、不等式的方向反复练习,回家的作业全都是解一元一次不等式的,这就是模仿。在高中数学的学习,这样的模仿也非常重要,我们在学习数学概念、解题方法时,首先要先学习模仿规范的解法,遇到这样问题的解题思路是什么,这就是模仿。但是仅仅有模仿是不够的,在初中阶段对此应用有一定的认识,只会模仿,对于一些创新题型是解决不了的,得不了高分的。到了高中,这就更加明显了。除了模仿之外,还要有自己的东西,当你把知识内化成自己的知识宝库中的一部分以后,以一个崭新的方式释放出来,要有创新精神。

第三、自主学习。在以往的学习过程中强调的不够,进入高中,将来再进入大学,这点的要求越来越强。在高中,学生要能自主学习,具体建议是以下四个环节。

1.预习。在上课之前要预习,预习的好处在于有的放矢,看过要讲的课程之后,你就能知道哪些是你的薄弱点,哪些是你很轻松就能掌握的,对你要学的知识有一个大致的认识以后,带着问题去听课,收获会更大的。

2.听课。这是一个非常关键的环节。最好的听课方式是头脑的参与,就是要积极主动地思考,要勤动脑、勤动手、勤动笔。数学一般不是空想而来的,要动手去运算。

3.复习与作业。复习这个环节很多同学是做不到的。一般都是回家就开始写作业,但是在完成作业之前加一个复习是很重要的。先对今天课上所学知识进行简单的回顾,当我们做作业时不再翻书、查书,而是独立自主地去做作业,那样效果会更好。

4.总结。这个总结不是每天进行的,可以是一章或一小节之后,周末做一周的小结也可以,可以根据知识框架去进行。如果能自行地对其进行梳理、类比、总结,那么这些知识在你的头脑中是一个框架,掌握的会更牢固。

二、高中数学框架

数学1:集合、函数的概念;基本初等函数Ⅰ

数学2:立体几何初步;解析几何初步

数学3:算法初步、统计、概率

数学4:基本初等函数Ⅱ;平面向量、三角恒等变换

数学5:解三角形、数列、不等式;必修一;必修二;必修三;必修四;必修五;选修一;选修二;选修三;选修四

无论是文科还是理科,必修都学,必修共五本教材,文科选修一,理科选修二,文理都选修四中的一部分内容。

三、初高中衔接的知识

(一)因式分解。因式分解是中学数学中最重要的恒等变换之一,具有一定的灵活性和技巧性。这里主要是在初中教材已经介绍过基本方法的基础上,重点补充十字相乘。

1.因式分解的概念

2.因式分解的方法

(1)提公因式法,即把各项的公因式提出来;

(2)运用公式法,即逆用乘法公式。

(3)分组分解法,即将多项式的项适当的分组,提出各组的公因式或应用公式分解,下一步能再进行分解,这种方法才可行。

(二)十字相乘,在分解时,把二次项,常数项分别分解成两个数的积,并使它们交叉相乘的积的和等于一次项。

(三)一元二次方程,一元二次函数,一元二次不等式。

1.一元二次方程的根与系数关系

2.求根公式、判别式

3.二次函数的图象

第7篇

关键词:等差数列; 前 项和公式; 思想

许多国内外有名的数学教育家都指出:“无论从历史的发生还是系统的角度看, 数的序列都是数学的基石. 可以说,没有数的序列就没有数学”. 所以, 数列在数学中有着极其重要的地位, 我们更需要进一步的了解数学. 高中的新课标也指出, “研究数列问题的文化背景, 可以增强学生对数学学科与人类社会发展之间的相互作用的认识, 让学生体会到数学的科学价值、应用价值、文化价值开阔学生的视野, 从而提高学生的文化素养, 同时也能够激发学生的创新意识”.

如何使用这两个公式解决问题呢?下面我们通过举例来探析.

一、具有函数方程思想的公式一

在高中数学新课程标准指出, 数学教材内容的编写是按照“螺旋上升”式原则编制的, 因此, 人教版新课标数学必修5 第二章《数列》的安排并不是突然的. 由于在数列的概念和表示方法中提到“按照一定顺序排列的一组数称为数列”, 我们可知在小学和初中的时候学生都已经接触过类似题目, 但在此之前学生没有系统的学习这一类的知识, 所以对它感觉比较陌生. 高中数学的必修5第二章中数列以单独的形式体现出来可以看到它的重要性, 还在选修的4-3中再次出现, 更加说明他在中学教材的地位 .

(一)方程思想

在数学思想方法方面, 数列这部分内容中涉及到了函数与方程、等价转化、分类讨论、递推、归纳类比、整体代入、猜想、数学建模等重要的数学思想方法. 故我们可运用方程思想, 将题目条件用前 项和公式表为关于首项 和公差 的二元方程组来解决问题.

总结:

在新课标的教材中,虽然只是简单的介绍了数列的基本概念和通项以及前 项和,但在数学题目中它常结合实际问题,还与函数、不等式、解析几何、导数等的灵活结合,使它在高考中的地位在不断的上升. 因此, 求数列的通项公式与求和将成为高考对数列知识主要的考点.

对于新课标下的数列教学,我们不仅要满足最基本的课本知识传输,更要让学生对这些知识产生兴趣,而不是机械般的接受教师强制给予,更要变成学生主动去获数列的知识, 并且培养学生独立思考的能力和研究精神,这样有助于学生更好的学习 .

参考文献

[1]中学课程教材研究开发中心. 普通高中课程标准实验教科书数学必修5[M]. 北京: 人民教育出版, 2015.

[2]任志鸿. 十年高考分类解析与应试策略[M]. 北京: 知识出版社, 2016.