欢迎来到优发表网,期刊支持:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

解一元一次方程教案范文

时间:2023-02-28 15:54:14

序论:在您撰写解一元一次方程教案时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

解一元一次方程教案

第1篇

一、素质教育目标

(一)知识教学点:1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程.

(二)能力训练点:通过新方法的学习,培养学生分析问题解决问题的能力及探索精神.

(三)德育渗透点:通过因式分解法的学习使学生树立转化的思想.

二、教学重点、难点、疑点及解决方法

1.教学重点:用因式分解法解一元二次方程.

式)

3.教学疑点:理解“充要条件”、“或”、“且”的含义.

三、教学步骤

(一)明确目标

学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.即可得x1=2,x2=-3.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.

(二)整体感知

所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x2+5x+6=0,因式分解后(x+2)(x+3)=0,得x+2=0或x+3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单.

(三)重点、难点的学习与目标完成过程

1.复习提问

零,那么这两个因式至少有一个等于零.反之,如果两个因式有一个等于零,它们的积也就等于零.

“或”有下列三层含义

①A=0且B≠0②A≠0且B=0③A=0且B=0

2.例1解方程x2+2x=0.

解:原方程可变形x(x+2)=0……第一步

x=0或x+2=0……第二步

x1=0,x2=-2.

教师提问、板书,学生回答.

分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.

例2用因式分解法解方程x2+2x-15=0.

解:原方程可变形为(x+5)(x-3)=0.

得,x+5=0或x-3=0.

x1=-5,x2=3.

教师板演,学生回答,总结因式分解的步骤:(一)方程化为一般形式;(二)方程左边因式分解;(三)至少一个一次因式等于零得到两个一元一次方程;(四)两个一元一次方程的解就是原方程的解.

练习:P.22中1、2.

第一题学生口答,第二题学生笔答,板演.

体会步骤及每一步的依据.

例3解方程3(x-2)-x(x-2)=0.

解:原方程可变形为(x-2)(3-x)=0.

x-2=0或3-x=0.

x1=2,x2=3.

教师板演,学生回答.

此方程不需去括号将方程变成一般形式.对于总结的步骤要具体情况具体分析.

练习P.22中3.

(2)(3x+2)2=4(x-3)2.

解:原式可变形为(3x+2)2-4(x-3)2=0.

[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0

即:(5x-4)(x+8)=0.

5x-4=0或x+8=0.

学生练习、板演、评价.教师引导,强化.

练习:解下列关于x的方程

6.(4x+2)2=x(2x+1).

学生练习、板演.教师强化,引导,训练其运算的速度.

练习P.22中4.

(四)总结、扩展

1.因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”

四、布置作业

教材P.21中A1、2.

教材P.23中B1、2(学有余力的学生做).

2.因式分解法解一元二次方程的步骤是:

(1)化方程为一般形式;

(2)将方程左边因式分解;

(3)至少有一个因式为零,得到两个一元二次方程;

(4)两个一元一次方程的解就是原方程的解.

但要具体情况具体分析.

3.因式分解的方法,突出了转化的思想方法,鲜明地显示了“二次”转化为“一次”的过程.

五、板书设计

12.2用因式分解法解一元二次方程(一)

例1.……例2……

二、因式分解法的步骤

(1)……练习:……

(2)…………

(3)……

(4)……

但要具体情况具体分析

六、作业参考答案

教材P.21中A1

(1)x1=-6,x2=-1

(2)x1=6,x2=-1

(3)y1=15,y2=2

(4)y1=12,y2=-5

(5)x1=1,x2=-11,

(6)x1=-2,x2=14

教材P.21中A2略

(1)解:原式可变为:(5mx-7)(mx-2)=0

5mx-7=0或mx-b=0

又m≠0

(2)解:原式可变形为

(2ax+3b)(5ax-b)=0

2ax+3b=0

或5ax-b=0

a≠0

教材P.23中B

1.解:(1)由y的值等于0

得x2-2x-3=0

变形为(x-3)(x+1)=0

x-3=0或x+1=0

x1=3,x2=-1

(2)由y的值等于-4

得x2-2x-3=-4

方程变形为x2-2x+1=0

(x-1)2=0

解得x1=x2=1

当x=3或x=-1时,y的值为0

当x=1时,y的值等于-4

教材P.23中B2

证明:x2-7xy+12y2=0

(x-3y)(x-4y)=0

第2篇

一、素质教育目标

(一)知识教学点:1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程.

(二)能力训练点:通过新方法的学习,培养学生分析问题解决问题的能力及探索精神.

(三)德育渗透点:通过因式分解法的学习使学生树立转化的思想.

二、教学重点、难点、疑点及解决方法

1.教学重点:用因式分解法解一元二次方程.

式)

3.教学疑点:理解“充要条件”、“或”、“且”的含义.

三、教学步骤

(一)明确目标

学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.即可得x1=2,x2=-3.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.

(二)整体感知

所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x2+5x+6=0,因式分解后(x+2)(x+3)=0,得x+2=0或x+3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单.

(三)重点、难点的学习与目标完成过程

1.复习提问

零,那么这两个因式至少有一个等于零.反之,如果两个因式有一个等于零,它们的积也就等于零.

“或”有下列三层含义

①A=0且B≠0②A≠0且B=0③A=0且B=0

2.例1解方程x2+2x=0.

解:原方程可变形x(x+2)=0……第一步

x=0或x+2=0……第二步

x1=0,x2=-2.

教师提问、板书,学生回答.

分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.

例2用因式分解法解方程x2+2x-15=0.

解:原方程可变形为(x+5)(x-3)=0.

得,x+5=0或x-3=0.

x1=-5,x2=3.

教师板演,学生回答,总结因式分解的步骤:(一)方程化为一般形式;(二)方程左边因式分解;(三)至少一个一次因式等于零得到两个一元一次方程;(四)两个一元一次方程的解就是原方程的解.

练习:P.22中1、2.

第一题学生口答,第二题学生笔答,板演.

体会步骤及每一步的依据.

例3解方程3(x-2)-x(x-2)=0.

解:原方程可变形为(x-2)(3-x)=0.

x-2=0或3-x=0.

x1=2,x2=3.

教师板演,学生回答.

此方程不需去括号将方程变成一般形式.对于总结的步骤要具体情况具体分析.

练习P.22中3.

(2)(3x+2)2=4(x-3)2.

解:原式可变形为(3x+2)2-4(x-3)2=0.

[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0

即:(5x-4)(x+8)=0.

5x-4=0或x+8=0.

学生练习、板演、评价.教师引导,强化.

练习:解下列关于x的方程

6.(4x+2)2=x(2x+1).

学生练习、板演.教师强化,引导,训练其运算的速度.

练习P.22中4.

(四)总结、扩展

1.因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”

四、布置作业

教材P.21中A1、2.

教材P.23中B1、2(学有余力的学生做).

2.因式分解法解一元二次方程的步骤是:

(1)化方程为一般形式;

(2)将方程左边因式分解;

(3)至少有一个因式为零,得到两个一元二次方程;

(4)两个一元一次方程的解就是原方程的解.

但要具体情况具体分析.

3.因式分解的方法,突出了转化的思想方法,鲜明地显示了“二次”转化为“一次”的过程.

五、板书设计

12.2用因式分解法解一元二次方程(一)

例1.……例2……

二、因式分解法的步骤

(1)……练习:……

(2)…………

(3)……

(4)……

但要具体情况具体分析

六、作业参考答案

教材P.21中A1

(1)x1=-6,x2=-1

(2)x1=6,x2=-1

(3)y1=15,y2=2

(4)y1=12,y2=-5

(5)x1=1,x2=-11,

(6)x1=-2,x2=14

教材P.21中A2略

(1)解:原式可变为:(5mx-7)(mx-2)=0

5mx-7=0或mx-b=0

又m≠0

(2)解:原式可变形为

(2ax+3b)(5ax-b)=0

2ax+3b=0

或5ax-b=0

a≠0

教材P.23中B

1.解:(1)由y的值等于0

得x2-2x-3=0

变形为(x-3)(x+1)=0

x-3=0或x+1=0

x1=3,x2=-1

(2)由y的值等于-4

得x2-2x-3=-4

方程变形为x2-2x+1=0

(x-1)2=0

解得x1=x2=1

当x=3或x=-1时,y的值为0

当x=1时,y的值等于-4

教材P.23中B2

证明:x2-7xy+12y2=0

(x-3y)(x-4y)=0

第3篇

一、素质教育目标

(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.

8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

四、布置作业

1.教材P.6练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章一元二次方程12.1用公式解一元二次方程

1.整式方程:……4.例1:……

2.一元二次方程……:……

3.一元二次方程的一般形式:

……5.练习:……

…………

六、课后习题参考答案

教材P.6A2.

教材P.6B1、2.

1.(1)二次项系数:ab一次项系数:c常数项:d.

(2)二次项系数:m-n一次项系数:0常数项:m+n.

2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.

思考题

(1)不能.如x3+2x2-4x=5.

第4篇

一、素质教育目标

(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.

8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

四、布置作业

1.教材P.6练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章一元二次方程12.1用公式解一元二次方程

1.整式方程:……4.例1:……

2.一元二次方程……:……

3.一元二次方程的一般形式:

……5.练习:……

…………

六、课后习题参考答案

教材P.6A2.

教材P.6B1、2.

1.(1)二次项系数:ab一次项系数:c常数项:d.

(2)二次项系数:m-n一次项系数:0常数项:m+n.

2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.

思考题

(1)不能.如x3+2x2-4x=5.

第5篇

一、素质教育目标

(一)知识教学点:能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.

(二)能力训练点:通过比较、分析、综合,培养学生分析问题解决问题的能力.

(三)德育渗透点:通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.

二、教学重点、难点和疑点

1.教学重点:熟练掌握用公式法解一元二次方程.

2.教学难点:用配方法解一元二次方程.

3.教学疑点:对“选择恰当的方法解一元二次方程”中“恰当”二字的理解.

三、教学步骤

(一)明确目标

解一元二次方程有四种方法,四种方法各有千秋,究竟选择什么方法最适当是本节课的目标.在熟练掌握各种方法的前提下,以针对一元二次方程的特点选择恰当的方法或者说是用简单的方法解一元二次方程是本节课的目的.

(二)整体感知

一元二次方程是通过直接开平方法及因式分解法将方程进行转化,达到降次的目的.这种转化的思想方法是将高次方程低次化经常采取的.是解高次方程中的重要的思想方法.

在一元二次方程的解法中,平方根的概念为直接开平方法的引入奠定了基础,符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的方程均适合用直接开平方法.直接开平方法为配方法奠定了基础,利用配方法可推导出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者较前者简单.但没有配方法就没有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是独立的一种方法.它和前三种方法没有任何联系,但蕴含的基本思想和直接开平方法一样,即由高次向低次转化的一种基本思想方法.方程的左边易分解,而右边为零的题目,均用因式分解法较简单.

(三)重点、难点的学习与目标完成过程

1.复习提问

(1)将下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项系数及常数项.

(1)3x2=x+4;

(2)(2x+1)(4x-2)=(2x-1)2+2;

(3)(x+3)(x-4)=-6;

(4)(x+1)2-2(x-1)=6x-5.

此组练习尽量让学生眼看、心算、口答,使学生练习眼、心、口的配合.

(2)解一元二次方程都学过哪些方法?说明这几种方法的联系及其特点.

直接开平方法:适合于解形如(ax+b)2=c(a、b、c为常数,a≠0c≥0)的方程,是配方法的基础.

配方法:是解一元二次方程的通法,是公式法的基础,没有配方法就没有公式法.

公式法:是解一元二次方程的通法,较配方法简单,是解一元二次方程最常用的方法.

因式分解法:是最简单的解一元二次方程的方法,但只适用于左边易分解而右边是零的一元二次方程.

直接开平方法与因式分解法都蕴含着由高次向低次转化的思想方法.

2.练习1.用直接开平方法解方程.

(1)(x-5)2=36;(2)(x-a)2=(a+b)2;

此组练习,学生板演、笔答、评价.切忌不要犯如下错误

①不是x-a=a+b而是x-a=±(a+b);

练习2.用配方法解方程.

(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)

配方法是解决代数问题的一大方法,用此法解方程尽管有点麻烦,但由此法推导出的求根公式,则是解一元二次方程最通用也是最常用的方法.

此练习的第2题注意以下两点:

(1)求解过程的严密性和严谨性.

(2)需分b2-4ac≥0及b2-4ac<0的两种情况的讨论.

此2题学生板演、练习、评价,教师引导,渗透.

练习3.用公式法解一元二次方程

练习4.用因式分解法解一元二次方程

(1)x2-3x+2=0;(2)3x(x-1)+2x=2;

解(2)原方程可变形为3x(x-1)+2(x-1)=0,

(x-1)(3x+2)=0,

x-1=0或3x+2=0.

如果将括号展开,重新整理,再用因式分解法则比较麻烦.

练习5.x取什么数时,3x2+6x-8的值和2x2-1的值相等.

解:由题意得3x2+6x-8=2x2-1.

变形为x2+6x-7=0.

(x+7)(x-1)=0.

x+7=0或x-1=0.

即x1=-7,x2=1.

当x=-7,x=1时,3x2+6x-8的值和2x2-1的值相等.

学生笔答、板演、评价,教师引导,强调书写步骤.

练习6.选择恰当的方法解下列方程

(1)选择直接开平方法比较简单,但也可以选用因式分解法.

(2)选择因式分解法较简单.

学生笔答、板演、老师渗透,点拨.

(四)总结、扩展

(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法对解某些一元二次方程是最简单的方法.在解一元二次方程时,应据方程的结构特点,选择恰当的方法去解.

(2)直接开平方法与因式分解法中都蕴含着由二次方程向一次方程转化的思想方法.由高次方程向低次方程的转化是解高次方程的思想方法.

四、布置作业

1.教材P.21中B1、2.

2.解关于x的方程.

(1)x2-2ax+a2-b2=0,

(2)x2+2(p-q)x-4pq=0.

4.(1)解方程

①(3x+2)2=3(x+2);

(2)方程(m2-3m+2)x2+(m-2)x+7=0,m为何值时①是一元二次方程;②是一元一次方程.

五、板书设计

12.2用因式分解法解一元二次方程(二)

四种方法练习1……练习2……

1.直接开平方法…………

2.配方法

3.公式法

4.因式分解法

六、作业参考答案

1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;

2:1秒

2.(1)解:原方程可变形为[x-(a+b)][x-(a-b)]=0.

x-(a+b)=0或x-(a-b)=0.

即x1=a+b,x2=a-b.

(2)解:原方程可变形为(x+2p)(x-2q)=0.

x+2p=0或x-2q=0.

即x1=-2p,x2=2q.

原方程可化为5x2+54x-107=0.

(2)解①m2-3m+2≠0..

m1≠1,m2≠2.

当m1≠1且m2≠2时,此方程是一元二次方程.

第6篇

一、素质教育目标

(一)知识教学点:能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.

(二)能力训练点:通过比较、分析、综合,培养学生分析问题解决问题的能力.

(三)德育渗透点:通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.

二、教学重点、难点和疑点

1.教学重点:熟练掌握用公式法解一元二次方程.

2.教学难点:用配方法解一元二次方程.

3.教学疑点:对“选择恰当的方法解一元二次方程”中“恰当”二字的理解.

三、教学步骤

(一)明确目标

解一元二次方程有四种方法,四种方法各有千秋,究竟选择什么方法最适当是本节课的目标.在熟练掌握各种方法的前提下,以针对一元二次方程的特点选择恰当的方法或者说是用简单的方法解一元二次方程是本节课的目的.

(二)整体感知

一元二次方程是通过直接开平方法及因式分解法将方程进行转化,达到降次的目的.这种转化的思想方法是将高次方程低次化经常采取的.是解高次方程中的重要的思想方法.

在一元二次方程的解法中,平方根的概念为直接开平方法的引入奠定了基础,符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的方程均适合用直接开平方法.直接开平方法为配方法奠定了基础,利用配方法可推导出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者较前者简单.但没有配方法就没有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是独立的一种方法.它和前三种方法没有任何联系,但蕴含的基本思想和直接开平方法一样,即由高次向低次转化的一种基本思想方法.方程的左边易分解,而右边为零的题目,均用因式分解法较简单.

(三)重点、难点的学习与目标完成过程

1.复习提问

(1)将下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项系数及常数项.

(1)3x2=x+4;

(2)(2x+1)(4x-2)=(2x-1)2+2;

(3)(x+3)(x-4)=-6;

(4)(x+1)2-2(x-1)=6x-5.

此组练习尽量让学生眼看、心算、口答,使学生练习眼、心、口的配合.

(2)解一元二次方程都学过哪些方法?说明这几种方法的联系及其特点.

直接开平方法:适合于解形如(ax+b)2=c(a、b、c为常数,a≠0c≥0)的方程,是配方法的基础.

配方法:是解一元二次方程的通法,是公式法的基础,没有配方法就没有公式法.

公式法:是解一元二次方程的通法,较配方法简单,是解一元二次方程最常用的方法.

因式分解法:是最简单的解一元二次方程的方法,但只适用于左边易分解而右边是零的一元二次方程.

直接开平方法与因式分解法都蕴含着由高次向低次转化的思想方法.

2.练习1.用直接开平方法解方程.

(1)(x-5)2=36;(2)(x-a)2=(a+b)2;

此组练习,学生板演、笔答、评价.切忌不要犯如下错误

①不是x-a=a+b而是x-a=±(a+b);

练习2.用配方法解方程.

(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)

配方法是解决代数问题的一大方法,用此法解方程尽管有点麻烦,但由此法推导出的求根公式,则是解一元二次方程最通用也是最常用的方法.

此练习的第2题注意以下两点:

(1)求解过程的严密性和严谨性.

(2)需分b2-4ac≥0及b2-4ac<0的两种情况的讨论.

此2题学生板演、练习、评价,教师引导,渗透.

练习3.用公式法解一元二次方程

练习4.用因式分解法解一元二次方程

(1)x2-3x+2=0;(2)3x(x-1)+2x=2;

解(2)原方程可变形为3x(x-1)+2(x-1)=0,

(x-1)(3x+2)=0,

x-1=0或3x+2=0.

如果将括号展开,重新整理,再用因式分解法则比较麻烦.

练习5.x取什么数时,3x2+6x-8的值和2x2-1的值相等.

解:由题意得3x2+6x-8=2x2-1.

变形为x2+6x-7=0.

(x+7)(x-1)=0.

x+7=0或x-1=0.

即x1=-7,x2=1.

当x=-7,x=1时,3x2+6x-8的值和2x2-1的值相等.

学生笔答、板演、评价,教师引导,强调书写步骤.

练习6.选择恰当的方法解下列方程

(1)选择直接开平方法比较简单,但也可以选用因式分解法.

(2)选择因式分解法较简单.

学生笔答、板演、老师渗透,点拨.

(四)总结、扩展

(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法对解某些一元二次方程是最简单的方法.在解一元二次方程时,应据方程的结构特点,选择恰当的方法去解.

(2)直接开平方法与因式分解法中都蕴含着由二次方程向一次方程转化的思想方法.由高次方程向低次方程的转化是解高次方程的思想方法.

四、布置作业

1.教材P.21中B1、2.

2.解关于x的方程.

(1)x2-2ax+a2-b2=0,

(2)x2+2(p-q)x-4pq=0.

4.(1)解方程

①(3x+2)2=3(x+2);

(2)方程(m2-3m+2)x2+(m-2)x+7=0,m为何值时①是一元二次方程;②是一元一次方程.

五、板书设计

12.2用因式分解法解一元二次方程(二)

四种方法练习1……练习2……

1.直接开平方法…………

2.配方法

3.公式法

4.因式分解法

六、作业参考答案

1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;

2:1秒

2.(1)解:原方程可变形为[x-(a+b)][x-(a-b)]=0.

x-(a+b)=0或x-(a-b)=0.

即x1=a+b,x2=a-b.

(2)解:原方程可变形为(x+2p)(x-2q)=0.

x+2p=0或x-2q=0.

即x1=-2p,x2=2q.

原方程可化为5x2+54x-107=0.

(2)解①m2-3m+2≠0..

m1≠1,m2≠2.

当m1≠1且m2≠2时,此方程是一元二次方程.

第7篇

一、素质教育目标

(一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.

(二)能力训练点:培养学生准确而简洁的计算能力及抽象概括能力.

(三)德育渗透点:通过两边同时开平方,将2次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.

二、教学重点、难点

1.教学重点:用直接开平方法解一元二次方程.

2.教学难点:(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法.(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.

三、教学步骤

(一)明确目标

在初二代数“数的开方”这一章中,学习了平方根和开平方运算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一个数平方根的运算叫做开平方运算”.正确理解这个概念,在本节课我们就可得到最简单的一元二次方程x2=a的解法,在此基础上,就可以解符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的一元二次方程,从而达到本节课的目的.

(二)整体感知

通过本节课的学习,使学生充分认识到:数学的新知识是建立在旧知识的基础上,化未知为已知是研究数学问题的一种方法,本节课引进的直接开平方法是建立在初二代数中平方根及开平方运算的基础上,可以说平方根的概念对初二代数和初三代数起到了承上启下的作用.而直接开平方法又为一元二次方程的其他解法打下坚实的基础,此法可以说起到一个抛砖引玉的作用.学生通过本节课的学习应深刻领会数学以旧引新的思维方法,在已学知识的基础上开发学生的创新意识.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同?

(2)平方根的概念及开平方运算?

2.引例:解方程x2-4=0.

解:移项,得x2=4.

两边开平方,得x=±2.

x1=2,x2=-2.

分析x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是求一个数平方根的运算.

练习:教材P.8中1(1)(2)(3)(6).学生在练习、板演过程中充分体会直接开平方法的步骤以及蕴含着关于平方根的一些概念.

3.例1解方程9x2-16=0.

解:移项,得:9x2=16,

此例题是在引例的基础上将二次项系数由1变为9,由此增加将二次项系数变为1的步骤.此题解法教师板书,学生回答,再次强化解题

负根.

练习:教材P.8中1(4)(5)(7)(8).

例2解方程(x+3)2=2.

分析:把x+3看成一个整体y.

例2把引例中的x变为x+3,反之就应把例2中的x+3看成一个整体,

两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想.

练习:教材P.8中2,此组练习更重要的是体会方程的左边不是未知数的平方,而是含有未知数的代数式的平方,而右边是个非负实数,采用直接开平方法便可以求解.

例3解方程(2-x)2-81=0.

解法(一)

移项,得:(2-x)2=81.

两边开平方,得:2-x=±9

2-x=9或2-x=-9.

x1=-7,x2=11.

解法(二)

(2-x)2=(x-2)2,

原方程可变形,得(x-2)2=81.

两边开平方,得x-2=±9.

x-2=9或x-2=-9.

x1=11,x2=-7.

比较两种方法,方法(二)较简单,不易出错.在解方程的过程中,要注意方程的结构特点,进行灵活适当的变换,择其简捷的方法,达到又快又准地求出方程解的目的.

练习:解下列方程:

(1)(1-x)2-18=0;(2)(2-x)2=4;

在实数范围内解一元二次方程,要求出满足这个方程的所有实数根,提醒学生注意不要丢掉负根,例x2+36=0,由于适合这个方程的实数x不存在,因为负数没有平方根,所以原方程无实数根.-x2=0,适合这个方程的根有两个,都是零.由此渗透方程根的存在情况.以上在教师恰当语言的引导下,由学生得出结论,培养学生善于思考的习惯和探索问题的精神.

那么具有怎样结构特点的一元二次方程用直接开平方法来解比较简单呢?启发引导学生,抽象概括出方程的结构:(ax+b)2=c(a,b,c为常数,a≠0,c≥0),即方程的一边是含有未知数的一次式的平方,另一边是非负实数.

(四)总结、扩展

引导学生进行本节课的小节.

1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).

2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为其它一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是实现方程由2次转化为一次,实现了由未知向已知的转化.由高次向低次的转化,是高次方程解法的一种根本途径.

3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.

四、布置作业

1.教材P.15中A1、2、

2、P10练习1、2;

P.16中B1、(学有余力的学生做).

五、板书设计

12.1用公式解一元二次方程(二)

引例:解方程x2-4=0例1解方程9x2-16=0

解:…………

……例2解方程(x+3)2=2

此种解一元二次方程的方法称为直接开平方法

形如(ax+b)2=c(a,b,

c为常数,a≠0,c≥0)可用直接开平方法

六、部分习题参考答案

教材P.15A1

以上(5)改为(3)(6)改为(4),去掉(7)(8)