欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

新能源科学与工程范文

时间:2023-02-28 15:51:49

序论:在您撰写新能源科学与工程时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

新能源科学与工程

第1篇

据了解,

新能源科学工程”是高校根据国务院关于加快培育发展战略性新兴产业的决定而新设的。国务院提出的七大战略性新兴产业包括节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业、新能源汽车产业。其中,对于新能源产业,国家要积极研发新一代核能技术和先进反应堆,发展核能产业。加快太阳能热利用技术推广应用,开拓多元化的太阳能光伏光热发电市场。提高风电技术装备水平,有序推进风电规模化发展,加快适应新能源发展的智能电网及运行体系建设。因地制宜开发利用生物质能。

2011年,“新能源科学与工程”专业将在南京理工大学、华北电力大学、东北大学、河海大学、浙江大学、华中科技大学、中南大学、重庆大学、西安交通大学、上海理工大学、江苏大学等十所高校“生根发芽”。仅江苏就有3所高校设立了这个专业。国家战略性新兴产业把新能源产业作为其中的一部分提出来,可见其重要性,为什么这个产业会受到这么关注?新兴专业学什么?就业前景怎样?本文将对“新能源科学与工程”专业的相关状况做个详细分析,为考生了解、有的放矢的报考服务。

发展前景

东北大学博士生导师蔡九菊教授认为,发展新能源符合社会发展的需要,市场前景广阔,同时相关的专业人才需求量大。近年来我国经济持续高速增长,传统能源消耗量大幅增长,引发的能源短缺和环境污染等问题成为制约我国经济又好又快发展的瓶颈,为此,发展新能源产业势在必行。一方面,发展新能源产业孕育着巨大的投资机会,将有效拉动经济增长;另一方面,也可以有效地改变经济增长方式,引领中国经济走向低碳化。

目前,中国大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%,规划到2020年,中国在新能源领域的总投资将超过3万亿元。虽然我国新能源产业迅速发展,然而推动新能源行业前进的人才供给却显得捉襟见肘。高素质专业人才和核心技术的缺失,已严重阻碍了我国当前新能源产业的健康发展。据估算,到2020年在风电领域的从业人员就将会有几十万,其中包括几万名专业人员。根据《核电中长期发展规划(2005―2020)》,在未来10年内,国家每年平均要开工建设5-8台以上的核电机组,预计每年对核电人才的需求有数千人,而全国每年相关专业的毕业生总量不超过500人。对于快速发展的太阳能产业而言,人才供应同样面临严重不足。因此,亟待加大新能源产业人才的培养力度,以满足新能源产业发展对高素质人才的迫切需求。

专业培养目标

新能源科学与工程专业面向新能源产业,根据能源领域的发展趋势和国民经济发展需要,培养在新能源科学研究及其利用的技术开发与实施等方面既有扎实的理论基础,又有较强的实践和创新能力的专门人才,以满足国家战略性新兴产业发展对该领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。学生的修业年限为4年,对于完成培养要求者授予工学学士学位。

专业课程体系

新能源科学与工程专业在课程内容体系的设置上紧密结合培养目标要求,既注重“厚基础”,突出基本理论与方法,又注重“宽方向”,丰富课程知识结构。注重学生“知识结构”的构建和“能力结构”的形成。

理论部分:在基础教育系列中重点强调基础性与综合性相结合的原则。包括高等数学、大学物理等工程技术基础课群;大学外语、原理等社会科学课群。在专业教育系列中重点遵循厚基础、宽口径的原则。包括工程热力学、流体力学、传热学、能源系统工程、可再生能源及其利用、光伏科学与工程、风力发电原理、生物质能工程、核能利用基础等专业平台课群;光伏材料与太阳能电池、风力发电场等专业选修课群等。

实践部分:重点培养学生的独立思考能力、动手能力和工程实践能力。单独设立“能源工程综合实验”课程,目的是充分利用学科的开放式实验室,指导学生开展设计性、综合性实验项目,培养学生发现问题、解决问题的创新能力。

毕业生就业去向

毕业生就业前景广阔,可在核能、风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。

如河海大学主修课程包括:理论力学、材料力学、机械设计基础、电工技术基础、微型计算机原理及应用、工程热力学、气象学、太阳能发电电气设备与系统、太阳能发电并网技术、项目及企业管理等。毕业生就业方向:培养太阳能利用工程系统设计、研究、运行、施工管理等方面知识的高级工程技术人才。

南京理工大学主要以新能源的能源转换过程、高效清洁能源利用与功率转换技术为核心,培养掌握上述领域基础知识和专业技能、具备良好综合素质的高级工程技术人才,为太阳能、风能电站和供电公司等电力部门提供后续人才及技术支持。南京理工大学对新能源科学研究与人才培养已有25年的历史,包括太阳能、风能以及能效节能的可持续能源投资中,还有一个巨大的市场有待开发――能效和节能。可再生能源的开发在中国有广阔的空间,新能源科学与工程专业人才的缺口很大,目前学校在此方向培养的硕士生一入校就被用人单位盯上。

新闻链接

北大世界新能源战略研究中心成立

2011年3月2日上午10点,北京大学世界新能源战略研究中心正式成立。该研究中心将立足于国际政治研究,密切关注世界新能源发展趋势,重点分析世界上主要能源消耗大国的新能源战略,为国内相关的部门和企业提供国际新能源合作方面的评估和咨询服务。中心致力于整合北京大学校内外国际关系领域和新能源战备与技术领域的专家、学者,联系国内外有关政府部门、新能源企业,努力形成一个跨学科、跨领域、跨地域的研究平台,成为在世界上具有影响力的国际新能源战略与国际合作的学术研究、资料信息、学术交流、人才培养及咨询服务基地。

第2篇

关键词:新能源;新能源科学与工程;培养方案;课程体系

作者简介:韩新月(1982-),女,河南商丘人,江苏大学能源与动力工程学院,讲师;何志霞(1976-),女,甘肃泾川人,江苏大学能源与动力工程学院,副教授。(江苏 镇江 212013)

基金项目:本文系江苏大学教学改革项目(项目编号:JGZD2009025)、江苏省高等教育教学改革研究重中之重课题(课题编号:2011JSJG006)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)05-0009-03

一、我国高校设立新能源专业的必要性

能源问题与环境问题是21世纪人类面临的两大基本问题,发展新能源是解决这两大问题的必由之路。新能源是相对于常规能源而言,以采用新技术和新材料而获得,在新技术基础上系统地开发利用的能源,如太阳能、风能、地热能、海洋能等。由于新能源具有再生、清洁、低碳、可持续利用等优势,所以越来越多的国家开始重视它。而且新能源可以作为促进人类发展和保护环境的重要途径,所以这些国家在相关政策中都增加了新能源的元素。新能源产业的发展也是未来中国可持续发展的关键。但是,和发达国家相比,我国新能源产业化发展起步较晚,技术相对落后,总体产业化程度不高。不过,我国天然资源非常丰富,市场需求空间很大,在政府大力发展新能源及可再生能源政策的带动下,新能源领域成为大型能源集团、民营企业、国际资本、风险投资等诸多投资者的投资热点,技术利用水平正逐步提高,具有较大的发展空间。“十二五”期间将是我国新能源产业从起步阶段进入大规模发展的关键转折时期。我国新能源在这一时期的发展总目标是:建立初步适应大规模新能源发展的电网等重大基础设施体系,推动新能源装备制造业的壮大和升级,促进新能源市场的不断扩大,争取在2015年将非化石能源在能源消费中的比重提高到12%左右。[1]

尽管国家已经把发展新能源放在一个重要的战略位置上,一场新的能源革命已在悄然进行,它必将带来新的经济繁荣、新的社会理念和新的生活方式。但是,我国新能源产业发展过程中的一大难题是缺少成熟先进的新能源技术。我国主要的新能源设备和技术完全依赖进口,新能源领域的科技创新能力明显不足。而新能源产业化进程中的这些难题有待专业人士去破解。所以,培养新能源方面的专业和复合型人才是重中之重。[2]但是,新能源产业作为一个错综复杂的资源环境复合体,涉及物理学、化学、流体力学、传热学、电子电工学、材料科学、生物学、管理学、工业经济学等学科内容,是一个典型的多学科交叉的新兴产业。[3]因此,需要设立专门的新能源专业来满足,新能源产业对新能源人才要有宽的知识面、自主的学习能力、丰富的想象力、敏锐的洞察力以及较强的沟通协调能力等要求,进而要求高校做好优化人才培养层次、改进人才培养方案等工作。

国外已有一些著名大学建立了新能源的本科专业,用于培养太阳能、风能、生物质能等方面的科技人才,如澳大利亚的新南威尔士大学设立了专门的光伏与可再生能源工程学院,并于2000年开设了光伏与太阳能本科专业,2003年又开设了可再生能源工程本科专业;澳大利亚国立大学依托其可持续能源系统中心也建立了四年制的可再生能源系统专业。此外,意大利的都灵理工大学和米兰理工大学都开办了四年制的可再生能源专业。美国的俄勒冈州科技学院于2005年也建立了可再生能源四年大学本科学位课程。随着全球能源结构的变化,对于新能源方面的人才需求不断增加,世界上将会有更多的高校开办有关新能源的专业。

我国高校在新能源专业设置和新能源产业专业人才培养方面还落后于发达国家。为顺应时代的发展,为国家培养新能源这一新兴产业的专业人才,2010年7月经教育部审批,浙江大学、中南大学、江苏大学等11所高校首次设立新能源科学与工程专业。其中江苏大学的新能源科学与工程本科专业由能源与动力工程学院承担开设任务,已分别于2011年9月和2012年9月招收第一批和第二批本科生。关于新能源科学与工程专业本科生的培养方案、培养模式和培养体系则处于不断探索和完善中。

二、 新能源科学与工程专业的培养方案

在对国内外新能源相关专业人才培养充分调研的基础上,分析国家社会和经济发展要求,基于新能源产业特点及企业和社会对新能源专业人才知识结构和能力结构的要求,同时结合本校自身的学科特色和优势,确定了新能源专业人才培养方案,主要包括专业培养目标的确立及科学、合理的课程体系的设置、可行的教学计划的制订等。

1.培养目标

专业的培养目标是专业建设和一切教学活动的基础、依据,也是人才培养的最终目的。新能源科学与工程专业在国内甚至在世界上都是非常新的专业,目前处于初步形成和探索阶段,因此,找准本校专业人才培养定位和确立该专业人才培养的长远目标尤为重要。江苏大学能源与动力工程学院结合自身实际情况,依托机械工程、电气信息工程、材料科学与工程、化学化工、土木工程等学科专业的支持,并结合新能源产业的特点设立了新能源科学与工程专业,使培养出来的学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的物理、化学及热流体科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源转换与利用原理、新能源装置及系统运行技术,能胜任新能源技术相关的科学研究、工程设计、技术开发及技术经济管理等工作的高级专门人才。

2.课程体系的构建

尽管自2010年以来国内陆续已有许多高校正式获批新能源科学与工程专业在本科阶段的招生资格。但总体来看,我国系统培养新能源科学与工程本科生、研究生的工作才刚刚起步,对于相应课程体系的构建也处于探索阶段。一个专业所设置的课程相互间的分工与配合构成课程体系。课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。而且,一个专业要具有区别于其他专业的培养方向和业务范围,就应有自己独立的课程体系。[4]新能源科学与工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。它与数学、物理、化学、生物学等紧密相关,又强烈地依托于能源与动力工程、材料、机械、电气、化工、自控和生物工程技术的发展。由于国内在这方面的研究几乎为空白,因此,如何以这些学科为依托,形成内容先进、结构合理的课程体系是急需解决的一项重大课题。笔者根据孙根年有关课程体系优化的思路给出了系统思考下新能源科学与工程专业课程体系的总体结构,如图1所示。[5]

由图1可以看出,在层次上将新能源科学与工程课程划分为通识教育平台课程、学科专业基础课程、专业(方向)课程、集中实践环节和课外实践环节五个方面。新能源科学与工程课程体系作为一个系统,不同的课程类别在培养目标和培养规格的指导下相互作用、相互影响,共同服务于新能源科学与工程专门人才培养这一特定的功能。

3.教学组织与实施

基于新能源科学与工程专业的培养目标及课程体系结构,考虑到本地区、本学校的实际情况,笔者制定的新能源科学与工程专业的指导性教学计划如图2所示。

由图2可以看出,在教学组织上前五学期主要进行普通文化课和专业技术基础课的教学,为后续专业课程的学习打下良好基础。同时,在第二、三、四、五学期还安排了金工实习、专业认知实习、电工电子实习和机械设计课程设计,目的是增加学生在校期间的动手操作机会。第六、七学期组织专业(方向)课程的教学和实习实训,核心课程均采用一体化教学方式。第八学期开展毕业设计环节,从而培养学生综合运用所学知识、结合实际独立完成课题的工作能力。

三、 新能源科学与工程专业培养计划的特色

1.以厚基础、宽平台、交叉学科为理念,强调扎实的物理、化学和热流体科学基础理论

课程建设时,首先在物理、化学基础理论方面增加了“大学化学”、“物理化学”、“能源与环境化学”和“半导体物理”课程。其次,根据新能源专业的特点,强调物理、化学基础的同时,通过减少“工程图学”、“工程力学”和“机械原理与设计”课程的学时数来弱化机械类课程。再次,为了充分发挥本校本学院学科优势和特点,在热流体理论方面除了开设“流体力学”、“工程热力学”和“传热学”课程外,还开设了“热流体数值计算基础”和“新能源利用中的热流体理论与技术”两门专业特色课程。目的是提升专业内涵,强化特色,确保学生具备新能源领域相关的扎实的基础理论,是学生今后在本专业及相关领域是否具备发展潜力的关键所在。

2.强调实践教学及新能源工程训练

首先,增加了“现代分析测试技术”课程。其次,增加了实习环节的学时数,把一般安排在第六学期的三周生产实习变为第四学期末的一周认知实习和第六学期的三周生产实习。目的是增加实践教学,先认知实习,后生产实习,使实习环节更为科学和合理。再次,还增加了项目设计,把一般安排在第七学期的两周课程设计修订为第六学期末的两周课程设计和第七学期末的两周项目设计。目的是先开展某门课程的课程设计,后进行具体的项目设计,设置更为科学和合理。通过指导学生开展设计性、综合性项目设计,培养学生发现问题、解决问题的创新能力。此外,还增加了新能源工程训练环节,在此环节中学生和指导老师双向选择后,学生参与到老师的科研项目中。指导老师在与国内外新能源企业合作中,向学生提供不同类型的专业实践机会。这个环节是在第七学期前完成,设置此环节的目的是培养学生实践创新和工程应用能力。通过明确的学分要求保证学业导师制的落实。指导老师通过这样一个环节对于特别优秀的学生可向学院推荐其保研,实现本研贯通培养,前后的培养具备一定的连续性。最后,为了充分利用学科资源及已有的实验条件,培养学生实践创新能力,更好地满足新能源专业对学生实践能力和新能源技术工程应用能力的高要求,在课内及集中实践环节总学分要求基础上还增加大于等于六个学分的课外实践要求(社会实践、竞技活动)。

3.体现多学科交叉特点

在课程设置时,除开设“工程图学”、“工程力学”、“电工电子学”、“机械原理”、“工程材料”等课程外,还增开了物理、化学方面的课以及“新能源材料”、“现代生物学导论”、“能源与环境”、“新能源系统自动控制原理”课程,这样充分体现了新能源科学与工程专业和动力工程及工程热物理、应用化学、材料物理、机械工程、化学工程与技术、环境科学与工程各学科的交叉。

4.重视形成宽阔的国际视野

首先,学校开设了全英文及双语课程,比如全英文的“太阳能光伏技术”以及双语的“热流体数值计算基础”、“热泵原理与应用”、“生物质燃烧及混燃技术”课程。其次,借鉴国外新能源专业的课程设置增设了反映新能源领域前沿的“生命周期评价”课程。此外,还增设“新能源前沿及工程应用专题”必修课。这门课要求学生在第七学期结束前听取学院安排的新能源前沿及工程应用专题讲座7次以上。专题可以是合作企业、国内外知名专家的讲座,也可以是本专业教师科研最新进展的讲座,目的是让学生了解本专业领域的最新研究进展及发展趋势,拓宽视野,尽快适应社会发展要求,同时提高学生的专业兴趣。

5.以太阳能为主,兼顾生物质能和风能,提供其他种类新能源的广泛选择的专业定位

首先,在太阳能方面,学校设置有“太阳能热利用”和“太阳能光伏技术”专业课;在生物质能方面,开设有“现代生物学导论”和“生物质能转化原理与技术”;而在风能方面,设置有“风力机空气动力学”和“风力发电与控制技术”专业课。其次,还提供了广泛的新能源相关选修课程来满足学生对不同专业的需求,比如“氢能与新型能源动力系统”、“新能源发电并网技术”、“水力发电与水电站”、“燃料电池原理与技术”、“热泵原理与应用”、“生物柴油制备及应用”、“生物质燃烧与混燃技术”、“能源工程管理”、和“能源经济学概论”等课程。

四、结束语

新能源科学与工程专业的设置顺应时代的发展,是我国可持续发展的需要。但是,由于新能源科学与工程专业是非常新的专业,与之配套的培养方案、课程安排等还处于起步探索阶段。笔者考虑到本地区、本学校的实际情况,同时结合新能源产业对人才的要求提出了具有鲜明特色的新能源科学与工程专业的培养方案,以供参考。笔者相信江苏大学有能力、有信心建设好该专业,为国家经济的可持续健康发展输送合格的人才。

参考文献:

[1]任东明.中国新能源产业的发展和制度创新[J].中外能源,2011,

(1).

[2]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12).

[3]张珏.新能源产业发展所需专业人才培养探讨[J].中国人才,

2010,(8).

第3篇

【关键词】新能源科学与工程;多学科;培养方案

【Abstract】New energy science and engineering is a typical multi subject cross specialty and has already become an emerging industries which our nation prefers to develop. Based on the analysis of the current situation of the new energy profession, this paper proposes a distinctive training program for new energy science and engineering, combing with our own advantages.

【Key words】New energy science and Engineering; Multi discipline; Training program

随着社会经济的发展,传统能源产业已经成为制约当今社会经济发展的关键因素,新能源产业的发展必然是未来中国可持续发展的趋势。然而与发达国家相比,我国的新能源产业化发展起步相对较晚,技术也较为落后,总体产业化程度不高,且新能源领域的科技创新能力明显不足。特别是我国高校新能源专业人才培养方案尚处于摸索阶段[1-3]。

目前,国内大部分高校的新能源科学与工程专业都是以能源与动力工程专业为基础,再开设几门与新能源领域相关的课程,并没有从根本上解决培养方案的问题,因此,在课程体系设置、专业素质培养、本科生就业等方面存在不少问题。例如:(1)专业特色不明确;(2)专业基础课程与专业课程脱节;(3)实践教学和创新教学的形式化[4-5]。因此,本文针对目前各高校在新能源科学与工程专业人才模式培养中存在的主要问题,提出了具有特色的新能源科学与工程专业培养方案。

1 一体化人才培养

本校新能源科学与工程专业的课程体系由四个主要模块组成:通识课程71学分(人文社科课程和公共基础课程)、学科课程58学分(学科基础课程、专业核心课程和专业选修课课程)、集中实践教学38学分(毕业设计、课程设计、项目设计、电工实习、金工实习、生产实习、课外实践教学等)和素质、创新、创业教育16学分。在本课程体系中,一方面开设了本专业的基础技术知识课程,让学生能够掌握与新能源体系设计、开发和测试相关的知识,另一方面开设了能源管理等方面的课程,最终培养的学生能够熟悉规划-设计-制造-运营-管理环节中关键的技术和方式,使得他们能更好的适应社会的需求。

2 供求关系引导特色学科

目前,各高校根据自身专业设置的特点和学科发展的优势,制定了稍有不同的新能源科学与工程专业人才的培养方案,如华北电力大学新能源科学与工程专业以生物质能、太阳能和风能三个专业为主;江苏大学的新能源科学与工程专业则围绕风能发展相关课程,实行单方向发展模式。本专业由于是新组建专业,暂时还未形成特色学科,因此,在专业核心课程设置时,以全面介绍新能源的动力系统、新能源的利用、新能源的储存和节能方式为目的,未涉及具体的特色方向,同时,河南省是以农业产品为主,结合目前太阳能热泵技术的大力推进,因此,在设置专业选修课程时,主要以热泵技术、太阳能制冷和冷热源工程为主导。在以后的实践过程中,发展出自身特色后,再利用选修课色学科对专业核心课程进行替换,从而形成“从发展中找特色”的人才培养方式。

3 “1+1”就业模式

新能源科学与工程专业属于新生学科,该方向毕业的学生较少,在能源行业中并未站稳脚步,在考虑学生就业问题时,一方面要以新能源学科为基础,开设新能源就业较好的课程,另一方面,也要重视我们现状,新能源比重小于20%,目前仍然以传统能源为主,因此,也开设了传统能源的节能技术课程,从而形成新能源利用和传统能源升级改造并行的“1+1”就业模式。

4 “分层次”创新教学

高校的教学模式必须具有连贯性,才能保证教学的质量。因此,本专业在设置相关软件学习课程时,尝试性地在大学一年级开设程序设计技术(C语言),大学二年级开设工程软件基础,让学生掌握工程软件基本知识,大学三年级时开设工程软件应用技术,让学生能熟练的利用三维软件进行实物绘制,在大学四年级的素质教育时,开设CAD-CFD综合应用创新教育课,更进一步让学生掌握模型的网格划分和传热与流动方面的简单编程计算。在上述的课程学习中,既保证的课程学习的连贯性,也形成了“分层次”创新教学的发展模式。

5 结语

新能源领域的发展,关键在于人才的培养。由于新能源科学与工程专业涉及物理学、化学、传热学、材料科学、管理学等学科,是一个典型的多学科交叉的新兴专业。因此,其培养方式和课程设置必须紧跟新能源科学技术的发展步伐,与时俱进。在贯彻厚基础、宽方向、重实践原则的基础上,积极培养具有扎实的自然科学基础、人文社会科学基础和专业知识,能够承担新能源工程的设计、运行管理、技术开发、科学技术教育与教学等工作,富有社会责任感,具有创新精神、实践能力和竞争力的高级专门人才。

【参考文献】

[1]冯大千,刘国良,范大和,等.浅谈《新能源概论》课程教学实践[J].科技视界, 2016(19):157-157.

[2]张宏丽,王存旭,郭瑞.美国俄勒冈州技术学院新能源专业人才培养的启示[J]. 当代教育理论与实践,2015(12):103-105.

[3]陈登宇.新能源科学与工程专业人才培养模式研究[J].科教文汇,2015(3):61-62.

第4篇

关键字:新能源科学与工程;人才培养;培养模式;课程设置

0引言

2010年教育部批准河北建筑工程学院开设风能与动力工程专业,2011年我校开始招收第一批风能与动力工程(080507S)专业学生。风能与动力工程是一门交叉学科,教学环节涉及控制、电气、计算机、机械、自动化等多种学科。根据教育部2012年本科专业设置方案,我校风能与动力工程专业更名为新能源科学与工程(080507T)。全国开设新能源科学与工程的高校中,各个高校侧重点不同,结合我校学科群特点和优势我校该专业继续定位在风能方向。下面结合我校实际特点就新能源科学与工程的专业培养方案进行简要探讨。

1.专业培养目标

我校的该专业培养掌握新能源科学与工程基本理论,具有扎实学科领域基础知识与应用能力,综合掌握风力发电工程设计、风电设备原理及风电场运行的理论和技能,具有创新精神和实践能力的高素质新能源科学与工程专业人才。这样使毕业生主要在风电场设计与运行、控制与维护、风电机组设计及制造领域从事专业技术工作和管理工作,也可在相关研究机构从事研发设计工作。

2.课程培养方案设置

2.1学科大类基础课程和跨学科基础课设置

由于我校该专业方向为风能方向,侧重点为电气、自动化、控制部分。但该专业本身涉及到控制、电气、计算机、机械、自动化等多种学科,结合我校是河北省电子信息教育创新高地的资源优势,我校学科大类基础课程和跨学科基础课设置如下表。结合我校的优势学科,我校在跨学科基础课程上设置了许多计算机、物联网类课程,这对于学生在以后学习风电机组电气工程、监测维护、电力系统调度等做了充足的理论准备。

2.2专业基础课程设置

对于该专业的学生,我们力图通过四年的培养达到如下条件:

(1) 培养学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源装置及系统运行技术。

(2) 培养学生具有扎实的自然科学基础,良好的政治理论基础,较好的社会科学基础和正确运用本国语言、文字的表达能力;

(3) 本专业主要学习空气动力学、风资源测量与评估、电工学、管理学、自动控制的理论和技术,接受现代风力发电专业的基本训练,使学生具有进行风电机组及风电场的设计、制造、运行、试验研究、项目投资与管理的基本能力。

(4) 较系统地掌握本专业领域所必须的专业知识,如风力发电原理、风电机组设计与制造、风电场电气部分、风电场运行与控制、风力发电项目开发等。

所以在专业基础课程和专业核心课程的设置上进行了侧重。

3教材的选用

教材是体现教学内容和教学方法的知识载体,也是深化教育教学改革、全面推进素质教育、培养创新人才的重要保证。教育部《关于加强高等学校本科教学工作提高教学质量的若干意见》(教高司[2001]4号)中明确指出“教材的质量直接体现高等学校教育和科学研究的发展水平,也直接影响本科教学质量”。为了进一步规范教材选用与管理,选用高水平的教材,杜绝质量低劣的教材进入课堂,健全科学的教材选用制度,不断提高教学质量,我专业教材选用采用如下办法。

3.1教材选用原则

(1)优先原则:优先选用国家级、省部级获奖教材;优先选用国家级、省(部)级重点教材和规划教材;优先选用“面向21世纪课程教材”。

(2)择优、择新、适用原则:树立精品意识,在同类教材中,通过比较,选用质量最好的、近三年出版的、适用的新版教材。

3.2教材选用标准

(1)选用的教材必须符合社会主义市场经济建设、社会发展和科学进步对人才培养的需要。能运用辩证唯物主义和历史唯物主义的方法,全面、准确地阐述本学科的基本理论、基本知识和基本技能。

(2)选用的教材必须符合本专业人才培养目标及课程教学的要求,取材合适,深度适宜,份量恰当,符合认知规律,富有启发性,有利于激发学生学习兴趣,有利于学生知识、能力和素质的培养。

(3)选用的教材应体现科学性、先进性和适用性的有机统一,能反映本学科领域国内外科学研究的先进成果,正确阐述本学科的科学理论,完整表达课程应包含的知识,结构严谨,理论联系实际,具有学科发展上的先进性和教学上的适用性。

(4)选用的教材应文字精练,语言流畅,文图配合恰当,图表清晰准确,符号、计量单位符合国家标准。加工、设计、印刷、装帧水平高,价格合理。

第5篇

关键词:光伏电池;新能源科学与工程;教学方式与方法

中图分类号:G642.41

一、引言

近几年来,我国新能源产业发展迅速,但与我国新能源产业快速发展不相适应的是新能源专业技术人才需求严重不足。新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展。大学教育的本质目的是发展每个学生个体,并且获得学生的认可与社会的肯定,要想达到这一目的,就需要使培养的学生所具有的知识与能力具有竞争力,并且得到社会的认可。常州工学院是一所培养应用型本科人才的普通高等院校,一直追求学生不仅要有扎实的理论基础,更要有较强的实践动手能力和创新精神,以满足人才市场的需求。

常州工学院新能源科学与工程专业针对学生如何掌握各种知识与能力这一问题,结合常州工学院的办学定位、地方本科高校生源特点,以及当代“90后”大学生的认知规律与个性化特征,探索新的教学方式与手段,实现课程知识体系与学生能力结构的有效融合。在光伏电池原理与工艺课程教学实践过程中,创建以“二八定律安排课内课外时间与内容分布的完整教学过程、二八定律控制教师主导与学生主导课堂比率的互动教学方法、二八定律分配教学资源的现代教学手段、二八定律划分课程成绩考核比率的全程考核方式”,形成以学生为主导的,以“主动型课堂”为特色的“二八式”课程教学新模式。

二、“二八式”的完整教学过程

教学过程不能只停留在传统授课的45分钟内,或者一门课程的四、五十个课时全部由老师讲授,而应将45分钟的课堂按二八定律分为20%的时间由老师讲授,80%的时间由学生演讲与讨论,并且将45分钟课堂拓展为课内和课外两个过程,课内所学的知识与花的时间只是完整教学过程的20%,课外所学的知识与花的时间为这个教学过程的80%。

课内采用“二八式”互动教学方法,可以使学生成为学习的主导,提高学生获取知识与能力的效率。整个光伏电池原理与工艺课程教学内容设计成多个专题教学,每一个专题安排2至3节课,老师占用课内20%的教学时间,利用各类教学资源,通过理论联系实际、多种教学手段的综合运用等措施,对每一个专题的知识体系框架、技术原理进行摘要式的讲授与呈现,并对下一个专题内容进行布置。课内余下80%的教学时间,让学生根据老师布置的专题内容,将课外学习过程中搜集的资料与学习内容通过PPT演讲的形式与大家分享,并展开讨论,教师只是一个记录员与成绩评定人员,真正实现以学生学习为主导的“主动型课堂”。

课外,老师布置的专题内容,采用“二八式”的现代教学手段,迎合当代“90后”大学生的认知规律与个性化特征,激发学生兴趣,养成其自主学习的习惯,培养自主学习的能力。20%的学习资料与内容可来源于教材,80%的学习资料与内容可来源于图书馆、网络、论坛等课外教学资源,这样学生展现的PPT不会重复,而且凸显了每一个学生的个性,以及反映了学习过程的态度与效果,迎合了“90后”的张扬个性与网络控的特点,激发了学生的学习兴趣。

三、“二八式”的互动教学方式

在课堂教学上,形成学生主导课堂,占用80%课内时间,讲授80%教学内容,教师是裁判为特点的“二八式”互动教学方法。

光伏电池原理与工艺课程采用专题教学的形式,整个课程教学内容设计成多个专题教学,每一专题内容,老师利用课内20%的教学时间,讲授20%的专题内容,讲授一些启发式、概述性的、摘要式的专题内容,并对下一个专题内容进行布置。课内余下80%的教学时间,学生将在课外学习过程根据老师布置的专题内容,搜集的资料与学习内容通过PPT演讲的形式与大家分享,并展开讨论,学生演讲与讨论的学习内容将占据整个专题教学内容的80%,真正实现学生学习为主导的“主动型课堂”。

四、“二八式”的现代教学手段

光伏技术这种新兴行业,技术更新非常快,教材上的知识与技术远落后于产业领域,要想实现人才培养与企业需求的无缝对接,必须快速更新课堂教学内容。

采用“二八式”的现代教学手段,实现20%的学习资料与内容可来源于教材,80%的学习资料与内容可来源于图书馆、网络、论坛等课外教学资源,同时学生通过展现PPT,凸显每一个学生的个性,及反映学习过程的态度与效果。这种教学手段符合当代“90后”大学生的认知规律,迎合了“90后”的张扬个性与网络控的特点,激发了学生的兴趣,从而使学生养成自主学习的习惯,增强专业综合技能。

五、“二八式”的全程考核方式

高等教学应该更看重学生的学习过程,因为学习过程影响学生在将来工作中处理问题的方式与方法,尤其是应用型本科教育更注重学生的学习能力、学习行为,工作能力、工作行为,而非专业课、专业知识。因此,学生的课程学习成绩考核方式也应该注重能力考核,而非文字记忆与解题技巧。

在课堂教学中,学生的PPT演讲与讨论过程,能够较好地反映学生学习过程中的学习态度与效果、学习行为与能力。教师做好每一个记录,并评定每一堂课程的学生成绩。最终的课程考核成绩20%来源于期末考试试卷,80%来源于课堂上的PPT演讲与成绩讨论。这种“二八式”的全程考核方式,能更合理地反应每一个学生的学习效果,关注每一个学生的学习行为,更有利于促进每一个学生个性化的发展与能力的提升。

光伏电池原理与工艺采用“二八式”课程教学新模式,有利于激发学生的学习兴趣,真正实现以学生学习为主导的“主动型课堂”,提升学生的自主学习能力与专业综合技能,促进课程知识体系与学生能力结构的有效融合。

参考文献:

[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011(12).

第6篇

摘要:《工程热力学》和《传热学》是为新能源科学与工程专业学生开设的两门专业必修课,也是该专业大学生所必须掌握的热工类课程。该课程具有知识丰富、专业性强、课时多等特点。在《工程热力学》和《传热学》课程教学中,大学生创新能力的培养是很重要的一环。本文对该课程的教学内容、教学方法和考核方式等方面进行了探讨,并对大学生创新精神与创新思维的培养进行了研究。

关键词:工程热力学;传热学;新能源;教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)52-0176-02

能源是现代社会赖以生存和发展的物质基础,是国民经济和社会发展的先决条件。新能源专业的毕业生,肩负着为国家能源发展贡献力量的重要责任。为达到培养专业知识面广、基本功扎实和创新能力强的本科人才的目标,作为新能源专业非常重要的必修课――《工程热力学》和《传热学》的课程设计和教学方法探索就显得尤为重要[1,2]。此前的相关文献中报道了《工程热力学》和《传热学》教学的优秀经验[3-6]。本文在此教学经验的基础上,对热工课程的教学内容和教学方法进行优化和探索,以更好地提高学生的创新精神和创新思维。

一、教学内容的优化

教学内容的优化和精选是教学改革的关键。作为专业必修课,在学时有限的情况下,如何最大程度地讲授最有价值的知识点成为教学的关键。

热工类课程由《工程热力学》和《传热学》两门课组成。《工程热力学》按热力学基本概念、热力学第一定律、理想气体的性质与过程、热力学第二定律与熵、气体动力循环、水蒸气、蒸汽动力循环、制冷循环、理想混合气体和湿空气、实际气体的性质等内容分为若干章节;《传热学》按照传热基本概念、稳态热传导、非稳态热传导、对流换热、热辐射及辐射换热、传热过程与换热器等分为若干章节。由于新能源科学与工程专业属于新兴产业专业,学科领域广泛,涉及能源类(如生物质能、太阳能、风能)、化工类(如基础化学、物理化学、新能源材料)、力学类(如工程力学、流体力学)等多门课程和领域。

在实际的教学过程中,教学内容必须有所侧重,应充分考虑到不与新能源科学与工程专业开设的其他相关课程的知识点产生重复。另外由于《工程热力学》和《传热学》课程难度较大,在教学过程中要讲清课程中的要点和基础知识。可以以“基本原理―公式推导―影响因素―实际应用”为主线介绍该课的有关知识,建立每章知识结构图,让学生清楚该门课程的知识体系结构。对重点的热力学第一和第二定律进行原理介绍,仔细推导相关公式,让学生夯实基础,使学生在进一步的学习中不会混淆概念,相对轻松地应对课程。此外,注重理论与实践相结合,例如介绍空调在夏天与冬天的工作原理、冰箱开门对室内的影响,积极引导学生利用热力学定律进行分析,增加课程的趣味性以提高学生的创新能力。通过优选教学内容,使教学内容始终能反映本学科的专业特点和学术水平,加强学生对后续专业方向的把握。

二、教学方法的探索

(一)以创新性地教带动创新性地学

科学技术是第一生产力。要想发展经济,需要加大科研力度、提高科技含量。这已被证明是一种行之有效的道路。与此对应的是,要促进教学质量、提高教学效率,必须加大教学与科研的力度、提高教学与科研互动水平。在当今大力发展科学技术的大背景下,如何提高身为未来科学技术发展主力军的大学生的学习热情和创新能力,成为目前高校教学的难题和重点。传统的直白讲课和搜集各种习题以供学生练习只会让课程变得生硬和枯燥,导致学生的学习效率和学习热情越来越低,甚至出现了普遍的抄袭作业和迟到早退等不良现象。为了改变这些不良现象,就需要在教学手段上进行创新。教师通过对平时科研工作成果的再学习,并结合对教材的研究,创造性地运用某些方法,使学生对重要问题达到本质上的领悟。在这种途径中,教师的创新思维方式以及从中体现的一言一行,让学生耳濡目染、潜移默化,对带动学生进行创新学习、开发创新思维起到积极的作用。

例如,在进行《传热学》教学时,学生往往对传热的基本概念,尤其是二维与三维的导热理论及方程很难理解。一般地教学方式是,教师在黑板上进行微观导热原理推导,得出一维傅里叶导热定律和二维三维傅里叶导热定律,并给出几个常用的导热方程。这种教学方式中,推导过程比较晦涩,给出的方程也较为难懂,学生们很可能只会死记硬背,不能灵活运用。针对以上问题,笔者建议将导热理论与生活问题相结合,或者采取数学建模的方法,将导热方程与实践相结合,选取最适合该问题的模型,以达到课程有趣生动、富有创新性,激发学生们的创新思维。以创新性地“教”带动创新性地“学”,学生收获的不仅仅是知识点,更是如何去发现问题、解决问题的实际能力,为以后在新能源科学与工程专业领域的探索中打下良好基础。

(二)板书教学与多媒体辅助教学相结合

多媒体技术以其图文并茂、声像俱佳、动静皆宜的呈现使课堂教学达到了全新的境界。在《传热学》的讲授中,一维的传热理论和公式很好理解和应用,但二维与三维牵扯到微观传热理论,以至于推导过程较为复杂,传热方程较为抽象难懂。因此需要教师精心准备多媒体课件,通过动态描绘各向同性材料的微观传热过程,让学生理解不同形状材料在具有不同位置的热源时如何进行热传导。通过绘制动态的卡诺循环过程,使学生深入理解热力学第二定律,并理解第二类永动机无法制成的原因。同时需要注意的是,对于工程热力学和传热学,由于信息量大、内容广,过多地依赖多媒体教学可能会让学生在短时间内难以消化,因此在教学中对于难度较大的基础理论部分和原理的学习,板书不可缺少,使学生能够有充分时间紧跟老师的思维去理解每一个知识点。

(三)课程教学与科研活动相结合

教师可以将全班学生分为若干调研小组,每五个人为一组,选择新能源与热工基础理论相结合的课题,通过查找国内外科技文献,调研总结新能源专业前沿知识,形成调研报告,锻炼学生阅读科技文献的能力,提前为毕业设计的开展奠定基础。各小组也可以参与指导教师的科研项目,在实验室做一些力所能及的科研活动,并通过文献调研,形成工程热力学和传热学知识系统。课程结束时,各小组以PPT形式向全班同学作汇报,授课老师根据报告提出问题,该组同学进行即时答辩,考查学生对相关知识点的掌握情况。

三、课程考核方式的探索

工程热力学和传热学覆盖面广、知识点多,应该采取灵活多样的考核办法。在成绩的评定方式上,可以设定了四项考核内容,第一部分是学生考勤、课堂互动表现和课堂笔记,通过此部分的考核,提高学生的听课注意力,锻炼学生提炼课程重点内容的能力;第二部分是根据每个小组的调研报告、PPT展示、答辩情况打分,锻炼学生的团队合作能力、口头表达能力和应变能力;第三部分是每节课结束前的思考题,采取加分方式,鼓励学生积极思考;第四部分是传统的期末考试,考试内容为课程讲授的基本内容,专业性强的理论部分强调定性了解,让学生对热工基础有个整体的认识。

随着新能源科学领域的不断发展,热工基础理论散发出强大的活力。根据新能源科学与工程专业特点,教师还需要在教学过程中,不断探索教学方法和考核方式,不断优化课程内容,提升教学质量,使课程教学体系更加科学合理,更好地适应社会对新能源科学与工程专业人才的需求。

参考文献:

[1]陈登宇.新能源科学与工程专业人才培养模式研究[J].科教文汇(下旬刊),2015,(1):61-62.

[2]登宇.新能源科学与工程专业(生物质能方向)人才培养探索[J].课程教育研究,2015,(1):236-237.

[3]武和全,姚永腾.对“工程热力学及传热学”课程教学的几点思考[J].科教导刊(下旬),2015,(4):90-91.

[4]武和全,吴云强.提高“工程热力学及传热学”课程教学质量的改革探讨[J].教育教学论坛,2015,(23):267-268.

第7篇

新能源科学与工程专业简介

新能源科学与工程是中国普通高等学校本科专业。

该专业培养具备能源工程、传热学、流体力学、动力机械、动力工程等基础知识,掌握新能源转换与利用原理、新能源装置及系统运行技术、风能、太阳能、生物质能等方面的新能源科学领域专业知识,能在国家风能、太阳能、地热、生物质能等新能源领域开展教学、科研、技术开发、工程应用、经营管理等方面的高级应用型人才,跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。

新能源科学与工程专业课程

工程力学,空气动力学,电路,电机学,电子技术基础,自动控制理论,电力电子技术,机械设计基础,风能资源测量与评估,风力机理论与设计,风力发电机组原理,风电机组调节与控制,风电场电气部分,风电场规划与设计等。

新能源科学与工程专业就业前景

新能源基本用来发电。分别有风能,太阳能,生物能,潮汐能,地热等。但现在技术上比较成熟的还是前两者。不过其中风能的缺点就是在国内并网比较困难,风能应用最好的是欧盟。太阳能的话,其制造过程污染很大。总的来说新能源前景绝对光明,只是道路可能有些曲折,还要看国家政策的侧倾力度。

本专业毕业生就业前景广阔,可在风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。

专业培养在风能、太阳能、地热、生物质能等新能源领域从事相关工程技术领域的开发研究、工程设计、优化运行及生产管理工作的跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。专业学生主要学习新能源科学与工程的基础理论和基技能,受到新能源科学与工程方面的基训练,具有独立思考能力、动手能力和工程实践能力。

新能源科学与工程科必备能力

1.具有较扎实的数学、物理、化学、机械、电子等学科基础知识;

2.较好的人文社会科学基础和管理科学基础知识;

3.掌握新能源科学与工程的基知识和基理论;

4.具有综合分析和解决实际问题的基能力;

5.能比较熟练地阅读专业的外文资料;