时间:2023-03-01 16:31:37
序论:在您撰写微电子技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词微电子技术集成系统微机电系统DNA芯片
1引言
综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。
50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。
在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。
221世纪上半叶仍将以硅基CMOS电路为主流工艺
微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。
自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。
现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。
21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。
目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。
随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。
3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域
在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:
(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。
因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。
(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。
量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。
以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。
目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。
QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。
4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点
在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。
正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。
系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。
SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。
对于系统芯片(SOC)的发展,主要有三个关键的支持技术。
(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。
(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。
(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。
微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。
在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。
5微电子与其他学科的结合诞生新的技术增长点
微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。
微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。
MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。
MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。
目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。
当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。
微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。
采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。
DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。
目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。
6结语
在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。
回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!
参考文献
[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.
[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,.1996.
[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2
[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997
1.1班级人数较多。大部分班级在45人左右,教师无法面面俱到,只能顾及少数同学,大部分同学只能处于跟随的状态,学习效果较差。
1.2课堂时间有限。课时安排有限,加之学生的接受能力较差,课堂教学推进缓慢,学生接受起来较为吃力,仅凭课堂上的45分钟进行教学,如果班级有45个学生,教师进行逐个指导的话,每人才1分钟,学生能学到什么,可想而知。
1.3学生学习兴趣不高。学生学习兴趣不高,主动性不够,学习能力不强,只依靠老师讲授,不愿意去学,是当前普遍存在于职业学校学生在学习电工电子技术课程时的问题,电工电子技术课程容量较大,涉及到的知识面较广,而且有些内容层次较深。
1.4教学目标不能很好的完成。不少学生对电工电子技术课程基本知识的掌握不够,思考问题解决问题的能力不足,学习的态度不够端正,学习的方法存在着一定的偏差。而教育的过程是循序渐进的,需要教师和学生两方面相配合。
1.5学生的心理情况。因为大部分学生在此前的学习过程中基本没有接触过电工电子技术的相关知识或者是根本没有学习过相关课程。还有一部分学生的基础知识很差,这就使得学生从心理上、思想上对这门陌生的课程有了畏难情绪,觉得这门课是一门难学的课程,吃力的课程,结果就会有厌学的情绪,从而不能深入的学习,最后的不良结果就是学不好这门课。
2微时代下“微教学”的现状分析
目前来看,国内外对于微教学单元方面的研究多集中于课堂应用方面。
2.1从国内研究来看,吴玉龙在《“微教学单元”高职教学策略研究———以“知识点”和“技能点”》就针对高职科目中的微教学单元进行阐述。王世群在《“微波炉”加热教育--微博在教学中的应用探析》一文中介绍了作者于实习期间在所处班级进行的微博实验教学活动。
2.2从国外研究来看,R.W.Lucky于2010年发表的“ToTwitterOrNottoTwitter?”,用情境导入的方式,介绍了微博教育前景。KellyWalsh在文章“100WaystoTeachwithTwitter”中则花费了大量的精力总结他人的研究成果,列举推荐关于微博教育应用的100多种方法。纵观国内外的研究,学者都是将微教学单元侧重于微博教学上。而对于电工电子技术课程的教学研究是将课堂的微教学与借助于移动互联网平台的现代网络微教学相结合,更具有研究价值和实践价值。
3“微教学”在电工电子技术课程中的作用研究
目前来看,职业学校的学生几乎每个人都有一部手机,基本每部手机都正常上网,而且学生对于现代移动互联网平台工具的应用炉火纯青,如何根据学生的实际情况,有效的借助于移动互联网平台,把“微教学”在电工电子技术课程中的教学与辅导作用有效的利用起来,拟从以下几个方面构建微教学单元:
3.1微课堂:针对电工电子技术课程某一知识点,开展5~10分钟的针对性攻略,让学生在短时间内集中精力,展开学习。慢慢地,在课题研究的过程中,通过课堂实施总结出一套更加适合电工电子技术课程学生情况的教学方式。举例:5分钟时间,集中学极管的伏安特性,举一反三,深入渗透。
3.2微辩论:针对电工电子技术课程教学,开展3分钟微辩论,将学生分为正方与反方,鼓励学生大胆发言。对于中职学生来说,他们的好胜心比较强,当被冠以“角色”的担子,他们会积极准备,认真学习,参与微辩论。举例:液晶电视与高清电视的区别在什么地方。
3.3微实训:电工电子技术课程是一门实践性很强的专业,因此,在教学中需要将理论与实践相结合。在实践教学上,我们就某一点知识,开展微实训教学。举例:就三极管开关电路实验为标准,让学生3人一组,组内进行实践训练。
3.4微竞赛:可以就某一电路设计或者某一知识点进行微竞赛,通过微竞赛来提高学生的参与度,不仅考核学生的知识,更是让学生感受到了学习的乐趣。与日常竞赛不同,微竞赛的重点在于知识趣味性。举例:就三极管放大电路的安装展开小组竞赛,既有组内合作,也有组组之间竞赛。
3.5微考核:在课堂上,就学生表现和教学进程进行阶段性考核,这样的考核一改传统的“以考试成绩为衡量标准”的方式,随时开展动态考核能够让学生随时保持考核的状态。举例:针对二极管整流电路这一节内容,让学生在课堂上做出一个整流电路的作品来,并检验其结果。
3.6微信圈:通过微博、微信等新媒体强化学生与教师、专家甚至企业家的沟通,通过媒体来获取信息资源,在很大程度上可以开拓学生的视野。教师也通过微信圈及时的对学生做出的成绩给予表扬,对学生还存在的问题给予纠正和点评。举例:在13高职电子班建立微信圈,老师随时发出问题,学生也可随时和老师沟通。
4“微教学”在电工电子技术课程中研究目标
“微教学”在电工电子技术课程中的研究目标主要包括以下方面:
4.1培养学生学习电工电子技术课程的兴趣。通过微教学单元在电工电子技术课程中的改革研究进一步提高学生参与电工电子技术课程学习的积极性,培养学生学习兴趣,提高学生学习能力。一改传统教学模式,让学生能够更主动投入到学习中去。
4.2提高学生电工电子技术课程的知识技能。通过微教学单元的构建,让学生的实践能力、团队协作能力、沟通能力及技能水平等都有较大的提升,有效达到技能目标。这就要求教师针对具体的课程内容,从学生角度出发,针对学生在学习该课程中可能出现或已经存在的问题,最后要让学生真正掌握并能有效的应用电工电子技术知识。
有线数字电视网络运行的过程中,网络信号的传输会受到放大器以及载噪比所影响,也会对吸信号电平调节造成一定的限制。一般情况下,有线数字电视的信号传输主要采用的是拓扑式的的网络结构,而且,在这种情况下,电平也会由于电网消耗而逐渐降低,在电平值降到一定程度时,有线数字电视的信号传输也会受到一定的影响,甚至出现马赛克的现象,因此,需要保证电视信号传输的稳定性,这样才能避免以上电视不良现象的出现。网络放大器技术主要应用放大器来放大电平传输信号,从而确保数字电视信号传输的稳定性,在实践中该技术的应用极为广泛,这也是能够保障有线数字电视在运行过程中正常接收信号的关键所在。
2有线数字电视网络常见的故障
2.1室内布线故障有线数字电视在使用之前,需要对室内进行布线,而这个过程也是有线数字电视经常发生故障的环节,布线经常不合理以及分配器的不合理等,都会对有线数字电视造成极大的影响,信号接收不正常也会导致电视使用的不正常。
2.2数字电视图像形成故障数字电视图像形成故障是常有发生的事,造成这类故障的因素有很多,例如,电视自身问题、电平信号问题等,本节仅从有线数字电视网络的角度出发进行分析,如果分支分配器、放大器等受到损坏的话,那么在载噪比不高的情况下,电平信号也会较低,从而造成有线数字电视出现无图像的现象[3]。
2.3有线数字电视网络系统故障现阶段,有线数字电视主要是有线数字系统发挥出相应的作用来实现的,但是,在实际有线数字系统运行的过程中,发现系统经常发生接触不良的问题,例如,接头生锈等都会引发有线数字系统故障,在接触不良故障的影响下,电平频段偏低造成信号传输中断,或少量信号传输存在断断续续的现象,使得无法正常使用电视来观看节目。
3有线数字电视网络维护措施
3.1合理进行室内布线在对室内进行布线的过程中,要根据实际的情况对室内进行合理的布线,尤其是在布线接头处,必须保证布线有着很好的连接性,同时,室内的布线更不能受到其他线路的影响。另外,要对分配器进行合理布置,这样才能有效解决室内布线故障,对有线数字电视网络进行有效的维护,进一步保障有线数字电视运行的正常。
3.2合理选择设备有线数字电视图形故障的主要原因是信号不能正常传输,或是断断续续无法持续稳定传输,在实际中发现,造成这方面的故障主要是分支分配器、放大器受到损坏的缘故。对此,在有线数字维护的过程中,不仅要保证分支分配器、放大器的完好性,更好根据实际的使用情况合理的选择设备,要尽量选择阻抗相互匹配的分支分配器,以及选择频带宽、线性好的放大器,这样才能保障分支分配器和放大器质量的同时,充分将其设备的功能发挥出来,提高有线电视信号传输的稳定性,才能有效解决数字电视图像形成的故障。
3.3加强对系统的检查有线数字电视网络系统故障屡见不鲜,对人们的正常使用电视造成极大的影响,而引起这方面的原因主要是一些电缆接头处的不良而引发的,因此,有线数字电视维护人员应积极做好系统的检查工作,并且,要将注意力集中在有线数字系统中电缆接头的位置上,确保电缆接线头的良好性,这样才能保障有线数字电视网络信号传输的可靠性,才能确保有线数字电视网络系统的正常运行,通过加强对有线数字网络系统的检查工作,才能切实的提高有线数字电视网络系统运行的可靠性和稳定性。
4结论
当前大部分中职生学习兴趣不大,学习积极性不高,学习底子较差,对理工科理论学习困难较大;但对动手实际操作较为感兴趣,实际操作能力也很强;属于视觉型和触觉型的学习者。
二、课堂设计要点
1.激发学生的学习兴趣,培养学生的学习动机。
激发和培养学生的学习电子技术的动机是保持学生学习内动力的最有效途径之一,而激发和培养学生学习动机关键在于培养学生学习的兴趣。
(1)教师合理创设问题情境,让学生获得成功感。
有针对性创设问题情境,根据不同学生提不同问题,问题难易适中,给学生思考的空间,积极引导学生参与讨论,营造活跃的课堂气氛,并给予学生积极的评价,让学生在课堂中建立信心,从而增强学习的兴趣。
(2)处理教材,从应用入手找原理。
充分吃透教材,把实际应用和理论原理有机结合,通过组织观察实物、图片、视频资料等实际材料了解电子技术在生活的实际应用,从学生感兴趣、易接受的东西素材入手,提高学生学习知识的兴趣,从而增强进一步探究的现象本质、原理的求知欲望。
2.正确控制好课堂上“教”与“学”的比例。
在以学生为中心教学模式下的电子技术课堂,教师是学习的促进者而不是知识的呈现者,教师传授知识比例不能过多,时间控制在课堂时间的30%-50%之间,其余时间利用各种方式积极组织学生开展课堂活动,必要时还可以让学生自己组织开展活动。
三、课堂教学方法
1.讲授法。
教师对于基本概念、基本原理、设计思路等理论知识进行讲解。
2.讨论法。
一题多解的命题,多个应用方向,可以让学生展开讨论,以拓宽思路,培养学生分析问题、解决问题等能力。
3.自学法。
一些数学推导,应用性、设计性例子及拓展内容交待学生自学,培养学生自主学习和学会学习的能力。
4.项目教学法。
项目教学通过确定目标任务、编制项目计划、项目实施、项目评估、项目展示或结果应用等步骤来实施,项目教学的重点在于通过项目实施过程学习知识与技能,激发学生的学习动机,培养学生独立思考、自信的品质和社会责任感。
5.实训法。
综合实训是学生完成本课程的理论学习和各项技能训练后,运用本课程的知识和技能进行的综合性、系统化训练;培养学生的综合应用能力,为进入企业顶岗实习做好准备,增强学生对就业岗位的适应度。
四、教学评价方式
1微电子工艺清洗技术的理论研究
在微电子元器件的制造过程当中,由于其体积小、制造过程复杂等众多客观原因存在,将会很有可能导致微电子元器件在其步骤繁琐的制造过程当中受到污染。这些污染物质通常会物理吸附或者是化学吸附等多种方式在电子元器件生产过程当中吸附在其表面。比如说,硅胶材质的硅片在其制造过程中污染物质通常会以离子或者是以粒子形式吸附在硅片的表面。这些污染物质还有可能存在于硅片自身的氧化膜当中。产生这一现象的原因并不奇怪,这是由于这些污染物质破坏掉了硅片表面的化学键,从而导致了在其表面形成了自然的力场,让众多污染物质轻松吸附或者直接进入到硅片的氧化膜当中。在产生这种现象之后,要清洗硅片就非常困难了。在清洗过程中,既要保持不能去破坏硅片的结构,又要保持能够对污染物质进行彻底的清洗,以便其对产品结构当中的其他元器件产生污染,这一问题就变得非常棘手,愈发困难了。在当前微电子行业的大多企业或是研究所讲微电子的清洗技术两类:一种叫做湿法清洗;另一种叫做干法清洗。这两种技术都能够保持比较高的清洗度,并且能够在不破坏电子元器件的化学键的基础上祛除电子元器件表面或是氧化膜内存在的污染物和杂质。
2微电子工艺清洗技术的现状研究
由于我国行业的发展更重视对服务业的发展和我国微电子行业的起步和发展较晚,从而致使当前我国微电子工艺的清洗技术比较落后,并且存在诸多的问题。
2.1湿法清洗技术研究
湿法清洗这一技术,是由上个世纪六十年代的一名美国科学家所研究发明出来的。这种方法主要是通过利用化学溶剂同有机溶剂和被清洗的微电子元器件之间发生化学反应,然后再利用多种技术手段,如:超声波技术去污;采用真空去污技术等多种技术手段。最终,利用这些步骤实现对微电子元器件的清洗。
在以上湿法清洗电子元器件的步骤当中还需要用到种类不一的化学试剂。这些化学试剂主要包括氢氧化铵和过氧化氢以及硫酸等物质。氢氧化铵主要是被利用于对污染程度不是非常严重的电子元器件的清洗,或者是作为清洗第一部的化学试剂。其能够在控制的温度下、浓度下以及化学反应所经历的时间下等多种条件下,利用化学反应去腐蚀电子元器件的表面污染物质或者是金属的化合物。但是,由于这种腐蚀程度是需要多种条件来控制的,因此其对人员的技术和企业电子清洗设备的要求也是很高的,如果不能对整个过程实现严密的监控,将会对电子元器件造成损害。过氧化氢在清洗过程当中主要是被利用于对电子元器件的衬底进行清洗,通过清洗衬底上所附着的金属化合物质或者是络合物质。最后一种化学试剂(硫酸)在清洗过程当中扮演着非常重要的角色。在使用硫酸对被清洗电子元器件进行清洗过程中必须采用双氧水这一化学试剂来减少其反应的时间,并且降低硫酸的浓度、反应时候的温度,从而有效的减少了被清洗电子元器件碳化或者是被腐蚀严重的现象发生。以免让硫酸对电子元器件造成损害。湿法清洗技术在众多清洗技术当中是比较有效的一种技术,但是其依靠化学反应的客观因素,让其很有可能造成化学物质残留从而导致电子元器件被腐蚀的现象。
2.2干法清洗技术研究
干洗技术相对于湿洗技术来说其避免了使用化学试剂,从而大大减少了化学物质残留导致电子元器件腐蚀的现象发生。干洗技术主要是采用等离子、气相等清洗技术方式对电子元器件的金属化合物和络合物进行清洗。对于采用等离子技术为主的干洗技术,其具有残留物质少、操作难度低等技术性特点,并且在微电子元器件的清洗行业当中其研究最早、技术较为成熟,从而在当前我国微电子行业的应用最为广泛。但是,等离子技术也存在一定的弱点,就是其无法完全祛除存留于微点电子元器件表面的污染物。而气相技术的应用相对于等离子技术来说是非常少的,主要原因在于其花费时间长、成本高,并且在采用气相技术清洗过程主要是被应用于硅片元器件的清洗,对于其他元器件的适用程度较低。
3对微电子清洗技术的展望
从上文的分析当中可以发现,就我国企业当前的资金、人力等现状来说,我国在微电子清洗工艺当中,应当采用干洗技术当中的等离子技术。这种微电子工艺清洗技术不需要进行二次清洗,就能够达到超过其他技术操作之后的结果。而对于其单次清洗过后残留的金属混合物来说,可以在继续采用其他清洗方式减少其污染物质含量,从而在保证电子元器件质量前提下在较短时间内较低微电子污染物的含量。
在配电自动化系统中,故障区段定位是核心内容。其主要作用是:当线路发生故障时,在最短时间内自动判断并切除故障所在的区段,恢复对非故障区段的供电,从而尽量减少故障影响的停电范围和停电时间。选择科学合理的故障区段定位模式,大大提高配电自动化系统的性能价格比及对供电可靠性的改善程度。当前的配电自动化故障区段定位手段主要是有信道模式、无信道模式以及两者相结合的混合模式三种。
(一)有信道的故障区段定位模式
有信道的故障区段定位模式是指在故障发生后,依靠各分段开关处具有通信功能的柱上开关控制器FTU(FeederTerminalUnit,馈线终端单元)之间或FTU同配电主/子站之间通过通信设备交换故障信息,判断故障区段位置。这种模式包括基于主/子站监控的集中(远方)判断方式和基于馈线差动保护原理的分散(就地)判断模式。基于主/子站的集中判断方式是以配电自动化监控主站/子站为核心,依靠通信实现整个监控区域内的数据采集与控制。基于馈线差动保护原理的分散判断方式是当故障发生时,各保护开关上的FTU利用高速通信网络同相邻开关上的FTU交换是否过流的信息,从而实现故障的自动判断与隔离。
(二)无信道的故障区段定位模式
无信道的故障区段定位模式是通过线路始端的重合器同线路上的分段开关的配合,就地自主完成故障定位和隔离功能,它包括重合器同过流脉冲计数型分段开关配合、重合器同电压时间型分段开关配合以及重合器间配合等实现方式。重合器同过流脉冲计数型分段开关配合的方式:过流脉冲计数型分段器不能开断短路电流,但能够在一定时间内记忆重合器备开断故障电流动作次数。重合器同电压时间型分段开关配合的方式:故障时线路出口处的重合器跳闸,随后沿线分段器因失压分闸,经延时后重合器第一次重合,沿线分段器依次顺序自动加压合闸,当合闸到故障点所在区段时,引起重合器和分段器第二轮跳闸,并将与故障区段相连的分段器闭锁在分闸位置,再经延时后重合器及其余分段器第二次重合就可以恢复健全区段供电的目的。重合器配合的方式:重合器方式延续了配电网电流保护的原理,自线路末端至线路始端逐级增加启动电流和延时的整定值,实现逐级保护的功能。
(三)有信道集中控制与无信道就地控制相结合的混合模式
有信道集中控制与无信道就地控制相结合的混合模式是结合前面两种模式的特点,对于以环网为主的城市配电网,当系统通信正常时,以集中判断方式为主,当通信异常时,可以在配电终端就地控制;对于农电县级配电网,一次网络既有环网供电,更多的是辐射型供电方式,因此放射形网络的故障定位选用无信道的就地判断方式,环路网络采用集中判断方式。
二、目前配电自动化中故障区段定位手段的特征比较
基于有信道故障区段定位模式的配电自动化系统由于采用先进的计算机技术和通信技术,正常情况下可以实时监控馈线运行情况,实现遥信、遥测、遥控功能及平衡负荷;故障情况下可以综合全局信息,快速完成故障的志别、隔离、负荷转移和网络重构,避免了出线开关多次重合对系统的影响,适用于配电网络结构复杂、负荷密集地区的配电管理系统。但它的缺点是故障的判断和隔离完全依赖通信手段,对通信速率和可靠性要求高,需投入资金较多;通信设备或主站任何一个环节出现问题都有可能导致故障紧急处理的全面瘫痪。
无信道的故障区段定位模式将故障处理下放到设备层自动完成,根本上消除了通信设备可靠性环节对定位功能的影响,具有原理简单,功能独立,封装性好的特点,并且投资比有信道的方式少。重合器同分段开关配合方式的缺陷在于判断故障所需的重合闸次数较多,故障产生的位置距离电源越远,重合闸次数和故障判断时间很长,难以达到馈线保护功能对故障处理快速性的要求;重合器配合的方式通过各开关动作参数整定配合判断并切除故障,无需出线重合器的多次重合闸,但由于配电网存在线路短,故障电流差别不大的特点,容易引起故障时的越级跳闸;并且越靠近出线侧的重合器故障后延时分闸时间很长,不符合故障处理快速性的要求。
有信道和无信道混合模式结合了两者的优点,可以根据地区配电网的时间情况进行有效组合;但它的缺点是存在着控制实现困难、结构复杂的问题,并且不经济。配电自动化系统中,无信道的故障区段定位模式由于减少了通信环节,在故障处理的可靠性和经济性方面都要优于有信道的模式;但故障区段定位过程需要多次投切开关的缺点限制了它进一步提高供电可靠性的能力。
三、基于暂态保护的配电网故障区段定位方法研究进展
目前配电自动化系统所采用的故障区段定位方法延续了电力系统继电保护中电流保护的核心理念,其构成原理建立在检测故障前后工频或接近工频的稳态电压、电流、功率方向、阻抗等电气量的基础上,此领域的研究工作也是围绕着如何提高这种原理的性能展开的。实际上,由于输电线路具有分布参数的特性,当电网发生短路故障时,线路在故障的初始时刻一般都伴随着大量的暂态信号,故障后的初始电弧以及在电弧最终熄灭前的反复短暂熄灭和重燃会在线路上产生较宽频带的高频暂态信号;行波由色散产生的频率较集中的高频信号发生偏移和频率分散,会产生频带较宽的高频信号。这些在故障过程中产生的暂态高频电流电压信号含有比工频信号更丰富的故障信息,如故障发生的时刻、地点、方向、类型、程度等。但由于故障暂态信号具有频带宽,信号幅度较工频微弱,且持续时间短的特点,受信号提取和分析手段的限制,在传统的保护方法里被当做高频噪声滤除掉。但是,随着信号提取及分析技术的快速发展,基于暂态保护原理的故障处理技术越来越受到人们的重视。
参考文献:
[1]孙德胜,郭志忠,王刚军.配电自动化系统综述[J].继电器,1999,27(3).
[2]陈勇,海涛,叶正明.构筑配电自动化系统的三种基本模式[J].电网技术,2002,26(2).
[3]林功平.配电网馈线自动化解决方案的技术策略[J].电力系统自动化,2001,25(4).
[4]孙福杰,王刚军,李江林.配电网馈线自动化故障处理模式的比较及优化[J].继电器,2001,29(8).
[5]吴敏,朱锡贵,徐为纲.无信道馈线故障处理技术[J].电力系统自动化,2000,25(6).
[6]陈勇,海涛.电压型馈线自动化系统[J].电网技术,2000,23(7).
[7]焦邵华,焦燕莉,程利军.馈线自动化的最优控制模式[J].电力系统自动化,2002,26(21).
[8]哈恒旭,张保会,吕志来.边界保护的理论基础(第一部分):故障暂态分析[J].继电器,2002,30(9).
[9]刀哈恒旭,张保会,吕志来.边界保护的理论基础(第二部分):线路边界的折反射系数的频谱[J].继电器,2002,30(10).
[10]甘忠,董新洲,薄志谦.输电线路自适应无通道保护[J],电力系统自动化,2002,25(10).
1微电子机械系统的概念
微电子机械系统所指的就是在大小毫米量级之下,最终形成的可以控制能够运动的微型机电装置是由单元尺寸需要在可控制的微米和纳米之间,是一个整体的系统,把微机构、微传感器,以及微执行器还有信号处理系统等等构成。在不同的国家对于微电子机械系统的称呼有所不同,
2微电子机械系统的发展历程
微机械器件以及微电子机械系统在生产加工的过程中需要对其深加工技术进行研究和重视。在研究中开始逐渐的形成了微电子加工技术和微机械装置加工技术。并随着对技术的细分,开始形成了体微机械技术以及外轮廓表面微机械装置技术,并同时也产生了LIGA机械装置技术以及高标准的LIGA机械装置技术。对其体微机械技术按照实施的目标对象机械能分析,可以得出体硅单晶体为核心构成体并在其物理测量厚度的10到999单位内呈现规则布局分离,为其核心的技术策略单位。并对其技术中存在的腐蚀以及吻合问题进行布局的考虑。对其技术的优势分析得出,其装置的工艺相对不繁琐,但其操控性和调控性数值偏低。在表面微机械装置中,进行相应的IC技术加工,如采用扩散光学和标准尺寸对应光刻以及复膜层叠等技术运用中,其都会对原有的厚度比率进行微调,对其在剥离技术中和进行切割技术的分析[1]。其技术的有点在于对IC技术有相对完整的包容性,但存在的不足点也较为显著,如切割的纵向厚度单位偏低,在电光铸模和缩微成型以及耐温差等方面存在一定的技术局限。LIGA技术在德文X射线进行曝光和电光铸模中有其良好的优越性,其对设备的制取尺寸在1单位内到999单位内。但需要指出LIGA技术处于高成本和高复杂度的技术,并需要采用相对保守的紫外线深度曝光,保障其光刻效果和覆膜效果。而准LIGA技术在对设备加工中可以在最合理控制尺寸中,保障其电路集成后续装置获得合理的配置[2]。因而其技术的优势在微机械技术中可以获得关注度的展现。
2.1自动对焦的三维加工技术
目前自对准的准三维加工技术普遍采用深度的紫外线厚度型进行光度的曝光刻度,并进行胶模的处理,保证其在牺牲层和结构层获得合理的电铸,并利用其两层的金属电铸特带你,获得牺牲层厚度的保障,并进行微结构的自动对准技术保障[3]。
因而CU可以表示为牺牲层,NI为结构层的技术,并在其平面和垂直两方向性获得控制,在其CU和NI中进行电铸处理,使得其种子层和型模层获得两种电铸金属处理,让技术水平在微架构层面获得统一标准化套准对应。在其腐蚀性选择上要对其液体进行考虑,CI属于腐蚀性,NI不属于腐蚀性,并对其微机械机构进行终止惰性反应。其配套技术以及Ic工艺获得最大化的包容,在温度上控制在85摄氏度,获得对结构合理的微机械技术。其深度的单位测定在22,保障其后续的标准对应后其范围空载在49到101内。
准LIGA技术需要在工艺布局考虑中,首先要保障(a)低阻硅片(10-3cm),其热氧化反映在1.5,其厚度在SIO2其需要把定子对衬低的外圆位置进行确定。同时进行首次的光学刻,SIO2腐蚀出进行1.2各坑道处理。形成在转子下部的新支撑点确定。在除去胶缘后,在真空中进行高温处理形成0.3的铜电铸种子层。在第二次光学刻录中,要对尺寸厚光刻胶AZ4620进行转子胶模处理,保障其电光铸在3内进行转子保障。后进行第三次的光刻,在其厚度尺寸中选择光学刻录定子胶模处理,保障其厚度在2.5范围内。形成铜牺牲层的转子和钉子的转化变化,对其空隙中要包容其电铸在1.5钉子范围。在最后一次光刻中,要对其厚胶光学刻录后,对其1.3铜都牺牲层要进行间隙转化的电铸考虑。并用起腐蚀性的液进行HF缓冲液体的处理,通过SIO2合理的释放转化的转子。其微机械技术在应用中可以获得广泛的推崇,静电驱动镍晃动微马达为例,其自对准的准三维加工技术目前在实际应用中哥已经获得镍晃动马达。用电铸Cu作牺牲层,电铸Ni作结构层(定子、转子和轴),得到的转子与定子。各项参数都符合标准。
3结语