欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

电源设计论文范文

时间:2023-02-28 15:52:52

序论:在您撰写电源设计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

电源设计论文

第1篇

1)实际导通时栅极偏压一般选12~15V为宜;而栅极负偏置电压可使IGBT可靠关断,一般负偏置电压选-5V为宜。在实际应用中为防止栅极驱动电路出现高压尖峰,最好在栅射之间并接两只反向串联的稳压二极管。

2)考虑到开通期间内部MOSFET产生Mill-er效应,要用大电流驱动源对栅极的输入电容进行快速充放电,以保证驱动信号有足够陡峭的上升、下降沿,加快开关速度,从而使IGBT的开关损耗尽量小。

3)选择合适的栅极串联电阻(一般为10Ω左右)和合适的栅射并联电阻(一般为数百欧姆),以保证动态驱动效果和防静电效果。根据以上要求,可设计出如图1所示的半桥LC串联谐振充电电源的IGBT驱动电路原理图。考虑到多数芯片难以承受20V及以上的电源电压,所以驱动电源Vo采用18V。二极管V79将其拆分为+12.9V和-5.1V,前者是维持IGBT导通的电压,后者用于IGBT关断的负电压保护。光耦TLP350将PWM弱电信号传输给驱动电路且实现了电气隔离,而驱动器TC4422A可为IGBT模块提供较高开关频率下的动态大电流开关信号,其输出端口串联的电容C65可以进一步加快开关速度。应注意一个IGBT模块有两个相同单管,所以实际需要两路不共地的18V稳压电源;另外IGBT栅射极之间的510Ω并联电阻应该直接焊装在其管脚上(未在图中画出),而且最好在管脚上并联焊装一个1N4733和1N4744(反向串联)稳压二极管,以保护IGBT的栅极。

2实验结果及分析

在变换器的LC输出端接入两个2W/200Ω的电阻进行静态测试。实验中使用的仪器为:Agi-lent54833A型示波器,10073D低压探头。示波器置于AC档对输出电压纹波进行观测,波形如图5所示。由实验结果看,输出纹波可以基本保持在±10mV以内,满足设计要求。此后对反激变换器电路板与IGBT模块驱动电路板进行对接联调。观察了IGBT栅极的驱动信号波形。由实验结果看,IGBT在开通时驱动电压接近13V,而在其关断时间内电压接近5V。这主要是电路中的光耦和大电流驱动器本身内部的晶体管对驱动电压有所消耗(即管压降)造成的,故不可能完全达到18V供电电源的水平。

3结论

第2篇

关键词:三端离线PWM开关;正激变换器;高频变压器设计

引言

TOPSwitch是美国功率集成公司(PI)于20世纪90年代中期推出的新型高频开关电源芯片,是三端离线PWM开关(ThreeterminalofflinePWMSwitch)的缩写。它将开关电源中最重要的两个部分——PWM控制集成电路和功率开关管MOSFET集成在一块芯片上,构成PWM/MOSFET合二为一集成芯片,使外部电路简化,其工作频率高达100kHz,交流输入电压85~265V,AC/DC转换效率高达90%。对200W以下的开关电源,采用TOPSwitch作为主功率器件与其他电路相比,体积小、重量轻,自我保护功能齐全,从而降低了开关电源设计的复杂性,是一种简捷的SMPS(SwitchModePowerSupply)设计方案。

TOPSwitch系列可在降压型,升压型,正激式和反激式等变换电路中使用。但是,在现有的参考文献以及PI公司提供的设计手册中,所介绍的都是用TOPSwitch制作单端反激式开关电源的设计方法。反激式变换器一般有两种工作方式:完全能量转换(电感电流不连续)和不完全能量转换(电感电流连续)。这两种工作方式的小信号传递函数是截然不同的,动态分析时要做不同的处理。实际上当变换器输入电压在一个较大范围发生变化,和(或者)负载电流在较大范围内变化时,必然跨越两种工作方式,因此,常要求反激式变换器在完全能量和不完全能量转换方式下都能稳定工作。但是,要求同一个电路能实现从一种工作方式转变为另一种工作方式,在设计上是较为困难的。而且,作为单片开关电源的核心部件高频变压器的设计,由于反激式变换器中的变压器兼有储能、限流、隔离的作用,在设计上要比正激式变换器中的高频变压器困难,对于初学者来说很难掌握。笔者采用TOP225Y设计了一种单端正激式开关电源电路,实验证明该电路是切实可行的。下面介绍其工作原理与设计方法,以供探讨。

1TOPSwitch系列应用于单端正激变换器中存在的问题

TOPSwitch的交流输入电压范围为85~265V,最大电压应力≤700V,这个耐压值对于输入最大直流电压Vmax=265×1.4=371V是足够的,但应用在一般的单端正激变换器中却存在问题。

图1是典型的单端正激变换器电路,设计时通常取NS=NP,Dmax<0.5(一般取0.4),按正激变换器工作过程,TOPSwitch关断期间,变压器初级的励磁能量通过NS,D1,E续流(泄放)。此时,TOPSwitch承受的最大电压为

VDSmax≥2E=2Vmax=742V(1)

大于TOPSwitch所能承受的最大电压应力700V,所以,TOPSwitch不能在一般通用的正激变换器中使用。

2TOPSwitch在单端正激变换器中的应用

由式(1)可知,TOPSwitch不能在典型单端正激变换器中应用的关键问题,是其在关断期间所承受的电压应力超过了允许值,如果能降低关断期间的电压应力,使它小于700V,则TOPSwitch仍可在单端正激变换器中应用。

2.1电路结构及工作原理

本文提出的TOPSwitch的单端正激变换器拓扑结构如图1所示。它与典型的单端正激变换器电路结构完全相同,只是变压器的去磁绕组的匝数为初级绕组匝数的2倍,即NS=2NP。

TOPSwitch关断时的等效电路如图2所示。

若NS与NP是紧耦合,则,即

VNP=1/2VNS=1/2E(2)

VDSmax=VNP+E=E=1.5×371

=556.5V<700V(3)

2.2最大工作占空比分析

按NP绕组每个开关周期正负V·s平衡原理,有

VNPon(Dmax/T)=VNPoff[(1-Dmax)/T](4)

式中:VNPon为TOPSwitch开通时变压器初级电压,VNPon=E;

VNPoff为TOPSwitch关断时变压器初级电压,VNPoff=(1/2)E。

解式(4)得

Dmax=1/3(5)

为保险,取Dmax≤30%

2.3去磁绕组电流分析

改变了去磁绕组与初级绕组的匝比后,变压器初级绕组仍应该满足A·s平衡,初级绕组最大励磁电流为

im(t)|t=DmaxT=Ism=DmaxT=(E/Lm)DmaxT(6)

式中:Lm为初级绕组励磁电感。

当im(t)=Ism时,B=Bmax,H=Hmax,则去磁电流最大值为

Ism==(Hmaxlc/Ns)=1/2Ipm(7)

式中:lc为磁路长度;

Ipm为初级电流的峰值。

根据图2(b)去磁电流的波形可以得到去磁电流的平均值和去磁电流的有效值Is分别为

下面讨论当NP=NS,Dmax=0.5与NP=NS,Dmax=0.3时的去磁电流的平均值和有效值。设上述两种情况下的Hmax或Bmax相等,即两种情况下励磁绕组的安匝数相等,则有

Im1NP1=Im2NP2(10)

式中:NP1为Dmax=0.5时的励磁绕组匝数;

NP2为Dmax=0.3时的励磁绕组匝数;

设Lm1及Lm2分别为Dmax=0.5和Dmax=0.3时的初级绕组励磁电感,则有

Im1=E/Lm1×0.5T为Dmax=0.5时的初级励磁电流;

Im2=E/Lm2×0.3T为Dmax=0.3时的初级励磁电流。

由式(10)及Lm1,Lm2分别与NP12,NP22成正比,可得两种情况下的励磁绕组匝数之比为

(NP1)/(NP2)=0.5/0.3

及(Im1)/(Im2)=(Np2)/(Np1)=0.3/0.5(12)

当NS1=NP1时和NS2=2NP2时去磁电流最大值分别为

Ism1=Im1=Im(13)

Ism2=Im2=(0.5/0.6)Im(14)

将式(10)~(14)有关参数代入式(8)~(9)可得到,当Dmax=0.5时和Dmax=0.3时的去磁电流平均值及与有效值Is1及Is2分别为

Is1=1/4ImImIs1=0.408Im(Dmax=0.5)

Is2≈0.29ImIs2=0.483Im(Dmax=0.3)

从计算结果可知,采用NS=2NP设计的去磁绕组的电流平均值或有效值要大于NS=NP设计的去磁绕组的电流值。因此,在选择去磁绕组的线径时要注意。

3高频变压器设计

由于电路元件少,该电源设计的关键是高频变压器,下面给出其设计方法。

3.1磁芯的选择

按照输出Vo=15V,Io=1.5A的要求,以及高频变压器考虑6%的余量,则输出功率Po=1.06×15×1.5=23.85W。根据输出功率选择磁芯,实际选取能输出25W功率的磁芯,根据有关设计手册选用EI25,查表可得该磁芯的有效截面积Ae=0.42cm2。

3.2工作磁感应强度ΔB的选择

ΔB=0.5BS,BS为磁芯的饱和磁感应强度,由于铁氧体的BS为0.2~0.3T,取ΔB=0.15T。

3.3初级绕组匝数NP的选取

选开关频率f=100kHz(T=10μs),按交流输入电压为最低值85V,Emin≈1.4×85V,Dmax=0.3计算则

取NP=53匝。

3.4去磁绕组匝数NS的选取

取NS=2NP=106匝。

3.5次级匝数NT的选取

输出电压要考虑整流二极管及绕组的压降,设输出电流为2A时的线路压降为7%,则空载输出电压VO0≈16V。

取NT=24匝。

3.6偏置绕组匝数NB的选取

取偏置电压为9V,根据变压器次级伏匝数相等的原则,由16/24=9/NB,得NB=13.5,取NB=14匝。

3.7TOPSwitch电流额定值ICN的选取

平均输入功率Pi==28.12W(假定η=0.8),在Dmax时的输入功率应为平均输入功率,因此Pi=DmaxEminIC=0.3×85×1.4×IC=28.12,则IC=0.85A,为了可靠并考虑调整电感量时电流不可避免的失控,实际选择的TOPSwitch电流额定值至少是两倍于此值,即ICN>1.7A。所以,我们选择ILIMIT=2A的TOP225Y。

4实验指标及主要波形

输入AC220V,频率50Hz,输出DCVo=15(1±1%)V,IO=1.5A,工作频率100kHz,图3及图4是实验中的主要波形。

图3中的1是开关管漏源电压VDS波形,2是输入直流电压E波形,由图可知VDS=1.5E;图4中的1是开关管漏源电压VDS波形,2是去磁绕组电流is波形,实验结果与理论分析是完全吻合的。

第3篇

但我的朋友又披露了另一个统计数字:他设计的典型电路板上有约30个独立的电源网络。每个电源网络都有不同的标称电源电压、精度以及调整率;在有些情况下,这些标称电压只相差十分之几伏。再则,每个电源网需要有自己的稳压器以及一系列去耦电容器,以便控制从近乎直流直至几百千赫带宽内的旁路阻抗。设计师必须分析并实现每个电源网络的供电与返回路径,以及大量的PCB板走线。在最终设计中,直流电源子系统的走线与电容器要占去电路板面积的一大部分。设计师必须精心建立所有这些因素的模型,以确保电流路径得当,以及IR压降很小。在达到这些电流电平时,这可不是件简单的工作。

然而,高质量电源子系统与其配电系统之间却存在一个难题。尽管供电在任何系统中都是一种不可或缺的功能,但它却无法获得用户的直接赞赏或认同。用户需要的是额外的特性、功能和性能;供电被看作设计中固有的部分。增加特性有利于营销宣传,并获得更多的利润,而电源网络的元件成本和占板面积却没有这些好处。事实上,有些人会把电源子系统占用的电路板面积看作没有意义的负担,就像财务部门或邮件收发室一样。

我希望,你作为系统设计师或电路设计师能对物料清单上的元器件的选择产生重大影响。我的这位朋友指出,为最大限度地减小电源网络的负担,你可以做几件基本工作。首先,要帮助电源子系统设计师开发设计一组基本的稳压器(可以使用线性稳压或开关稳压技术),这样,你就可以在电路板上重用这些设计。为了使这项工作有价值,你还应该根据每一个标称电压来平衡电流负载,使之处于同一范围内,因为你找不到一种经济实惠设计能支持10mA和1A两种负载。

第4篇

关键词:单片开关电源快速设计

TOPSwithⅡ

TheWayofQuickDesignforSinglechipSwitchingPowerSupplyAbctract:Threeendssinglechipswitchingpowersupplyisnewtypeswitchingpowersupplycorewhichhasbeenpopularsince1990.Thispaperintroducesquickdesignforsinglechipswitchingpowersupply.

Keywords:Singlechipswitchingpowersupply,Quickdesign,TopswithⅡ

在设计开关电源时,首先面临的问题是如何选择合适的单片开关电源芯片,既能满足要求,又不因选型不当而造成资源的浪费。然而,这并非易事。原因之一是单片开关电源现已形成四大系列、近70种型号,即使采用同一种封装的不同型号,其输出功率也各不相同;原因之二是选择芯片时,不仅要知道设计的输出功率PO,还必须预先确定开关电源的效率η和芯片的功率损耗PD,而后两个特征参数只有在设计安装好开关电源时才能测出来,在设计之前它们是未知的。

下面重点介绍利用TOPSwitch-II系列单片开关电源的功率损耗(PD)与电源效率(η)、输出功率(PO)关系曲线,快速选择芯片的方法,可圆满解决上述难题。在设计前,只要根据预期的输出功率和电源效率值,即可从曲线上查出最合适的单片开关电源型号及功率损耗值,这不仅简化了设计,还为选择散热器提

η/%(Uimin=85V)

中图法分类号:TN86文献标识码:A文章编码:02192713(2000)0948805

PO/W

图1宽范围输入且输出为5V时PD与η,PO的关系曲线

图2宽范围输入且输出为12V时PD与η,PO的关系曲线

图3固定输入且输出为5V时PD与η,PO的关系曲线

供了依据。

1TOPSwitch-II的PD与η、PO关系曲线

TOPSwitch-II系列的交流输入电压分宽范围输入(亦称通用输入),固定输入(也叫单一电压输入)两种情况。二者的交流输入电压分别为Ui=85V~265V,230V±15%。

1.1宽范围输入时PD与η,PO的关系曲线

TOP221~TOP227系列单片开关电源在宽范围输入(85V~265V)的条件下,当UO=+5V或者+12V时,PD与η、PO的关系曲线分别如图1、图2所示。这里假定交流输入电压最小值Uimin=85V,最高

η/%(Uimin=85V)

η/%(Uimin=195V)

交流输入电压Uimax=265V。图中的横坐标代表输出功率PO,纵坐标表示电源效率η。所画出的7条实线分别对应于TOP221~TOP227的电源效率,而15条虚线均为芯片功耗的等值线(下同)。

1.2固定输入时PD与η、PO的关系曲线

TOP221~TOP227系列在固定交流输入(230V±15%)条件下,当UO=+5V或+12V时,PD与η、PO的关系曲线分别如图3、图4所示。这两个曲线族对于208V、220V、240V也同样适用。现假定Uimin=195V,Uimax=265V。

2正确选择TOPSwitch-II芯片的方法

利用上述关系曲线迅速确定TOPSwitch-II芯片型号的设计程序如下:

(1)首先确定哪一幅曲线图适用。例如,当Ui=85V~265V,UO=+5V时,应选择图1。而当Ui=220V(即230V-230V×4.3%),UO=+12V时,就只能选图4;

(2)然后在横坐标上找出欲设计的输出功率点位置(PO);

(3)从输出功率点垂直向上移动,直到选中合适芯片所指的那条实曲线。如不适用,可继续向上查找另一条实线;

(4)再从等值线(虚线)上读出芯片的功耗PD。进而还可求出芯片的结温(Tj)以确定散热片的大小;

(5)最后转入电路设计阶段,包括高频变压器设计,元器件参数的选择等。

下面将通过3个典型设计实例加以说明。

例1:设计输出为5V、300W的通用开关电源

通用开关电源就意味着交流输入电压范围是85V~265V。又因UO=+5V,故必须查图1所示的曲线。首先从横坐标上找到PO=30W的输出功率点,然后垂直上移与TOP224的实线相交于一点,由纵坐标上查出该点的η=71.2%,最后从经过这点的那条等值线上查得PD=2.5W。这表明,选择TOP224就能输出30W功率,并且预期的电源效率为71.2%,芯片功耗为2.5W。

若觉得η=71.2%的效率指标偏低,还可继续往上查找TOP225的实线。同理,选择TOP225也能输出30W功率,而预期的电源效率将提高到75%,芯片功耗降至1.7W。

根据所得到的PD值,进而可完成散热片设计。这是因为在设计前对所用芯片功耗做出的估计是完全可信的。

例2:设计交流固定输入230V±15%,输出为直流12V、30W开关电源。

图4固定输入且输出为12V时PD与η,PO的关系曲线

η/%(Uimin=195V)

图5宽范围输入时K与Uimin′的关系

图6固定输入时K与Uimin′的关系

根据已知条件,从图4中可以查出,TOP223是最佳选择,此时PO=30W,η=85.2%,PD=0.8W。

例3:计算TOPswitch-II的结温

这里讲的结温是指管芯温度Tj。假定已知从结到器件表面的热阻为RθA(它包括TOPSwitch-II管芯到外壳的热阻Rθ1和外壳到散热片的热阻Rθ2)、环境温度为TA。再从相关曲线图中查出PD值,即可用下式求出芯片的结温:

Tj=PD·RθA+TA(1)

举例说明,TOP225的设计功耗为1.7W,RθA=20℃/W,TA=40℃,代入式(1)中得到Tj=74℃。设计时必须保证,在最高环境温度TAM下,芯片结温Tj低于100℃,才能使开关电源长期正常工作。

3根据输出功率比来修正等效输出功率等参数

3.1修正方法

如上所述,PD与η,PO的关系曲线均对交流输入电压最小值作了限制。图1和图2规定的Uimin=85V,而图3与图4规定Uimin=195V(即230V-230V×15%)。若交流输入电压最小值不符合上述规定,就会直接影响芯片的正确选择。此时须将实际的交流输入电压最小值Uimin′所对应的输入功率PO′,折算成Uimin为规定值时的等效功率PO,才能使用上述4图。折算系数亦称输出功率比(PO′/PO)用K表示。TOPSwitch-II在宽范围输入、固定输入两种情况下,K与U′min的特性曲线分别如图5、图6中的实线所示。需要说明几点:

(1)图5和图6的额定交流输入电压最小值Uimin依次为85V,195V,图中的横坐标仅标出Ui在低端的电压范围。

(2)当Uimin′>Uimin时K>1,即PO′>PO,这表明原来选中的芯片此时已具有更大的可用功率,必要时可选输出功率略低的芯片。当Uimin′(3)设初级电压为UOR,其典型值为135V。但在Uimin′<85V时,受TOPSwitch-II调节占空比能力的限制,UOR会按线性规律降低UOR′。此时折算系数K="UOR′"/UOR<1。图5和图6中的虚线表示UOR′/UOR与Uimin′的特性曲线,利用它可以修正初级感应电压值。

现将对输出功率进行修正的工作程序归纳如下:

(1)首先从图5、图6中选择适用的特性曲线,然后根据已知的Uimin′值查出折算系数K。

(2)将PO′折算成Uimin为规定值时的等效功率PO,有公式

PO=PO′/K(2)

(3)最后从图1~图4中选取适用的关系曲线,并根据PO值查出合适的芯片型号以及η、PD参数值。

下面通过一个典型的实例来说明修正方法。

例4:设计12V,35W的通用开关电源

已知Uimin=85V,假定Uimin′=90%×115V=103.5V。从图5中查出K=1.15。将PO′=35W、K=1.15一并代入式(2)中,计算出PO=30.4W。再根据PO值,从图2上查出最佳选择应是TOP224型芯片,此时η=81.6%,PD=2W。

若选TOP223,则η降至73.5%,PD增加到5W,显然不合适。倘若选TOP225型,就会造成资源浪费,因为它比TOP224的价格要高一些,且适合输出40W~60W的更大功率。

3.2相关参数的修正及选择

(1)修正初级电感量

在使用TOPSwitch-II系列设计开关电源时,高频变压器以及相关元件参数的典型情况见表1,这些数值可做为初选值。当Uimin′LP′=KLP(3)

查表1可知,使用TOP224时,LP=1475μH。当K=1.15时,LP′=1.15×1475=1696μH。

表2光耦合器参数随Uimin′的变化

最低交流输入电压Uimin(V)85195

LED的工作电流IF(mA)3.55.0

光敏三极管的发射极电流IE(mA)3.55.0

(2)对其他参数的影响

第5篇

本设计是DC/DC直流开关电源设计,首先将开关电源与线性电源进行对比,总结了开关电源的优点,并对其当前的发展以及在发展中存在的问题进行了描述,然后在对开关电源的整体结构进行了介绍的基础上,对开关电源的主回路和控制回路进行设计:在主回路中整流电路采用单相桥式、功率转换电路采用单端正激功率转换电路、采用增加副边绕组的方法实现多路输出,其中功率转换电路(DC/DC变换器)是开关电源的核心部分,对此部分进行了重点设计;控制电路采用PWM控制,控制器采用开关电源集成控制器GW1524、设计了过压保护电路、电压检测电路和电流检测电路,对各个部分的参数进行了计算并进行了元器件的选型。

【关键词】DC/DC变换器、PWM控制、整流、滤波。

Abstract

Inthispaper,Idesignedaswitchpowersupplysystemwiththreeoutputs:Comparetheswitchpowerwithlinearpoweratfirst,hassummarizedtheadvantageoftheswitchpower,havedescribeditspresentdevelopmentandtherearenaturalquestionsindevelopment.Onthebasisofthethingthatthewholestructuretotheswitchpowerhasmadeanintroduction,tothemainreturncircuitandcontrollingthereturncircuittodesignoftheswitchpower:Therectificationcircuitadoptsthesingle-phasebridgetypeinthemainreturncircuit,thepowerchangesthecircuitandadoptsanddefiesthepowertochangethecircuit,realizebyincreasingthewindingofonepairofsidessingleandwellthatmanywaysareexported,itisakeypartoftheswitchpowersupplythatthepowerchangescircuit(DC/DCtransformer),havedesignedthispartespecially;ThecontrolcircuitadoptsPWMtocontrol,thecontrolleradoptstheswitchpowerintegratedcontrollerGW1524,designthecircuittomeasurevoltageandthecircuittoelmeasureectriccurrent,selectingtypeofcalculatingandcarryingonthecomponentsandpartstheparameterofeachpart.

Keyword:DC/DCtransformer,PWMcontrol,rectification,strainingwaves.

1概述

电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

1.1开关电源的基本原理

开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比调整输出电压,开关电源的基本构成如图1-1所示,DC-DC变换器是进行功率变换的器件,是开关电源的核心部件,此外还有启动电路、过流与过压保护电路、噪声滤波器等组成部分。反馈回路检测其输出电压,并与基准电压比较,其误差通过误差放大器进行放大,控制脉宽调制电路,再经过驱动电路控制半导体开关的通断时间,从而调整输出电压。

1.2开关电源与线性电源的比较

是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压。它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低,还要安装很大的散热片。这种电源不适合计算机等设备的需要,将逐步被开关电源所取代。

1.3开关电源的发展与应用

当前,开关电源新技术产品正在向以下"四化"的方向发展:应用技术的高频化;硬件结构的模块化;软件控制的数字化;产品性能的绿色化。由此,新一代开关电源产品的技术含量大大提高,使之更加可靠、成熟、经济、实用。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),这样缩小了整机的体积,方便了整机设计和制造。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件间不再有传统的引线相连,这样的模块经过严格、合理的、热、电、机械方面的设计,达到优化完善的境地。

开关电源是一种采用开关方式控制的直流稳定电源,它以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。而当我们把开关电源的研究扩大到可调高电压、大电流时,以及将研究新技术应用于DC/AC变换器,即开拓了大功率应用领域,又使开关电源的应用范围扩大到了从发电厂设备至家用电器的所有应用电力、电子技术的电气工程领域。作为节能、节材、自动化、智能化、机电一体化的基础的开关电源,它的产品展现了广阔的市场前景。例如,发电厂的贮能发电设备、直流输电系统、动态无功补偿、机车牵引、交直流电机传动、不停电电源、汽车电子化、开关电源、中高频感应加热设备以及电视、通讯、办公自动化设备等。

1.4开关电源当前存在的问题

当我们对该技术进行深入研究后却发现它仍然存在着一些问题需要解决,而且有的问题还带有全局性:采用定频调宽的控制方式来设计电源,都以输出功率最大时所需的续流时间为依据来预留开关截止时间的,则负载所需的功率小于电源的最大输出功率时就必然造成了工作电流的不连续;"反峰电压"是开关导通期间存入高频变压器的励磁能量在开关关断时的一种表现,而励磁能量只能在、也必须在开关关断后的截止期间处理掉,既能高效处理励磁能量又能有效限制反峰电压的办法是存在的,那就是要及时地为励磁能量提供一个"低阻抗通道",并且为励磁能量的通过提供一段时间,但"单调"控制方法不具备这一条件;高频变压器的磁通复位问题;传统的电流取样方法是在功率回路中串联电阻,效率不高,这个问题向来是电源技术,尤其是以小体积、高功率密度见长的开关电源技术发展的"瓶颈";高频开关电源的并联同步输出问题。

以上的问题看似彼此独立,其实它们之间存在着一定的关联性解决这些问题,也许还是一条艰难而漫长的路。

2整流电路的设计

整流是将交流电变成脉动直流电的过程。电源变压器输出的交流电经整流电路得到一个大小变化但方向不变的脉动直流电。整流电路是由具有单向导电性的元件例如二极管、晶间管等整流元件组成的。

2.1整流电路的选择

单相整流电路有两种:电容输入型电路和扼流圈输入型电路

电容输入型的基本电路如图2-1:(a)为半波整流电路(b)为中间抽头的全波整流电路(c)桥式整流电路(d)倍压整流电路。

扼流圈输入型基本电路,用于负载电流I0较大的电路,扼流圈L的作用是抑制尖峰电流。

第6篇

摘要:小康住宅电源插座设置数量选用布置供电回路

电源插座是为家用电器提供电源接口的电气设备,也是住宅电气设计中使用较多的电气附件,它和人们生活有着十密切的关系。现在居民搬进新房后,普遍反映电源插座数量太少,使用极不方便,造成住户私拉乱接电源线和加装插座接线板,经常引起人身电击和电气火灾事故,给人身财产平安带来重大隐患。所以,电源插座的设计也是评价住宅电气设计的重要依据。笔者根据国外以及我国有关住宅规范及标准,结合多年来的实践提出住宅电源插座的数量及布置要求,供参考。

1电源插座设置数量的规定

(1)国家标准《住宅设计规范》(GB50096-1996)第6.5.4条规定,电源插座的

数量应不少于表1的规定;

(2)小康住宅电气设计《设计导则》中第4.3.5条规定,小康住宅中设置的插座数量不少于表2中的规定;

(3)《上海市工程建设规范》(DGJ08-20-2001)12.2.2条规定,电源插座设置数量应不少于表3的规定;

(4)“江苏省住宅设计标准”(DB32/380-2000)中规定,每套住宅内电源插座的设置,应符合表4中的规定;

(5)香港非凡行政区政府机电工程署1997年版《电力(线路)规例工作守则》家庭用途的装置及用具中规定,电源插座数量应不少于表5中的规定;

(6)美国国家电气法规NEC的第210-52(a)条对电源插座的布置作了更量化的规定。其中两个电源插座间的距离不得超过3.6m,因为美国规定家用电器电源线长达1.8m,一个家用电器如不能自左侧接电源插座,定能自右侧接电源插座,如图所示;

(7)小康住宅是由建设部在各大城市指导建设,面向21世纪的大众住宅,其定位标准是“科技先导,适度超前”。这将是我国住宅产业未来发展的方向。很显然,国家标准“住宅设计规范”中的电源插座数量偏少,参照国内外住宅电源插座设置数量标准,根据目前使用和超前发展的要求,建议住宅内电源插座的设置数量应不少于表6的要求。

2电源插座的选用和设置要求

2.1电源插座的选用

(1)电源插座应采用经国家有关产品质量监督部门检验合格的产品。一般应采用具有阻燃材料的中高档产品,不应采用低档和伪劣假冒产品;

(2)住宅内用电电源插座应采用平安型插座,卫生间等潮湿场所应采用防溅型插座;

(3)电源插座的额定电流应大于已知使用设备额定电流的1.25倍。一般单相电源插座额定电流为10A,专用电源插座为16A,非凡大功率家用电器其配电回路及连接电源方式应按实际容量选择;

(4)为了插接方便,一个86mm×86mm单元面板,其组合插座个数最好为两个,最多(包括开关)不超过三个,否则采用146面板多孔插座;

(5)对于插接电源有触电危险的家用电器(如洗衣机)应采用带开关断开电源的插座。

2.2电源插座设置位置要求

电源插座的位置和数量确定对方便家用电器的使用。室内装修的美观起着重要的功能,电源插座的布置应根据室内家用电器点和家具的规划位置进行,并应密切注重和建筑装修等相关专业配合,以便确定插座位置的正确性。

(1)电源插座应安装在不少于两个对称墙面上,每个墙面两个电源插座之间水平距离不宜超过2.5m~3m,距端墙的距离不宜超过0.6m。

(2)无非凡要求的普通电源插座距地面0.3m安装,洗衣机专用插座距地面1.6m处安装,并带指示灯和开关;

(3)空调器应采用专用带开关电源插座。在明确采用某种空调器的情况下,空调器电源插座宜按下列位置布置摘要:

①分体式空调器电源插座宜根据出线管预留洞位置距地面1.8m处设置;

②窗式空调器电源插座宜在窗口旁距地面1.4m处设置;

③柜式空调器电源插座宜在相应位置距地面0.3m处设置。

否则按分体式空调器考虑预留16A电源插座,并在靠近外墙或采光窗四周的承重墙上设置。

(4)凡是设有有线电视终端盒或电脑插座的房间,在有线电视终端盒或电脑插座旁至少应设置两个五孔组合电源插座,以满足电视机、VCD、音响功率放大器或电脑的需要,亦可采用多功能组合式电源插座(面板上至少排有3个~5个不同的二孔和三孔插座),电源插座距有线电视终端盒或电脑插座的水平距离不少于0.3m;

(5)起居室(客厅)是人员集中的主要活动场所,家用电器点多,设计应根据建筑装修布置图布置插座,并应保证每个主要墙面都有电源插座。假如墙面长度超过3.6m应增加插座数量,墙面长度小于3m,电源插座可在墙面中间位置设置。有线电视终端盒和电脑插座旁设有电源插座,并设有空调器电源插座,起居室内应采用带开关的电源插座;

(6)卧室应保证两个主要对称墙面均设有组合电源插座,床端靠墙时床的两侧应设置组合电源插座,并设有空调器电源插座。在有线电视终端盒和电脑插座旁应设有两组组合电源插座,单人卧室只设电脑用电源插座;

(7)书房除放置书柜的墙面外,应保证两个主要墙面均设有组合电源插座,并设有空调器电源插座和电脑电源插座;

(8)厨房应根据建筑装修的布置,在不同的位置、高度设置多处电源插座以满足抽油烟机、消毒柜、微波炉、电饭煲、电热水器、电冰箱等多种电炊具设备的需要。参考灶台、操作台、案台、洗菜台布置选取最佳位置设置抽油烟机插座,一般距地面1.8m~2m。电热水器应选用16A带开关三线插座并在热水器右侧距地1.4m~1.5m安装,注重不要将插座设在电热器上方。其他电炊具电源插座在吊柜下方或操作台上方之间,不同位置、不同高度设置,插座应带电源指示灯和开关。厨房内设置电冰箱时应设专用插座,距地0.3m~1.5m安装;

(9)严禁在卫生间内的潮湿处如淋浴区或澡盆四周设置电源插座,其它区域设置的电源插座应采用防溅式。有外窗时,应在外窗旁预留排气扇接线盒或插座,由于排气风道一般在淋浴区或澡盆四周,所以接线盒或插座应距地面2.25m以上安装。距淋浴区或澡盆外沿0.6m外预留电热水器插座和洁身器用电源插座。在盥洗台镜旁设置美容用和剃须用电源插座,距地面1.5m~1.6m安装。插座宜带开关和指示灯;

(10)阳台应设置单相组合电源插座,距地面0.3m。

3电源插座供电回路

(1)住宅内空调器电源插座、普通电源插座、电热水器电源插座、厨房电源插座和卫生间电源插座和照明应分开回路设置;

(2)电源插座回路应具有过载、短路保护和过电压、欠电压或采用带多种功能的低压断路器和漏电综合保护器。宜同时断开相线和中性线,不应采用熔断器保护元件。除分体式空调器电源插座回路外,其他电源插座回路应设置漏电保护装置。有条件时,宜按分回路分别设置漏电保护装置;

(3)每个空调器电源插座回路中电源插座数不应超过2只。柜式空调器应采用单独回路供电;

(4)卫生间应作局部辅助等电位联结;

(5)厨房和卫生间靠近时,在其四周可设分配电箱,给厨房和卫生间的电源插座回路供电。这样可以减少住户配电箱的出线回路,减少回路交叉,提高供电可靠性;

(6)自配电箱引出的电源插座分支回路导线截面应采用不小于2.5mm2的铜芯塑料线。

参考文献

1香港非凡行政区政府机电工程署编.《电力(线路)规例工作守则》1997

2北京市建筑设计探究院编.《建筑电气专业设计技术办法》中国建筑工业出版社,1998

3《住宅设计规范》(GB50096-1999).中国建筑工业出版社,1999

4李天恩主编.《小康住宅电气设计》北京中国建筑工业出版社,1999

5全国建筑电气设计技术协作及情报交流网编.建筑电气设计通讯.2001;1

6国际铜业协会(中国)编.《住宅建设应满足电气平安和远期负荷增长的要求》2000

第7篇

论文关键词:电源,可靠,设计

 

对于现在一个电子系统来说,电源部分的设计也越来越重要,下面探讨一些关于电源设计方面的心得,来个抛砖引玉,让我们在电源设计方面能够都有所探索和长进。

1、如何选择合适的电源实现电路

根据分析系统需求得出的具体技术指标,可以来选择合适的电源实现电路了。一般对于弱电部分,包括了LDO(线性电源转换器),开关电源电容降压转换器和开关电源电感电容转换器。相比之下,LDO设计最易实现,输出波纹小,但缺点是效率有可能不高,发热量大,可提供的电流相较开关电源不大等等。而开关电源电路设计灵活,效率高,但纹波大,实现比较复杂,调试比较繁琐等等。

2、如何为开关电源电路选择合适的元器件和参数

很多的未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题物理论文,元器件的参数和类型选择问题等。其实只要了解了,使用一个开关电源设计还是非常方便的。

一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。

开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确地采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,以瞬态响应能力是会有很多影响。

而输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些的选择基本上就是要满足一个性能和成本的平衡,比如高的开关频率就以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。使用低得开关频率带来的结果则是相反的。

对于输出电容的ESRT和MOSFET的Rdson参数选择也是非常关键的,小的ESP可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。

3、如何调试开关电源的电路

3.1电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。

3.2一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

4、如何来评估一个系统的电源需求

对于一个实际的电子系统,要认真分析它的电源需求。不仅仅是关心输入电压,输出电压和电流,还要仔细考虑总的功耗,电源实现的效率,电源部分对负载变人经的瞬态响应能力,关键器件对电源波动的容忍范围以及相应的允许的电源纹波,还有散热问题等等cssci期刊目录。功耗和效率是密切相关的,效率高了,在负载功耗相同的情况下总功耗就少,对于整个系统的功率预算就非常有利了,对比LDO和开关电源,开关电源的效率要高一些,同时物理论文,评估效率不仅仅是看在满负载的时候电源电路的效率,还要关注轻负载的时候效率水平。

至于负载瞬态响应能力,对于一些高性能的CPU,应用就会有严格的要求,因为当CPU突然开始运行繁重的任务时,需要的启动电流是很大的,如果电源电路响应速度不够,造成瞬间电压下降过多过低造成CPU运行出错。一般来说,要求的电源实际值多为标称值的±5%所以可以据此计算出允许的电源纹波,当然要预留余量的。

散热问题对于那些大电流电源和LDO来说比较重要,通过计算机也可以评估是否合适的。

5、接地技术的讨论

接地的定义:在现代接地概念中、对于线路工程师来说,该术语的含义通常是“线路电压的参考点”;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。

接地方式:接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(floMHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

信号回流和跨分割的介绍:对于一个电子信号来说,它需要寻求一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二、对于一个广发高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层或电源层为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到近地平面的层,或者高速线旁边并行一两条地线,起到屏蔽和就近提供回流的功能。

第三、为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后物理论文,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的)

6、单板上的信号如何接地

对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量,近地平面或者电源平面等等。

7、单板的接口器件如何接地

有些单板会有对外的输入输出接口,比如串口连续器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码、丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连续采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。