时间:2023-02-28 15:54:59
序论:在您撰写建筑能耗论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
我国建筑总能耗约占社会终端能耗的20.7%.其中,北方城镇建筑采暖和农村生活用煤约为1.6亿吨标煤/年,占我国2004年煤产量的11.4%;建筑用电和其它类型的建筑用能(炊事、照明、家电、生活热水等)折合为电力,总计约为5500亿度/年,占全国社会终端电耗的27%~29%.
1、北方城镇采暖能耗
我国北方城镇采暖能耗占全国建筑总能耗的36%,为建筑能源消耗的最大组成部分。单位面积采暖平均能耗折合标准煤为20kg/m2·年,为北欧等同纬度条件下建筑采暖能耗的2~4倍。能耗高的主要原因有3个。一是围护结构保温不良。二是供热系统效率不高,各输配环节热量损失严重。三是热源效率不高。由于大量小型燃煤锅炉效率低下,热源目前的平均节能潜力在15%~20%.
2、大型公共建筑能耗
目前我国有5亿m2左右的大型公共建筑。耗电量为70~300kwh/m2·年,为住宅的10~20倍,是建筑能源消耗的高密度领域。调查结果表明,这类建筑能源浪费现象仍较严重,有很大的节能潜力。
3、住宅与一般公共建筑的非采暖能耗
我国城镇的住宅总面积约为100亿m2.除采暖外的住宅能耗包括照明、炊事、生活热水、家电、空调等,折合用电量为10~30kwh/m2·年,用电总量约占我国全年供电量的10%.一般公共建筑总面积约55亿m2.用电总量约占我国全年供电量的8%.
目前这两类建筑的能耗水平低于发达国家,这主要是由于建筑提供的服务水平不高。由于我国能源费用相对于居民收入偏高,绝大部分城镇住宅的用电水平较低,生活热水用量远小于发达国家水平。
随着生活水平的提高,住宅和一般公共建筑内用户提出了更高的建筑服务水平要求。此外,近年来在一些大城市出现了一批高档豪华住宅,户均用电水平几倍甚至几十倍于普通住宅,此类高能耗住宅有大幅增长的趋势。对于能耗原本较低的一般办公建筑进行二次装修和加装中央空调系统,盲目提高建筑内部的“豪华性”,也会造成此类建筑能耗的成倍增长。
4、农村生活能耗
我国农村建筑面积约为240亿m2,总耗电约900亿度/年,生活用标准煤0.3亿吨/年。
目前我国农村的煤炭、电力等商品能源消耗量很低。根据调查,目前农村建筑使用初级生物质能源的能源利用效率很低,并在陆续被燃煤等常规商品能源所替代。如果这类非商品能源完全被常规商品能源所替代,则我国建筑能耗将增加一倍。
5、长江流域采暖需求
我国长江流域以往的建筑设计都没有考虑采暖。目前夏季空调已广泛普及,而建设采暖系统、改善冬季室内热环境的要求也日趋增长。
预计到2020年,长江地区将有50亿m2左右的建筑面积需要采暖。预计每年将新增采暖煤1亿吨标煤左右,接近目前我国北方建筑每年的采暖能耗总和。
我国建筑能耗发展趋势
我国能源供给和经济发展必须考虑新增建筑所需的能源供给问题。按照目前的建筑能耗状况,到2020年我国建筑能耗将比2004年增加2.5亿吨/年标煤和新增耗电5800~6300亿度/年,总计折合电力约1.3万亿度,新增量相当于目前建筑总能耗的1.3倍。
根据发达国家经验,随着城市发展,建筑将超越工业、交通等其它行业而最终居于社会能源消耗的首位,达到33%左右。我国城市化进程如果按照发达国家发展模式,使人均建筑能耗接近发达国家的人均水平,需要消耗全球目前消耗的能源总量的1/4来满足中国建筑的用能要求。因此,必须探索一条不同于世界上其他发达国家的节能途径,大幅度降低建筑能耗,实现城市建设的可持续发展。
当前建筑节能的重要问题
当前我国各级政府高度重视建筑节能。我们认为,要研究建筑节能的突破点,优化配置有限资源,进而推动我国建筑节能事业取得重大进展。
1、走出集中供热分户计量改革的困境
改变供热计量按面积收费的方式,实行“分户计量,按热量收费”的目的一是促进建筑保温,二是鼓励行为节能。但分户计量不易操作。
采用分楼计量可以使计量改革工作走出困境。如果对每座建筑的用热总量进行计量并据其收费,楼内各户按面积分摊,计量工作可大大简化,可操作性强,分户墙传热等各种问题也可迎刃而解。按整座建筑供热量计量收费同样可激励新建建筑采用保温措施和推进既有建筑的节能改造。为了减少楼内局部空间过热的问题,可推行“供水温度分楼可调”新技术,采用混水或换热的方式调节每座建筑入口的供水温度,在建筑内实行“大流量、小温差、低水温”供热方式,在室外管网实行“小流量、大温差”的循环方式。可大幅度降低集中供热系统的热损失,从而显著降低北方地区集中供热能耗。
2、长江流域不宜发展大规模集中供热或热电冷三联供
目前在长江流域建设大型热电联产集中供热和热电冷三联供项目,无论是以燃煤还是以燃气为动力,都存在很多的能耗不合理问题。长江流域地区冬季短夏季长,而夏季使用发电余热制冷时的制冷效率仅为电制冷效率的20%左右。采用集中供冷要依靠大型循环管网输送冷水,这直接导致循环水泵电耗增加。
长江流域的特点是:冬季短,室外温度多在0℃左右;夏季长,普遍需要空调;梅雨期需要除湿;地表水资源丰富。对于这种气候与自然条件,应该发展各种热泵方式,系统解决采暖和空调需求。
3、科学规划南方地区建筑节能工作
我国南方地区建筑节能重点在于改善围护结构的保温。针对南方的气候条件,应推广各种屋顶遮阳、外墙遮阳、窗户外遮阳等措施,以减少太阳辐射;加强各种自然通风手段,通过自然通风缩短空调运行时间;开发和推广主动或被动式除湿装置,降低室内湿度,适当提高室内空调温度等,都可以产生更大的节能效果。
4、探讨社会主义新农村的可持续发展的能源消耗模式
我国农村土地资源相对充足,建筑容积率低;秸秆、薪柴、粪便等生物质能源丰富,生物质能源的生成物可被充分利用。农村的能源供应方式应以可再生能源为主,按照循环经济方式,发展沼气、生物质的高温热解制气、太阳能光热和光电应用以及风力发电。发展可再生能源替代常规商品能源的经济效益和可操作性也远高于城市。
5、发展和推广低能耗大型公共建筑技术
我国大型公共建筑不足城镇建筑总面积的4%,但能耗却占我国城镇建筑总能耗的20%以上。发展出一套解决中国实际问题的低能耗大型公共建筑技术,可大大缓解由于目前城市建设中大型公共建筑比例的增长将造成的城市电力供应紧张状况。
1992年,德国Fraunhofer太阳能研究所的Voss.K[1]等人通过使用太阳能光热光电技术对德国一栋建筑物进行供热供暖,并进行了为期三年的检测研究发现:在气候较为温和的欧洲部分地区,通过精心设计可以使建筑物全年总能耗降低到10Kwh/m2以下,且建筑物所有能耗需求可以由太阳能提供。Voss.K由此提出“无源建筑”(EnergyAutonomousHouse,也称Self-sufficientSolarHouse),即无需和外界能源基础设施相连,通过太阳能光热光电系统与蓄能技术集成应用,保证建筑所有时段能源供应的建筑。“无源建筑”要求建筑物在以年为时间单位的时段内达到能量或排放量中和。由于“零能耗建筑”在实现上还较为困难且成本较高,欧洲目前公认的更加广泛的可实施的为“近零能耗建筑”(nearlyzero-energybuildings)。对于“近零能耗建筑”,各国定义不同,如德国的“被动房”(PassiveHouse,也翻译为微能耗建筑、零能耗建筑)[2],指在满足规范要求的舒适度和健康标准的前提下,全年供暖通风空调系统的能耗在0-15Kwh/(m2年)的范围内、建筑物总能耗低于120Kwh/(m2年)的建筑;瑞士的“近零能耗房”(Minergie,也称“迷你”能耗房,或“迷你”能耗标准)[3],要求按此标准建造的建筑其总体能耗不高于常规建筑的75%,化石燃料消耗低于常规建筑的50%;意大利的“气候房”(ClimateHouse,Casaclima)[4],指全年供暖通风空调系统的能耗在30Kwh/(m2年)以下的建筑。
2、近零能耗建筑政策及发展目标
欧盟于2010年7月9日的《建筑能效指令》(修订版)(EnergyPerformanceofBuildingDirectiverecast,EPBD)[5]在欧盟内部影响力巨大,它要求各成员国应确保在2018年12月31日后,所有的政府拥有或使用的建筑应达到“近零能耗建筑”,在2020年12月31日前,所有新建建筑达到“近零能耗建筑”(nearlyzero-energybuildings)。《建筑能效指令》定义零能耗建筑为“具有非常高的能效”的建筑,《指令》还要求“近零能耗建筑”能耗表达单位应使用kWh/(m2年)。欧洲暖通学会联合会(REHVA)的JarekKurnitski等专家[6]将“近零能耗建筑”进一步定义为:以各国实际情况为基础,在充分考虑节能技术成本效益比的前提下,其一次能耗>0kwh/(m2年)的建筑。欧盟专家还对零能耗计算的边界范围、一次能源转换系数、是否应考虑区域供热供冷等系统、是否应考虑电器使用能耗进行了探讨研究。虽然欧盟各国对“近零能耗建筑”定义和技术路径都不同,但大多数国家还是给出了相对明晰的发展目标,发展目标主要针对新建建筑,具体见表1[7]。
3、近零能耗建筑定义内涵分析
虽然“零能耗建筑”一词听起来很容易理解,似乎很容易定义,但目前各国政府及机构对于零能耗建筑研究的边界划分、计算范围、衡量指标、转换系数、平衡周期等问题还都不尽相同。物理边界的划分对能耗平衡的计算有着较大的影响。对建筑物来说,以单栋建筑还是建筑群(小区)作为计算对象,是需要探讨的问题。目前国际大多数意见还是以单栋建筑为计算对象,根据是否与电网连接,将零能耗建筑分为两种,一种是“上网零能耗建筑”(On-gridzeroenergybuilding),其由电网输送给建筑物的能量和建筑物返回给电网的能量达到平衡,即在计算期内,电表读数为0;一种是“网下零能耗建筑”(Off-gridzeroenergybuilding)[8],即与建筑一体化或建筑物附近与建筑物连接的可再生能源供电供热系统提供的能量和建筑能源需求量保持平衡,这类建筑也被称为“无源建筑”(EnergyAutonomousBuilding)[1]、“太阳能自足建筑”(Self-sufficientsolarhouse)[1]。按照节能设计标准,与建筑物设计相关的能耗包括供暖、供冷、通风、照明、热水使用等负荷,但也有许多与用户关联度较大的负荷,如插座负荷、电动汽车负荷还没有进入平衡计算。如果未来能源网中电动汽车使用量大幅度提升,虽然不会对建筑物负荷造成影响,但使用这类产品和设备会对建筑物用电平衡有影响,考虑到随着我国国民经济生活水平提高,居民用电会进一步增多,相关数据逐步完善,应在平衡计算时加入插座能耗等相关能耗。目前共有四类指标可以用于衡量零能耗建筑:终端用能、一次能源、能源账单、能源碳排放。四类指标的评价结论相差很多,如衡量地源热泵系统或者建筑光电一体化系统等可再生能源建筑应用对节能减排的效果,采用不同指标得出的结论会不同,通常认为采用终端用能形式或者能源账单作为衡量零能耗建筑的指标,操作起来相对容易。在统一衡量指标后,所有与建筑物相关的能量就需要通过不同的转换系数转换到与衡量指标单位一致。能源供给和使用链上的全部能源种类都需要转换,包括一次能源、可再生能源、换热、传输电网和热网。由于各个国家的能源结构不同,电网、热网组成不同,且随着可再生能源发电规模的逐步扩大,各国、同国家不同地区的转换系数都有很大差异,且变化很快。但转换系数的确定,对“零能耗建筑”计算结果影响很大。
4、国际典型“近零能耗建筑”示范工程实践
EikeMusal等人对德国、美国、加拿大、欧洲等国的282栋零能耗示范建筑使用的技术进行汇总,发现太阳能光电、太阳能光热、建筑遮阳、机械通风热回收、免费供冷等技术应用的比例相对较高[9]。Eike研究的各国零能耗建筑数量见图1,各种节能技术使用比例见图2。从图2可以看出,高性能保温结构和PV系统、太阳能热水系统以及热泵可再生能源应用系统在零能耗建筑中应用最为广泛,其次是自然采光、遮阳系统、被动通风等被动式技术的应用,高效照明、电器、办公设备、HVAC设备使用也比较广泛。美国新建筑研究所2012年3月《美国零能耗公共建筑成本及特性调查》[10],通过对21栋已经有实测数据的零能耗公共建筑进行研究发现:(1)早期零能耗建筑面积普遍较小,目前大型和综合性的建筑案例也在不断增加,教学/科研楼、办公楼、K-8学校、银行等建筑都可以设计为零能耗。(2)建筑物形式、规模、所处地理位置以及其他因素不同,如果不考虑PV的费用,建筑为达到零能耗的增量成本为3%-18%。(3)通过综合性设计方案,充分考虑建筑所在地点和功能,选用高效的围护系统、暖通系统和设备,达到零能耗建筑难度不大。通常优先考虑通过被动式设计降低建筑能耗,如果必须使用暖通系统,常见的系统为土壤源热泵与地板辐射系统联合。美国既有零能耗公共建筑各种节能技术使用比例见图3。
5、我国主要近零能耗建筑研究实践
2014年5月,住房和城乡建设部科技司组织开展,由中国建筑科学研究院具体组织落实的“被动式超低能耗绿色建筑项目”征集调研。截至2014年10月,共收到全国上报项目12个,其中住宅项目3个,公共建筑项目9个。从地域分布来看,严寒地区项目2个,寒冷地区项目6个,夏热冬冷地区项目2个,夏热冬暖地区项目2个。
低能耗建筑设计理念的主旨是以降低碳排放为方式,实现节约能源的目标,低能耗建筑设计理念主要包含以下几点:第一,节能,从广义的角度来看,低能耗建筑设计理念的节能理念更为全面,涉及到节才、节能、节地、节水等方面,中心思想是最大限度的控制资源的消耗;第二,减排,降低建筑的液体、气体、固体等污染物的排放量,避免建筑对周边环境造成严重的影响,实现和谐共存的目标;第三,符合建筑使用功能的需求,体现低能耗理念的同时,满足人们物质和精神上追求,营造高质量的生活环境。
2低能耗建筑设计理念的应用
2.1主动建筑低能耗设计
建筑材料的选取上,应该尽量使用素混凝土,减少一次性瓷砖的使用量,降低天然石材的耗用量,减轻自然资源的负担,避免建筑行业过度消费自然资源。水泥原材料的选材上,应遵守就地取材的原则,降低运输过程的材料消耗。目前,绿色建筑逐渐重视植物建筑技术的应用,建筑设计过程中,在建筑屋面种植不同类型的植物,不仅能够改善建筑的居住环境,还能够净化城市空气,起到减少碳排放的目标。此外,应该进一步的优化建筑的整体结构,在建筑质量得到保证的前提下,减少不可再生资源的使用量,用环保、耐用、高质量的新型建筑材料取代混凝土、钢筋等传统建筑材料,也是低能耗建筑设计理念应用的重要部分。
2.2被动建筑低能耗设计
建筑热损耗的关键部分是建筑的外墙围护结构,现阶段,国家已经颁布了相关的建筑标准,要求新建建筑使用外墙保温材料,进而降低建筑能耗和减少建筑热损失。外墙保温材料也要以环保型材料为主,节省自然资源。建筑门窗设计中,遵循低能耗思想,通常采用保温性能良好的中空玻璃,同时,还可以将壁挂太阳能技术应用到门窗设计中,让建筑门窗具有采光和节能的双重效果。此外,充分利用建筑内部的空间结构,形成良好的气流组织,提高自然资源在建筑能源中的比重,降低矿石燃料的使用,促使建筑行业朝着低能耗的方向发展。
2.3合理利用新型能源及建筑材料
低能耗建筑设计理念正逐步完善,科研人员也更加重视新型能源和建筑材料的开发与应用,促进了低碳环保材料的不断问世,经过实际工程的检验,新型能源和建筑材料能够满足建筑要求。因此,为了实现低能耗建筑设计理念,应该进一步加大新型能源和建筑材料的应用力度,可以从以下几个方面入手。第一,提升可再生能源的利用率,比如生物质能、风能、地热能、太阳能等,取代不可再生能源,调整可再生能源与不可再生能源的比例,合理配置建筑的能源结构;第二,拓展新型燃料的应用范围,以现有的新型燃料研发水平来看,烃、氢燃料技术水平基本可以满足应用要求,使用烃、氢燃料取代天然气、煤气等传统燃料,能够有效的降低建筑碳排放量;第三,开发余能利用技术,将工业生产产生的余能、余热回收利用,不仅降低工业生产的能源浪费量,还能够满足建筑能耗需求,具有双重意义。
2.4优化建筑空间布局
(1)自然采光。
通过太阳光的利用,实现建筑空间照明的技术,称之为自然采光技术,按照采光类型划分,包括主动式自然采光技术和被动式自然采光技术。主动式自然采光技术的原理是镜面放射,充分利用棱镜组传光、光纤导光、光管导光、光伏效应间接采光、卫星反射镜采光等技术,实现建筑的自然采光;被动式自然采光技术的原理是调节建筑透光效果,尽量将太阳光传递到建筑内部空间,以满足建筑的采光需求。
(2)自然通风。
建筑自然通风设计能够有效降低空调能耗,已经在一定程度上应用于低碳建筑中,然而,并没有取得预期的效果,现有的建筑自然通风设计方法种类很多,比如非烟囱效应、烟囱效应、穿堂风、单侧送风等,在这些方法的基础上,应该充分考虑建筑的空间布局,分析建筑热的综合效果,以便进行集中配置。研究表明,建筑的自然通风类型主要有三种:第一,热压通风;第二,风压通风;第三,热压和风压综合通风。不同的自然通风类型的原理也存在差异,其中,热压通风是在气压和湿度的作用下,产生的气压差,而风压通风是在自然风力的作用下,产生的气压差。因此,应该根据建筑的空间布局,选择合适的自然通风类型,真正降低建筑能耗。
(3)日照得热和温度梯度的设计。
一方面,太阳能资源属于可再生能源,不管是采集还是利用阶段,都不会对环境造成污染;另一方面,日照得热和温度梯度的设计,能够优化结构性能,通过科学的建筑走向、适宜的形体设计以及合理的空间布局,实现减少建筑热损失的目标。此外,还应该构建标准建筑技术体系,满足经济可行性和技术可操作性等要求,比如新型轻质钢筋混凝土结构等,通过楼面系统、遮阳系统、门窗结构以及建筑外墙的设计,改善建筑的保温性能,避免建筑能源的过度浪费。
3结语
关键词健康建筑人居环境能源可持续发展
AbstractExplainstheideaofthelowenergyandhealthybuildinganditsrelationshipwithsustainabledevelopmentofhuman''''sinhabitantenvironment.Pointsoutthefourcriticalissuesinitsrealizationi.e.urbanenergyprogramming,energy-efficientbuildingdesign,urbanmicroclimateimprovementandbuildingautomation.
Keywordshealthybuildinginhabitantenvironmentenergysustainabledevelopment
1前言
随着我国国民经济的发展,城市建设发展很快,目前城市化水平为28%。按照世界上城市发展规律,这正是从起始阶段向城市化加速发展的转变阶段。在我国东部沿海地区,城市化水平已接近或超过35%,已经进入加速发展阶段。这都预示今后5年及下个世界我国城市化将有飞速发展。
城市化发展推动建筑行业的兴旺,随着人们对建筑环境要求的不断提高,北方地区建筑供暖,南方地区建筑空调,以及黄河下游、长江中下游流域建筑供暖与空调都成为极迫切的问题。近5年来我国房间空调器产量持续以40%的年增长率上升,就充分说明需要的迫切性,但随之而来的能耗的增加和对环境的污染。北方地区供暖耗煤已占全国总煤耗的11%以上,长江中下游地区空调器及热泵的发展已使该地区供电出现严重紧张和短缺。若充分满足这一地区建筑空调的要求,空调电耗将占该地区总电耗的30%以上,这将对这一地区的经济社会产生巨大影响。供暖燃煤直接污染大气,并释放产生温室效应的CO2,这已是老问题。大量空调设备的使用会放出CFC物质破坏大气的臭氧层已成为全球性的环境保护问题。此外,空调器在夏季将热量排入大气,在冬季又从大气中大量吸热,当空调器高密集度安装时,还会严重影响城市区域小气候。
城市化的发展使建筑能耗越来越大,工业发达国家建筑能耗占总能耗的30%~50%,我国的建筑能耗也达总能耗的10%以
上。目前人类所消费的能源绝大部分属于枯竭性能源(如石油、煤炭、天然气等),有关专家估计,按目前的能源消费增长率持续下去,枯竭性能耗只能维持200~300a左右,因此人类面临的能源问题是严峻的。本世纪70年代初世界性的能源危机曾推动了节能建筑的发展。
当今的建筑除了能耗大的问题外,还存在病态建筑的问题。根据欧洲的有关调查报告,在非工业建筑中,健康建筑(HealthyBuildings)只占50%~70%。所谓与建筑有关的疾病(BRI,BuildingRelatedIllness)指的是由于建筑物室内环境有害辐射(电磁辐射和放射性物质)、温湿度太高或太低、生物化学有害物浓度太高等引起的各种疾病或身体虚弱。建筑综合症(SBS,SickBuildingSyndrome)指的是建筑环境使人们产生的各种不舒适症状,如头痛、疲劳、感冒、恶心等。建筑建筑指的是具有满足人们居住或生产等活动要求的适宜的热环境、光环境、声环境和空气环境的建筑物。其中热环境包括室内的温度、湿度、洁净度和空气的流动速度等,光环境包括建筑物室内外的照明和色彩等,声环境包括建筑物室内外的噪声、音响效果和震动等,空气环境包括室内外的空气组成成分、气味等。造成SBS的主要原因可能是缺乏对建筑物的合理维护,建筑物热负荷、污染物负荷的变化,建筑设备控制方案的改变,或者建筑设计不合理等。
低能耗健康建筑指充分利用自然能源的被动式供热空调建筑,它能提供人们生活和生产需要的建筑环境,保证人体的卫生和健康,同时具有节能建筑能耗低的特点。低能耗健康建筑的研究在欧洲和日本等国家已受到相当的重视,美国由于能源比较丰富,着重研究的是健康建筑。MiltonKeynes是英国发展最快的城市,它位于伦敦和伯明翰的中间。MiltonKeynes有一个能源公园(MiltonKeynesEnergyPark),其中的建筑统一规划和设计,应用了多种建筑节能措施。该能源公园的建筑能耗指标是一般建筑的一半,因此深受用户欢迎。我国是发展中国家,能源的建筑速度远跟不上国民经济发展需求。目前我国人均年能耗不到1t标准煤(只达到世界平均值的三分之一),而想在本世纪末实现"小康"水平,人均能耗至少要达1.5~1.6t标准
煤。可见,降低建筑能耗,大力宣传和发展低能耗健康建筑将成为我国在21世纪的一个迫切和重要的工程。
地球是人类生存与发展的基础,为人类社会的文明和进步提供了适宜的空间和丰富的自然资源。近30年来,由于人口增
长,工农业发展,已经导致生态环境恶化和气候变化。1972年在斯德哥尔摩召开的联合国人类环境会议上,世界各国政府的代表共同发表《人类环境宣言》,第一次正式表达了世界各国人民对保护环境问题的强烈关注,明确提出可持续发展的概念。20年后的1992年6月3~14日,在里约热内卢召开的联合国环境与发展大会上,来自一百多个国家和地区的一百多位政府首脑通过了《里约宣言》和《21世纪议程》两个纲领性文件。人类理智地选择可持续发展。可持续发展的最广泛的定义是"人类应享有以与自然相和谐的方式过健康而富有生产成果的生活权利",并"公平地满足今年后代在发展与环境方面的需要"。可持续发展的思想实质,一方面要求人类在生产时说可能地少投入、多产出;另一方面又要求人类在消费时尽可能地多利用、少排放。因
此,人类在转变传统发展模式、实行可持续发展战略的时候,必须纠正过去那种单纯靠增加投入、加大消耗实现发展的模式和以牺牲环境来增加产出的错误做法,从而使经济发展更少地依赖地球上有限的资源,而更多地与地球的承载能力达到有机的协
调。可持续发展强度以长远和全局的辩证眼光看待环境和发展,社会和经济的发展必须与地球生态自然环境的变化相适应,人类对自然资源和能源的消耗不能超出全球生态环境的极限,这样才能"成功地为后代留下一个可自下而上的星球"。
人类的绝大部分生活和生产活动在人居环境里进行,随着人们对建筑环境要求的提高,建筑一方面消耗更多的自然能源和资源,另一方面产生和排放更多的温室气体和废物。追溯历史,早在1980年,国际建筑师协会第14届大会发出的建筑师华沙宣言指出:要"认识到人类--建筑--环境三者之间有密切的相关性"。人居环境可持续发展要综合考虑城市化发展和环境保护问题,在保护中发展,在发展中重视保护。大力推广低能耗健康建筑是人居环境可持续发展的重要保证之一,人类不应该为短期的目的而牺牲长期的资源和环境,应时刻记住"地球不是我们从父辈那儿继承来的,而是从从自己的后代那儿借来的"。
2低能耗健康建筑的关键技术
低能耗健康建筑的实现涉及城市能源规划、节能建筑设计、城市微气候改善和建筑自动化等领域的科学技术的研究和应
用。
2.1城市能源规划
全面解决建筑物供暖和空调问题,对适应城市化的飞速发展,缓解能源紧张特别是电力供应不足问题,以及保护城市局部环境及大气臭氧层,都有极重要的意义。解决这一问题的关键在于合理的城市能源规划。通过研究城市能耗结构、能源转换、能源利用等环节,结合城市规划对整个能源系统进行总体设计,研究为解决建筑物供热、供冷、供燃气等的需要应配置的最合理的能源转化与能源输送系统,重点为我国北方地区热电联产、供冷相适应的大型的供热、供冷方式,与集中供热、供冷相适应的大型蓄冷蓄热装置以及全面规划电力、煤气、冷热源及蓄能的能源系统。
城市的能源规划首先要估算城市的能源需求,包括生活用能(热水、照明、电器、炊事、供暖、空调)和生产用能(工业、农业、林业、其它产业)的性质用量。然后要考察城市的能源结构,对各种可用能源,如电能、煤、燃气、沼气、太阳能、风能、潮汐能、地热能,进行定性和定量的调查和研究。最后制定出城市冷、热、水、电、气等能源的统一、联合供应,以实现城市能源系统的最优的社会和经济效果。
2.2节能建筑设计
节能建筑的设计思想是充分利用建筑所在环境的自然能源和条件,在尽量不能常规能源的条件下,创造出人们生活和生产需要的室内外环境。节能建筑的设计关系到三方面的研究内容:当地气候特征,室内环境的设计要求,以及建筑物的结构特
征。
当地气候特征指当地一年四季室外气象条件,如空气的温湿度、风速和风向、日照率、降雨量、积雪等。在冬季日照率大的地方,可以考虑太阳能的利用,如被动式太阳房、太阳能集热器。夏季日照率大的地方则要考虑建筑物的有效遮阳措施。夏季昼夜温差大的地方,可以利用建筑物的蓄冷特性进行自然冷却。
室内环境的设计要求包括对室内空气温湿度的要求。传统的设计方法要求空调建筑的室内环境必须维持在一个比较狭窄的温湿度范围,如温度在25~28℃之间,相对湿度在50%~70%之间。空调设备的容量是根据维持整个空调要求的温湿度值来决定的。近年来大量空调建筑的使用已带来所谓空调建筑综合症的问题,那长期生活在空调建筑中的人出现的某些症状,如疲劳、易感冒、恶等,总之是体抵抗环境变化的能力降低了。这是由于空调建筑的室内环境比较稳定,空气温湿度变化小;另一方面由于空调建筑的密封性好,室内空气品质差,人们得不到足够的新鲜空气。目前民办各国都在极力提倡FreeCoolingBuilding等利用自然冷却的非空调建筑,通过合理设计和使用管理,某些气候地区完全可以不使用常规能源而维持建筑环境达到设计要求,这种建筑就是所谓的"零能源"建筑(ZeroEnergyBuildings)。室内环境的设计应建立在对人体热舒适性研究的基础上。有关研究指出在室温不超过30℃房间,完全可以通过风扇提供的动态风来维持人体的热舒适。即使需要空调的房
间,也可以采用区域空调的办法来维持人体所在工作区的热舒适性,而没有必要维持非工作区的温湿度。可见采用区域性动态空调的方法会大大降低建筑物空调的能耗。
建筑物的结构特征指建筑物的造型、朝向、围护结构保温情况,外墙外窗的遮阳情况,以及建筑空间的通风换气情况。合理的建筑结构应该在夏季有效地组织通风和防止太阳照射,减少室内过热和潮湿;在冬季有效地利用太阳能对外墙外窗进行保温,提高室内温度;在过渡季有效地利用室外空气进行通风,改善室内空气品质。有关调查指出,位于同一地方的相同类型的建筑物,由于建筑结构的不同会导致能耗指标相差超过一倍。
2.3城市微气候改善
城市化的发展使为人类开始意识到建筑对城市微气候的影响。合理规划建筑形式与位置以改善城市小气候,妥善处理空调系统对外的热污染,以及全面考虑绿化、遮阳等对城市环境的影响将是城市建设规划和设计中的一个重要组成部分。
建筑群的布置应注意建筑物的空间和平面的布局,以减少和控制城市风沙和建筑物之间的强烈辐射对环境污染的作用。
城市水资源的规划对微气候也起明显的作用。河道的合理布置和走向往往可以改善城市局部区域的热岛效应。
城市的三维绿化对防止夏季太阳强烈照射,改善空气品质和美化环境都能起到不可估量的积极作用。
从气象观测数据可以知道,城市市中心的环境温度一般比效区的环境温度高出3℃左右。城市市中心由于工业、商业、娱乐业等建筑密集,加上人口也相对多,交通拥挤,造成市中心的热量相对大得多,形成局部热岛效应,如何改善市中心的微气候已成为城市人居环境研究的一个课题。
2.4建筑自动化
建筑自动化指建筑设备系统(如供热空调系统、给排水系统、照明系统、运输系统、消防系统、保安系统、办公系统、通讯系统等)的监测、管理、运行和控制的自动化。智能大厦的基础是通讯自动化系统CA、办公自动化系统OA、大楼自动化管理系统BA、消防自动化系统FA和信息自动化系统MA的有机统一。建筑自动化要求建筑设备系统的合理设计、有效使用以及运行控制过程中的能量节约,以保证建筑设备在提供要求的建筑环境的同时,达到初投资、运行费和维修服务费最小的优化目标。
建筑自动化不仅是实现能耗建筑的必要条件,而且也是建筑安全、舒适和适应性的保证。随着建筑物规模的增大(如日本计划在下个世纪建造一能够容纳一个城市的建筑,也称"建筑城市"),对整个建筑物的规划、设计和管理越来越像是对一个城市的规划、设计和管理。计算机技术的发展和应用为建筑自动化提供物质基础和技术手段。
3结束语
随着人们对"人类-建筑-环境"认识的深入,人居环境的可持续发展逐渐成为全球普遍关注的问题。低能耗健康建筑追求在尽量少用不可再生自然资源和能源的条件下,为人们生活和生产创造卫生、健康和合理的建筑环境,因此它是保证人居环境可持续发展的关键之一。低能耗健康建筑的实现取决于城市能源规划、节能建筑设计、城市微气候改善和建筑自动化等领域的科学技术的研究和应用。
4参考文献
1中国政府21世纪的白皮书
2DCroom.FutureHorizonsinBuildingEnvironmentalEngineering.Tsinghua-HVAC-95.北京,1995,9。
关键词:外窗传热系数遮阳系数建筑能耗建筑节能
我国行业标准《夏热冬冷地区居住建筑节能设计标准》(JGJ134-2001)第四章”建筑和建筑热工节能设计”中,对外窗热工性能作了如下规定:
4.0.4:外窗(包括阳台门的透明部份)的面积不应过大。不同朝向、不同窗墙面积比的外窗其传热系数应符合表4.0.4的规定。(表4.0.4略)
4.0.6外窗宜设置活动外遮阳。
该标准对外窗保温性能(传热系数K)作了具体规定,并建议外窗设置活动外遮阳,但标准对外窗隔热性能(遮阳系数SC或太阳传热因子SHGC)没有作出具体规定,不能不说是该标准的一个不足。实际上,我国夏热冬冷地区居住建筑的节能不仅与外窗的保温性能,而且与外窗的隔热性能紧密相关的。
本文首先确定了夏热冬冷地区基准性住宅和住宅节能方案,并选取上海、南京、武汉和重庆4个代表性城市作为分析对象,使用美国劳伦斯.伯克力国家实验室开发的DOE-2软件,对基准性住宅和3000多个节能方案进行摸拟计算,分析外窗传热系数(K)和遮阳系数(SC)对居住建筑能耗影响,并提出相应的看法和建议.
一、基准住宅的确定
(一)基准住宅模型是一座六层楼住宅,建筑平面如图1所示。
基准住宅热工参数和计算条件如下:
1、室内温度设定:冬季16℃,夏季26℃;
2、外墙:24cm粘土实心砖K=1.833W/(m2·K);
3、屋顶:砼板+保温板K=1.872W/(m2·K);
4、外墙面太阳辐射吸收系数ρ=0.7;
5、外窗:普通单玻铝合金窗,K=6.0W/(m2·K),SC=0.9;
6、建筑平均窗墙面积比:CM=0.3009;
7、换气次数:n=1.5;
8、设备能效比:冬季EER=1.0,夏季EER=2.2;
9、内热源:照明0.5875W/m2,其它251W(其中显热180W,潜热71W)。
(二)4个城市基准住宅全年能耗值计算结果
从表1可看出,4个地区住宅夏季空调能耗均占全年采暖与空调总能耗20%或以上,而夏季空调能耗中外窗太阳辐射传热占了相当大的比例,因此夏热冬冷地区居住建筑节能中,外窗隔热性能是不可忽视的重要因素。
表1城市上海南京武汉重庆
年采暖空调总能耗P总(kWh/m2)146.67164.27157.60116.67
年采暖能耗P暖(kWh/m2)116.98131.88117.6079.38
年空调能耗P空(kWh/m2)29.6932.4040.0037.29
空调能耗占总能耗比例%20.2419.7225.3831.96
二、节能方案的选择
1.室内温度设定:冬季16℃,夏季26℃;
2.外墙:24cm粘土实心砖+保温K=1.0W/(m2·K)和K=1.5W/(m2·K);
3.外墙面太阳辐射吸收系数ρ=0.7;
4.屋顶:砼板+保温板K=1.0W/(m2·K);
5.换气次数:n=1.0;
6.设备能效比:冬季EER=1.9,夏季EER=2.3;
7.内热源:照明0.5875W/m2,其它251W(其中显热180W,潜热71W);
8.建筑窗墙面积比CM变化范围:0.2498,0.3009、0.3535,0.3895,0.4256,0.4718;
9.外窗K和SC变化范围:
K—6.0,5.5,5.0,4.5,4.0,3.5,3.0,2.5,2.0;
SC—0.9,0.8,0.7,0.6,0.5,0.4,0.3。
三、外窗保温隔热性能(K、SC)对住宅能耗的影响
本文通过3000多个节能方案的摸拟计算,选取代表性数据,绘制了外窗K值分别为3.0、4.5、6.0时的P-SC曲线图。图中,P总为全年采暖与空调总能耗,P空为夏季空调能耗,建筑平均窗墙面积比CM=0.3009。
从以上各地的P—SC曲线图可看出:
1.当建筑平均窗墙比CM不变,外窗K值增大(保温性能减弱),住宅年总能耗也随之增大;当外窗K值从0.3增大到0.6时,全地区各地住宅年总能耗平均增大15%左右.但K值变化对住宅夏季空调能耗影响不大。
2.当建筑平均窗墙比CM不变,外窗SC值增大(隔热性能减弱),住宅年总能耗也随之增大;当外窗SC值从0.3增大到0.9时,全地区各地住宅年总能耗平均增大9%左右,但东部上海、南京等地增大值小于中西部武汉、重庆等地增大值;SC值变化对住宅夏季空调能耗影响甚大,如在重庆,SC从0.3值增大到0.9时,空调能耗增大约20%。总之,SC值的变化,不仅对住宅夏季空调能耗,而且对全年总能耗均有影响,因此夏热冬冷地区居住建筑节能应考虑外窗遮阳隔热性能的影响。
表2列出了外窗K、SC值变化对住宅全年采暖与空调总能耗影响的部分数据。
四、夏热冬冷地区外窗热工性能节能设计
通过分析,在保证住宅节能50%的目标下,本文提出夏热冬冷地区外窗传热系数K和遮阳系数SC(太阳得热因子SHGC)的限值表3,供设计人员和今后对该标准修改时参考。
夏热冬冷地区居住建筑外窗的传热系数和遮阳系数限值表3外墙外窗遮阳系数SC(SHGC)外窗的传热系数K[W/(m2·K)]
平均窗墙面积比CM≤0.25平均窗墙面积比0.25<CM≤0.30平均窗墙面积比0.30<CM≤0.35平均窗墙面积比0.35<CM≤0.40平均窗墙面积比0.40<CM≤0.45
K≤1.0D≥2.5ρ=0.70.9(0.80)≤6.0≤6.0≤5.0≤4.0≤3.0
0.8(0.71)≤6.0≤6.0≤5.5≤4.5≤3.0
0.7(0.62)≤6.0≤6.0≤5.5≤5.0≤4.0
0.6(0.53)≤6.0≤6.0≤6.0≤5.0≤4.0
0.5(0.44)≤6.0≤6.0≤6.0≤5.0≤4.0
0.4(0.36)≤6.0≤6.0≤6.0≤5.5≤4.5
0.3(0.27)≤6.0≤6.0≤6.0≤5.5≤4.5
K≤1.5D≥3.0ρ=0.70.9(0.80)≤5.5≤4.0≤3.5≤2.5---
0.8(0.71)≤5.5≤4.0≤4.0≤3.0≤2.0
0.7(0.62)≤5.5≤4.5≤4.0≤3.0≤2.5
0.6(0.53)≤6.0≤5.0≤4.5≤3.5≤3.0
0.5(0.44)≤6.0≤5.0≤4.5≤4.0≤3.5
0.4(0.36)≤6.0≤5.0≤4.5≤4.0≤3.5
0.3(0.27)≤6.0≤5.5≤4.5≤4.0≤3.5
参考文献:
我国的建筑能耗现状与趋势
我国建筑总能耗约占社会终端能耗的20.7%.其中,北方城镇建筑采暖和农村生活用煤约为1.6亿吨标煤/年,占我国2004年煤产量的11.4%;建筑用电和其它类型的建筑用能(炊事、照明、家电、生活热水等)折合为电力,总计约为5500亿度/年,占全国社会终端电耗的27%~29%.
1、北方城镇采暖能耗
我国北方城镇采暖能耗占全国建筑总能耗的36%,为建筑能源消耗的最大组成部分。单位面积采暖平均能耗折合标准煤为20kg/m2·年,为北欧等同纬度条件下建筑采暖能耗的2~4倍。能耗高的主要原因有3个。一是围护结构保温不良。二是供热系统效率不高,各输配环节热量损失严重。三是热源效率不高。由于大量小型燃煤锅炉效率低下,热源目前的平均节能潜力在15%~20%.
2、大型公共建筑能耗
目前我国有5亿m2左右的大型公共建筑。耗电量为70~300kwh/m2·年,为住宅的10~20倍,是建筑能源消耗的高密度领域。调查结果表明,这类建筑能源浪费现象仍较严重,有很大的节能潜力。
3、住宅与一般公共建筑的非采暖能耗
我国城镇的住宅总面积约为100亿m2.除采暖外的住宅能耗包括照明、炊事、生活热水、家电、空调等,折合用电量为10~30kwh/m2·年,用电总量约占我国全年供电量的10%.一般公共建筑总面积约55亿m2.用电总量约占我国全年供电量的8%.
目前这两类建筑的能耗水平低于发达国家,这主要是由于建筑提供的服务水平不高。由于我国能源费用相对于居民收入偏高,绝大部分城镇住宅的用电水平较低,生活热水用量远小于发达国家水平。
随着生活水平的提高,住宅和一般公共建筑内用户提出了更高的建筑服务水平要求。此外,近年来在一些大城市出现了一批高档豪华住宅,户均用电水平几倍甚至几十倍于普通住宅,此类高能耗住宅有大幅增长的趋势。对于能耗原本较低的一般办公建筑进行二次装修和加装中央空调系统,盲目提高建筑内部的“豪华性”,也会造成此类建筑能耗的成倍增长。
4、农村生活能耗
我国农村建筑面积约为240亿m2,总耗电约900亿度/年,生活用标准煤0.3亿吨/年。
目前我国农村的煤炭、电力等商品能源消耗量很低。根据调查,目前农村建筑使用初级生物质能源的能源利用效率很低,并在陆续被燃煤等常规商品能源所替代。如果这类非商品能源完全被常规商品能源所替代,则我国建筑能耗将增加一倍。
5、长江流域采暖需求
我国长江流域以往的建筑设计都没有考虑采暖。目前夏季空调已广泛普及,而建设采暖系统、改善冬季室内热环境的要求也日趋增长。
预计到2020年,长江地区将有50亿m2左右的建筑面积需要采暖。预计每年将新增采暖煤1亿吨标煤左右,接近目前我国北方建筑每年的采暖能耗总和。
我国建筑能耗发展趋势
我国能源供给和经济发展必须考虑新增建筑所需的能源供给问题。按照目前的建筑能耗状况,到2020年我国建筑能耗将比2004年增加2.5亿吨/年标煤和新增耗电5800~6300亿度/年,总计折合电力约1.3万亿度,新增量相当于目前建筑总能耗的1.3倍。
根据发达国家经验,随着城市发展,建筑将超越工业、交通等其它行业而最终居于社会能源消耗的首位,达到33%左右。我国城市化进程如果按照发达国家发展模式,使人均建筑能耗接近发达国家的人均水平,需要消耗全球目前消耗的能源总量的1/4来满足中国建筑的用能要求。因此,必须探索一条不同于世界上其他发达国家的节能途径,大幅度降低建筑能耗,实现城市建设的可持续发展。
当前建筑节能的重要问题
当前我国各级政府高度重视建筑节能。我们认为,要研究建筑节能的突破点,优化配置有限资源,进而推动我国建筑节能事业取得重大进展。
1、走出集中供热分户计量改革的困境
改变供热计量按面积收费的方式,实行“分户计量,按热量收费”的目的一是促进建筑保温,二是鼓励行为节能。但分户计量不易操作。
采用分楼计量可以使计量改革工作走出困境。如果对每座建筑的用热总量进行计量并据其收费,楼内各户按面积分摊,计量工作可大大简化,可操作性强,分户墙传热等各种问题也可迎刃而解。按整座建筑供热量计量收费同样可激励新建建筑采用保温措施和推进既有建筑的节能改造。为了减少楼内局部空间过热的问题,可推行“供水温度分楼可调”新技术,采用混水或换热的方式调节每座建筑入口的供水温度,在建筑内实行“大流量、小温差、低水温”供热方式,在室外管网实行“小流量、大温差”的循环方式。可大幅度降低集中供热系统的热损失,从而显著降低北方地区集中供热能耗。
2、长江流域不宜发展大规模集中供热或热电冷三联供
目前在长江流域建设大型热电联产集中供热和热电冷三联供项目,无论是以燃煤还是以燃气为动力,都存在很多的能耗不合理问题。长江流域地区冬季短夏季长,而夏季使用发电余热制冷时的制冷效率仅为电制冷效率的20%左右。采用集中供冷要依靠大型循环管网输送冷水,这直接导致循环水泵电耗增加。
长江流域的特点是:冬季短,室外温度多在0℃左右;夏季长,普遍需要空调;梅雨期需要除湿;地表水资源丰富。对于这种气候与自然条件,应该发展各种热泵方式,系统解决采暖和空调需求。
3、科学规划南方地区建筑节能工作
我国南方地区建筑节能重点在于改善围护结构的保温。针对南方的气候条件,应推广各种屋顶遮阳、外墙遮阳、窗户外遮阳等措施,以减少太阳辐射;加强各种自然通风手段,通过自然通风缩短空调运行时间;开发和推广主动或被动式除湿装置,降低室内湿度,适当提高室内空调温度等,都可以产生更大的节能效果。
4、探讨社会主义新农村的可持续发展的能源消耗模式
我国农村土地资源相对充足,建筑容积率低;秸秆、薪柴、粪便等生物质能源丰富,生物质能源的生成物可被充分利用。农村的能源供应方式应以可再生能源为主,按照循环经济方式,发展沼气、生物质的高温热解制气、太阳能光热和光电应用以及风力发电。发展可再生能源替代常规商品能源的经济效益和可操作性也远高于城市。
5、发展和推广低能耗大型公共建筑技术
我国大型公共建筑不足城镇建筑总面积的4%,但能耗却占我国城镇建筑总能耗的20%以上。发展出一套解决中国实际问题的低能耗大型公共建筑技术,可大大缓解由于目前城市建设中大型公共建筑比例的增长将造成的城市电力供应紧张状况。
1.1节能改造措施该大楼经过20多年的使用,存在办公环境差,外立面效果为脏、乱;存在结构、消防安全隐患;室内舒适性差,建筑能耗高;生产流线不合理;部分建筑设备及建筑构件老化及超过使用年限等问题。这次改造采用的技术主要有:遮阳、通风等被动式节能技术;外窗改造优先的围护结构改造技术;以人为本高能效的空调系统改造技术;高效节能的供水系统改造技术;切合实际的供配电和照明系统改造技术;光伏发电可再生能源利用系统;智能可控的空调集中系统及能耗监测系统。由于原来的屋面为架空预制钢筋砼隔热板,开裂老化严重,防水年限过期。外墙是钢筋混凝土框架结构+粘土多孔砖,外窗是铝合金框普通玻璃推拉窗,没有外遮阳措施,且气密性、水密性差。这次护结构节能改造,采用倒置式防水屋面进行防水层改造,采用40厚挤塑聚苯板敷设保温隔热层,进行了局部屋顶绿化,并增加太阳能光伏板。建筑外墙基本不变,减少南向带型窗面积,增设窗间墙。改动墙体部分采用自保温墙体蒸压加气混凝土砌块。南向窗台部分加胶粉聚苯颗粒保温砂浆增强内保温。减少南向外墙面积,控制窗墙比。南、北、东、西向外窗更换为普通铝合金框中空玻璃。结合建筑外立面增设外遮阳,沿街北、西、部分南向外墙立面增设固定翼型遮阳百叶,沿街东向外墙立面增设电动式固定翼型遮阳百叶。通风设计结合内装修平面调整,通过室内办公空间分隔和家具排列顺应和引导自然通风,合理组织通风线路。供配电方面重新对供配电容量、敷设电缆、供配电线路保护和保护电器的选择性配合等参数进行核算;低压配电室、层分配电箱尽量设在负荷中心;低压配电室设集中无功补偿和“电容器+电抗器”组合的无源滤波治理措施。结合屋面节能改造,安装总容量50KWp的屋顶太阳能光伏建筑一体化组件,供配电系统结合屋顶50KWp太阳能光伏发电进行配电。照明部分因为原有照明系传统照明灯具,采用电感整流器,无照明自控系统。现在选用发光效率高的光源、灯具效率高的灯具及能耗等级高的镇流器,如办公室均采用T5细管径荧光灯和格栅灯盘,选用能耗低的电子整流器;公共部位采用光控和时间控制等相结合的智能控制方式,根据照度、人员活动区域自动控制照明。另外办公区照明结合办公功能和自然采光,合理采用分区、分组、集中和分散方式来安排照明;采用一般照明和局部照明相结合;采用合理的灯具安装方式;在满足安装高度及美观需求前提下,尽可能降低灯具的安装高度。供水方面原来一层生活用水由市政管网直接供水,二层以上由合用水箱上行下给供水;埋地合用水池、合用水箱、镀锌钢管给水管材不能满足卫生需求;无水表计量装置。现利用市政压力直接供水的层数提至三层;四层以上由屋面生活水箱供水,并根据季节和用水状况采用市政压力之二组补水或加压泵补水;水箱改用不锈钢材质,给水管材改为卫生、综合造价低的管材;增加了水表计量装置;增设了水池、水箱超高水位报警功能;并增加了直饮水系统,为办公人员提供了健康、安全的饮水条件。空调原来是分体空调,无新风系统;室外机设置在临近外墙,显得比较凌乱。改造采用分区VRV+部分新风系统;VRV变冷媒新风机组采用高效能的变频一拖多空调系统,能效4.2以上;利用冷热交换机组,利用排风的余冷(热)量来预冷(热)室外新风;室外机组集中屋面,不影响外墙整体效果。另外还设置了相应的建筑智能化系统,建立和利用福建省能耗监测系统展示平台,对节能改造系统集成展示。
1.2节能改造后节能改造后,对各部门的房间格局进行了重新设计,集体办公区主要以大开间为主,并将分体式空调改造为中央空调。改造后各楼层北楼和南楼的年总能耗、人均能耗及单位面积能耗统计如表1.4、表1.5所示。分析计算改造后各楼层单位面积年能耗量如表1.6所示。为了更直观的对比改造前后各楼层单位面积年能耗量,以柱状图的形式表示如图1.1所示。
2数据及效益分析
该办公楼节能改造项目已于2013年完成,经数据对比、分析和计算,改造后建筑节能率可达到50.17%。其中,供水系统改造后,由于采用节水型卫生器具及减压控流等技术措施,每年可节水约为0.2万吨,节水率约为22.5%。供配电与照明系统改造后,同比预期每年可节省3.2万kWh电量,屋顶50kWp太阳能光伏发电系统每年可发电约4.5万kWh。暖通专业节能改造后,一方面因建筑围护改造,隔热保温性能提高,设备配置的负荷容量降低了8%左右,空调系统的运行费用降低,另一方面,大楼改造前空调采用分体空调,效率低下,设备的能效比仅为2.6~2.7kw/kw,采用能效高的VRV空调系统后,制冷COP值达4.2kw/kw,IPLV值为5.4kw/kw。核算改造前空调年耗电量约45万kWh,改造后空调年耗电量仅约为25万kWh,改造前后空调年耗电节省量约18.13万kWh。总计年节约的电能,按发电煤耗计算,共能节省65.3吨标煤,实现减排161.4吨CO2,削减4.9吨SO2等。由此可见,本办公建筑的节能改造措施是有效和可行的。特别是,本既有建筑节能改造,采用的技术和方案基本上都是常规技术,除增加屋顶50kWp太阳能光伏发电系统外,改造所花费的投资也是正常的需求投资,但采用这些技术的理念都是先进和最适宜的。改造取得了节能的效果外,外立面有了焕然一新的现代建筑风格,室内办公环境极大改善,舒适性提高,生产流线合理、建筑设备使用便捷、安全。
3能耗监测系统
改造前,该建筑物没有安装能耗监测和分析系统,所以各分项能耗和总能耗只能通过人工统计和估算得出,不仅费时费力,而且由于部门之间的差异和不同时段工作时间长短的不同,导致所得能耗统计数据与实际能耗有一定的偏差,准确性不高。改造后,该建筑物引进了能耗监测和分项计量系统,系统如图1.2所示。该系统分为现场监控层、通讯管理层和监控主站层。现场监控层由多功能电能仪表组成,分别就地安装在各自的配电箱上,并以现场总线形式接入通讯管理层,介质采用屏蔽双绞线,主要完成测量、电量参数等相关信号采集上传等功能;通讯管理层主要由通讯管理机组成,其主要任务是数据的处理、存放、调配,通信规约的转换,各个区间的通信衔接以及对本地系统状态的监视等;监控主站层由监控主机、UPS、数据服务器、WEB服务器,分项计量及能耗监测系统应用软件组成。监控主站层通过以太网与通讯管理层相连,实时采集现场监控层的监控数据,可完成包括能耗数据采集、能耗分项计量、能耗区域管理、能耗设备管理、能效数据分析评估、系统优化策略、节能潜力评估、能效信息和用户定制等若干系统功能。能耗监测平台能够简化人工抄表及统计的烦琐工序,只要各仪表根据标准接入采集网络,监控中心就能定时、定点地获取相关数据。通过在平台上简单的设置及操作即可对各建筑数据统一管理。而且数据采集设备采用的是系统开发商自主研发的控制代码,不需操作系统支持,不被网络病毒侵害,能够免受外界网络攻击。另外,要求采集设备能保证断电一定时间内数据不丢失,或通讯异常时,设备能保存重要数据,通讯恢复后向监控中心断点续传重要数据。
4结语