时间:2023-02-27 11:18:49
序论:在您撰写电阻测量论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
【关键词】电流互感器;绝缘电阻
电流互感器是发电厂和变电站的重要设备,产品性能的好坏对电力系统的安全稳定运行有重要影响。出厂试验是保证产品性能的重要一环。而绝缘电阻试验是其他高压试验的基础,是一项简便而常用的试验方法,下面就生产过程中遇到的问题对绝缘电阻测量进行系统说明。
1测量原理
绝缘就是不导电的意思,世界上没有绝对“绝缘”的物质,在绝缘介质两端施加直流电压时,介质中总会有电流流过。这个电流可以看成由三种电流组成:由电导决定的漏导电流、由快速极化决定的电容电流和缓慢极化产生的吸收电流。其中漏导电流不随时间而改变,电容电流瞬间即逝,吸收电流随加压时间逐渐衰减,这个时间与试品的电容量有关,电容量越大,衰减时间越长,研究表明,吸收电流与被试设备受潮情况有关,吸收电流与时间的曲线叫吸收曲线。不同绝缘的吸收曲线不同,对同一绝缘而言,受潮或绝缘有缺陷时,吸收曲线也不相同,因此,可以通过吸收曲线来判断绝缘的好坏。
2使用仪表
目前常用的仪表是手摇式兆欧表,从外观上看有三个接线端子,它们是“线路”端子L-接于被试设备的高压导体上;“地”端子E-接于被试设备的外壳或地上;“屏蔽”端子G---接于被试设备的高压护环上,以消除表面泄漏电流的影响。兆欧表的内部结构是由电源和测量机构组成。电源是手摇发电机,测量机构为电流线圈和电压线圈组成的磁电式流比计机构。当摇动兆欧表时,发电机产生的电压施加试品上,这时在电流线圈和电压线圈中有两个电流流过,将会产生两个不同方向的旋转力矩,二者平衡时指针指示的数值就是绝缘电阻的数值。随着科技的发展,目前数字式兆欧表已经问世,其量程可以切换,测量速度快而且准确,体积小、质量轻,适合现场使用。我们使用的是ZC-7型手摇兆欧表,电压为2500V。
3影响绝缘电阻测量的因素
3.1湿度的影响随着周围环境的变化,电力设备的吸湿程度也随着发生变化。湿度增大时,绝缘因毛细管的作用,将吸收较多的水分,使电导率增加,降低了绝缘电阻的数值,尤其对表面泄漏电流的影响更大。电流互感器的制作过程中,最容易吸湿的阶段是出罐后的装配过程。因此,装配时,应选择晴好的天气而且器身暴露在空气中的时间不宜过长。
3.2温度的影响对于电流互感器这种使用富于吸湿的材料,其绝缘电阻随着温度的升高而减小。一般来讲,温度变化10度,绝缘电阻的变化达一倍。每次测量不可能在同一温度下进行,因此,必要时应对绝缘电阻数值进行温度换算。
3.3表面脏污的影响试品表面脏污会使表面电阻率大大降低,使绝缘电阻下降,在这种情况下必须消除表面泄漏电流的影响,以获得正确的测量结果。
3.4残余电荷的影响对有残余电荷被试设备进行试验时,会出现虚假的现象,当残余电荷的极性与兆欧表的极性相同时,会使测量结果虚假的增大。当残余电荷的极性与兆欧表的极性相反时,会使测量结果虚假的减小。因此,对大容量的设备进行绝缘电阻测量前,应对设备进行充分的放电。
此外,兆欧表的连线铰接或拖地也会使测量结果变小,外界电场的干扰以及测量时L端子和E端子接反都会对结果产生一定的影响,测量时应全面考虑,综合判断。
4电流互感器绝缘电阻的测量
电流互感器绝缘电阻的测量包括一次对二次及地、二次之间及对地、一次段间,以及生产过程中的储油柜、二次接线板和底座等。要做出正确的判断除了解上述影响绝缘电阻的因素还必须知道电流互感器的整体结构及原理,此外,对于生产过程中的干燥工艺、组装过程中脏污等也会影响测量结果。例如,2002年曾发现一台电流互感器二次某一个绕组对地的绝缘电阻不合格,经仔细检查发现为组装过程中不慎将一个细小的小铜丝短路于二次绕组和接线板之间,去除后再次测量,结论合格。绝缘性能是产品质量的重要指标,因此应严格控制出厂试验这一关。5结论
测量绝缘电阻是进行工频耐压、介质损耗、局部放电等其他高压试验的基础,它具有测量简便、易于发现绝缘的缺陷的优点。但必须了解它的测量原理以及对测量结果的综合判断,这样才能得到正确的结论。
6参考文献
1陈化钢.电力设备预防性试验方法.北京:中国科学技术出版社,2001
2邱昌容,曹晓珑.电气绝缘测试技术.北京:机械工业出版社,2001
许婧,王晶,高峰,束洪春.电力设备状态检修技术研究综述[J].电网技术,2000,(8)
论文关键词:初中测量电阻的几种常用方法
测量电阻是初中物理教学的最重要的实验之一,也是考察学生能力的重要命题热点之一。通过近几年中考试题我们就会发现,测量电阻方法多种多样,其应用的原理和计算方法也不尽相同,而电路图的设计更是灵活多变,如果学生对该部分知识不加以总结、消化的话,就会在做题时容易出错、造成不必要的丢分现象,因此电阻的测量看似简单,实则在教学中常常是学生的弱点,在各种考试中通过对电阻的测量的考察也可以反映出学生对电学基本知识掌握的情况,另外命题者还在不断的推陈出新,用不同的形式对学生进行考察。下面我们就对初中测量电阻的几种常用方法进行一个简单的总结,希望对同学们能有所帮助。
一、初中最基本的测电阻的方法
(1)伏安法测电阻
伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,
用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示杂志网。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。
(2)伏阻法测电阻
伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:
I1=I2
即:U1/R0=U2/RX
所以:
另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。
(3)安阻法测电阻
安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:
U0=UX
即:I1R0=I2RX
所以:
显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix杂志网。通过计算就有:。
以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:
二、特殊方法测电阻
(1)用电压表和滑动变阻器测量待测电阻的阻值
或者
用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:
1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。
2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:
(2)用电流表和滑动变阻器测量待测电阻的阻值
如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。
(3)用等效法测量电阻
如图11所示电路就是用等效法测量电阻的一种实验电路。其中Rx是待测电阻,R是电阻箱(其最大电阻值大于Rx)。其实验步骤简单操作如下:
把开关S闭向2,读出电流表的数值I,再把S闭向1,调节电阻箱,使电流表的读数仍为I不变,则读出电阻箱的数值,即为待测电阻Rx的值。
以上就是初中常见的测电阻的方法,大家会吗,希望以上总结对大家的学习有所帮助。
关键词:变压器线圈直流电阻测量结果分析
1直流电阻测量
1.1测量方法
测量直流电阻是变压器试验中的一个重要项目。通过测量,可以检查出设备的导电回路有无接触不良、焊接不良、线圈故障及接线错误等缺陷。在中、小型变压器的实际测量中,大多采用直流电桥法,当被试线圈的电阻值在1欧以上的一般用单臂电桥测量,1欧以下的则用双臂电桥测量。在使用双臂电桥接线时,电桥的电位桩头要靠近被测电阻,电流桩头要接在电位桩头的上面。测量前,应先估计被测线圈的电阻值,将电桥倍率选钮置于适当位置,将非被测线圈短路并接地,然后打开电源开关充电,待充足电后按下检流计开关,迅速调节测量臂,使检流计指针向检流计刻度中间的零位线方向移动,进行微调,待指针平稳停在零位上时记录电阻值,此时,被测线圈电阻值=倍率数×测量臂电阻值。测量完毕,先开放检流计按钮,再放开电源开关。
1.2注意事项
在测量过程中,除要严格遵守电气安全规程和设备试验规程外,还要特别注意:
1)在线圈温度稳定的情况下进行测量,要求变压器油箱上、下部的温度之差不超过3℃;
2)由于变压器线圈存有电感,测量时的充电电流不太稳定,一定要在电流稳定后再计数,必要时需采取缩短充电时间的措施;
3)尽量减少试验回路中的导线接触电阻,运行中的变压器分接头常受油膜等污物的影响使其接触不良,一般需切换数次后再测量,以免造成判别错误。
2测量结果分析
2.1规范要求
根据规范要求,三相变压器应测出线间电阻,有中性点引出的变压器,要测出相电阻;带有分接头的线圈,在大修和交接试验时,要测出所有分接头位置的线圈电阻,在小修和预试时,只需测出使用位置上的线圈电阻。由于变压器制造质量、运行单位维修水平、试验人员使用的仪器精度及测量接线方式的不同,测出的三相电阻值也不相同,通常引入如下误差公式进行判别
R%=[(Rmax-Rmin)/RP]×100%
RP=(Rab+Rbc+Rac)/3
式中R%――――误差百分数
Rmax――――实测中的最大值(Ω)
Rmin――――实测中的最小值(Ω)
RP――――三相中实测的平均值(Ω)
规范要求,1600KVA以上的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的2%,1600KVA以下的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的4%,线间差别不应大于三相平均值的2%;本次测量值与上次测量值相比较,其变化也不应大于上次测量值的2%。
2.2有关换算
在进行比较分析时,一定要在相同温度下进行,如果温度不同,则要按下式换算至20℃时的电阻值
R20℃=RtK,K=(T+20))/(T+t)
式中R20℃――――20℃时的直流电阻值(Ω)
Rt――――t℃时的直流电阻值(Ω)
T――――常数(铜导线为234.5,铝导线为225)
t――――测量时的温度
为了确定缺陷所在的相别,对于无中性点引出的三相变压器,还需将测得的线间电阻换算成每相电阻。设三相变压器的可测线间电阻为Rab、Rbc、Rac,每相电阻为Ra、Rb、Rc,当变压器线圈为Y型联接时,相电阻为
Ra=(Rab+Rac-Rbc)/2
Rb=(Rab+Rbc-Rac)/2
Rc=(Rac+Rbc-Rab)/2,如果三相平衡,相电阻等
于0.5倍线电阻;当变压器线圈为型联接,且a连y、b连z、c连x时,Ra=(Rac-RP)-RabRbc/(Rac-RP)
Rb=(Rab-RP)-RacRbc/(Rab-RP)
Rc=(Rbc-RP)-RabRac/(Rbc-RP)
当变压器线圈为型联接,且a连z、b连x、c连y时,
Ra=(Rab-RP)-RacRbc/(Rab-RP)
Rb=(Rbc-RP)-RabRac/(Rbc-RP)
关键词: CPR1000核电站 岭澳二期 汽轮机高压缸 热控测量孔 蒸汽泄漏
1. 事件描述
2010年2月16日,在CPR1000核电站首台机组岭澳核二期3号首次进行机组热态功能试验(3HFT)期间,高压缸进气温度测量元件( 3GME581YT /591YT)与汽缸的连接部位发生较大面积蒸汽泄漏,现场立刻采取了加强紧固的方式临时处理,保证热态功能试验的继续进行。在热态功能试验结束之后,施工现场对泄漏的温度测点进行拆卸检查,发现高压缸本体及高压主汽门的大部分热控测量孔密封面存在较严重的加工不平整、管座与测量套管不同心等问题,致使高温压蒸汽进入后产生较大面积蒸汽泄漏。
2. 原因分析
通过图纸核对和外方专家的技术确认,我们了解到,CPR10
00核电站首台机组的高压缸属于我国首次引进的核电百万千瓦级半速汽轮机组(原型机为法国阿尔斯通半速机),汽轮机的进气压力约是6.8MP。高压缸本体的热控测量孔是圆锥形的孔,采用六面形垫片密封,六面形垫片的A /B密封面分别和锥形面和热控测量接座密封面接触,密封线较窄(约2毫米),六面形垫片的材质为Q235材质,较一般的铜垫片硬,不易变形,且对加工面配合要求较高。(图1)
在针对高压缸热控测量孔的生产过程的加工处理上,工厂直接参考了外方的设计图纸,但忽视了图纸上对加工精度和密封面的较高配合的要求。导致发货到现场的热控测量接座、六面形垫片、锥形密封面三者之间的配合效果不佳 。
施工现场在安装前进行了简单检查,发现部分热控测量孔的锥形密封面在工厂内加工不平整、有划痕及点坑,各密封面间的配合不佳。虽然联系工厂进行确认,但未得到各方足够的重视,而工厂提供的相关的安装程序文件中也没有对安装前后检查做具体的要求。
在泄漏事件发生后,现场各方对锥形密封面进行了蓝油检查,发现较多数量的接触面存在断续,未接触、加工不平整、划痕及点坑等缺陷(图2),这是是产生蒸汽泄漏的主要原因。
3. 采取措施
针对上述的原因,经过现场各方讨论,采取如下措施:
(1)采取紧急修复措施
生产厂家派出技术人员携带专用工具对现场岭澳二期核电站3号机高压缸及主汽阀门的热控测量孔密封面进行精研磨加工,保证密封面的平整性和有效接触。
(2)完善安装程序中对热控测量孔安装和检查具体要求如下:
1) 安装前对应密封面进行目视检查,并使用蓝油对密封面的平整性和垫片接触有效性进行核查。
2) 对目视和蓝油检查不合格的测量孔,使用专用工具进行研磨处理,研磨直至蓝油检查合格;
3) 安装时使用力矩扳手将螺纹拧紧,采用高温螺纹密封脂(牌号GRN50),拧紧力矩值460NM。
通过以上的措施,对岭澳二期3号高压缸及主气门热控测量孔的蒸汽泄漏问题进行了修复,修复之后,在岭澳核电站3号机的汽轮机多次冲转和商运中都没有再次出现类似泄漏问题,说明这次泄漏处理方案是成功的。
4. 经验反馈
CPR1000核电站首台机组岭澳二期核电站3号机作为国内首台核电半速汽轮机组,在消化和吸收国外成熟技术中的过程中,第一次使用锥形密封面和六面形垫片密封的形式,对制造和安装过程有较高的工艺要求,通过在制造和安装过程中对热控测量点漏气问题的处理,我们得到如下经验总结和反馈:
1)锥形密封面和六面形垫片密封的形式是一种国内较为少见的高压蒸汽密封方式,对密封面的加工和零件间的配合都有相当高的制造和安装要求。工厂需在后续CPR1000项目核电半速汽轮机产品的生产制造过程中,应对高压缸和主汽阀门上热控测量孔密封面加工过程加大质量控制,提高整套产品的制造精度;
论文关键词:为何只用一只电压表测量
探究导ks5u.com体电阻与其影响因素的定量关系的实验是人教版物理3-1中的探究实验,教材实验电路如图1所示,图中a、b、c ks5u.com、d四条不同的金属导体.在长度、横截面积、材料三个因素方面,b、c、d跟a相比分别只有一个因素不同物理论文,b与a ks5u.com长度不同;c与a横截面积不同,d与a材料不同. 由于四段导体是串联的,每段导体的电压与它们的电阻成正比,因此用电压表分别测量a、b、c、d两端的电压,由电压之比就得到ks5u.com电阻之比.
该实验与旧教材测定金属的电阻率实验相比,实验的重点不是测量待测导线的具体电阻值,而是运用比值法和控制变量法的思想去探究电阻与其影响因素的定量关系,体现了新课程实验重在培养学生科学思想和探究能力的特色.然而物理论文,不少老师发现教材电路图是用一只电压表分别测量a、b、c ks5u.com、d电压的(图中用虚线表示的),为何不用四只相同的电压表同时测量电压(如图2)呢?是不是电路图画错了呢?为此,下面从实验的误差角度来分析这一问题.
为便于分析,现将问题简化为比较用一只电压表分别测两只电阻丝的(如图3)电阻之比和用两只电压表测量两个电阻丝(如图4)电阻之比的误差.
为简化分析,先讨论电源内阻r=0的理想化的情形.设电源电动势为E,电阻丝a、b的电阻分别为Ra、Rb,图3中电压表的测量值分别为Ua、Ub,图4中电压表的测量值分别为、物理论文,电压表内阻为RV.
电阻丝a与电压表并联时,电阻,ks5u.com
电阻丝b与电压表并联时,电阻,
图3中 ,
整理得,即
图3中 ,
整理得,即
所以,在不考虑电源内阻的情况下物理论文,用一只电压表测得两只电阻丝的电阻之比比用两只电压表测得两只电阻丝的电阻之比的误差小.
在实际实验中,电源有内阻,还要接入滑动变阻器.假设滑动变阻器接入电路的阻值和电源内阻之和为R0,再来比较图3、图4两种测量结果的误差.
图3中 ,
整理得
即
图4中 ,
整理得,即
比较与的大小.因,无论为真、假分数物理论文,根据不等式的性质可知比更接近于1,所以用一只电压表测得两只电阻丝的电阻之比比用两只电压表测得两只电阻丝的电阻之比的误差小.
上述分析方法和结论同样适用于四个电阻丝接入电路的情形,只是计算较为繁琐而已.
可见,在探究导ks5u.com体电阻与其影响因素的定量关系的实验中,用一只电压表分别测量导体a、b、c、d的电压得到的电阻之比比用四只相同的电压表分别测量a、b、c、d两端的电压得到的电阻之比误差小,所以教材电路中将电压表的连线画成虚线是科学的和正确的.
参考文献
张维善主编.普通高中课程标准实验教科书,物理选修3-1.人民教育出版社,2007.56
论文关键词:电表,反常规用法
电表的反常规用法是近几年高考的热点问题,相对学生来讲也恰恰是一个难点问题。电表的反常规用法一般有这么两种设计方案,其一就是用电流表来测电压,题目里往往把已知确定阻值的电流表当作电压表使用或把一个电流表和一个定值电阻改装为电压表适用;其二就是用电压表来测电流,解题时需要把确定阻值的电压表当作电流表使用。
例1、现有一块灵敏电流表 ,量程为200,内阻约为1000,要精确测出其内阻R1教育学论文教育论文,提供的器材有:
电流表 (量程为1mA,内阻R2=50);电压表(量程为3V,内阻RV约为3k);
滑动变阻器R(阻值范围为0~20);定值电阻R0(阻值R0=100);
电源E(电动势约为4.5V,内阻很小);单刀单掷开关S一个,导线若干。
(1)请将上述器材全部用上,设计出合理的便于多次测量的实验电路图,并保证各电表的示数超过其量程的1/3,将电路图画在图示的虚框内。
(2)在所测量的数据中选一组,用测量量和已知量来计算 表的内阻,表达式为R1=I2(R0+R2)/I1,表达式中各符号表示的意义是I1表示 表的示数,I2表示表的示数,R2表示 表的内阻,R0表示定值电阻的阻值毕业论文开题报告。
解析:此题目的本意是要考查学生对伏安法测电阻原理的掌握情况,但是该题目中所给出的电压表量程过大,只能用于保护电路使用。因此没有合适的电压表可以直接利用教育学论文教育论文,这时候我们必须依照伏安法测电阻的基本原理做出适当的改进,将电流表 和定值电阻R0改装成电压表,题目就迎刃而解了。
例2、从下面所给出的器材中选出适当的实验器材,设计一电路来测量电流表A1的内阻r1。要求方法简捷,有尽可能高的测量精度,并能测得多组数据。
电流表A1(量程100mA,内阻r1约40,待测)
电流表A2(量程50,内阻r2=750); 电压表V(量程10V,内阻r3=10k);
电阻R1(阻值约100,作保护电阻用); 滑动变阻器R2(总阻值约50)
电源E(电动势1.5V,内阻很小);电键S,导线若干
(1)在虚线方框中画出电路图,标明所用器材的代号。
(2)若选测量数据中的一组来计算r1,写出所用的表达式并注明式中各符号的意义。
r1=r2I2/ I1 其中I1和I2分别表示A1和 A2的电流。
解析:本题给出了电压表和电流表,若采用下图所示的电路进行测量时教育学论文教育论文,电压表的示数不到满量程的1/20,测量值不准确,因为电表的示数没有接近量程的一半或一半以上。
因此,用上图所示的电路不能较准确的测量A1的内阻。这时候我们可以把已知电阻的电流表A2当做电压表来使用,电流表A2两端的电压可以由其示数和内阻推算出来,A2两端的电压也就是A1两端的电压,这样就可以较准确的测量出A1的内阻了毕业论文开题报告。
例3、使用以下器材测量一待测电阻Rx的阻值(900-1000)。电源E,具有一定内阻,电动势约为9.0V;电压表V1,量程为1.5V,内阻r1=750;电压表V2,量程为5V,内阻r2=2500;滑动变阻器R,最大阻值约为100;单刀单掷开关K,导线若干。
(1)测量中要求电压表的读数不小于其量程的1/3,试画出测量电阻Rx的一种实验电路原理图。
或
(2)若电压表V1的读数用U1表示,电压表V2的读数用U2表示教育学论文教育论文,则由已知量和测得量表示Rx的公式为Rx= U1r1 r2/( U2 r1—U1 r2)或(U2—U1 )r1/U1
解析:该题目还是测未知电阻Rx的阻值的,显然本题目并没有给出电流表,我们不难发现本题里面已知两个电压表,而且电压表的内阻都是已知的,用电压表的读数除以本身的内阻就可得到通过自身的电流了,因此,我们完全可以把电压表当电流表来使用。
总而言之,类似的实验都是考查伏安法测电阻的基本原理,只要实验目的明确,充分利用题目所给出的器材,不难找出解题思路。
(作者信息:吴志民 1980.06 男 汉 甘肃 中学一级 理学学士 课堂教学及课堂互动研究)
关键词:电阻挡,二极管正向电阻
晶体二极管是电子技术中最常用的半导体器件之一,在使用前,通常先要判别其极性、检查其好坏,否则电路不仅不能正常工作,甚至还有可能烧毁二极管和其它元件。在电子技术教学、生产实践过程中,常用万用表的电阻挡来测量晶体二极管极间的正反向电阻,以判别其正负极、检查其单向导电性能的好坏。对于正常的晶体二极管,反向电阻应很大(硅管:万用表指针一般不动,锗管:指针只启动一点),正向电阻应较小。测量时,由于R×1挡电流较大容易使小电流晶体二极管损坏,R×10k挡电压较高容易使低耐压晶体二极管损坏,因此通常选用R×100或R×1k挡。但当我们用万用表不同电阻挡测同一晶体二极管的正向电阻时,会发现电阻值是不同的。例如用MF30型万用表测得某2CZ52B晶体二极管的正向电阻如下:拨到R×10挡时,阻值为58Ω;拨到R×100挡时,阻值为450Ω;拨到R×1k挡时,阻值为3.5kΩ。
为什么会出现这种情况呢?这得结合万用表电阻挡测量电路和晶体二极管正向电阻测量电路两方面来分析。论文参考网。
一、万用表电阻挡测量电路分析
万用表的直流电阻挡实际上是一只多量程的欧姆表,原理如图1所示。图1中:E为电池电压,Rc为表头内阻,R为串联电阻,Rx为被测电阻。根据欧姆定律,图中的电流I=E/(Rc+R+Rx)。显然,I与Rx成非线性关系。由于Rc和R都为已知值,所以被测电阻Rx阻值大,电流I就小,相应的指针偏转角也小。当Rx→∞时,电流I=0,指针不偏转;当Rx=0时,电路中电流最大,指针偏转角最大,为满刻度,此时回路中的电阻为Rc+R,这就是欧姆表的总内阻;当Rx=Rc+R时,电路中的电流恰好为最大电流的一半,指针偏转角为满刻度的一半,指针位于标度尺中间,因此,总内阻Rc+R也被称为欧姆中心值。
为了能测量各种阻值的电阻,欧姆表都制成多量程的,一般万用表中的欧姆挡有R×1,R×10,R×100,R×1k等。对不同量程的电阻挡,在测量电阻时由于采用同一标度尺读数,因而采用不同的分流电阻来改变流过表头的电流,使指针偏转角不同,其原理电路如图2所示。图中,R 3 、R 4 、R 5 、R 6 组成闭路式分流器,使欧姆表分为R×1、R×10、R×100、R×1k四个倍率挡。低阻挡用小的分流电阻,高阻挡用大的分流电阻。例如,R×1挡的分流电阻是R 3 ,R×10挡的分流电阻是R 3 +R 4 。当被测电阻R X 的阻值较大时,则转换开关应接到高阻挡。这时,虽然整个电路的电流因R X 的增大而减小,但由于分流电阻也相应增大,分流减小,所以流过表头的电流仍保持不变,同一指针位置所表示的电阻值相应扩大。因此,被测电阻的实际值应等于标度尺上的读数乘以所用电阻挡的倍率。图2中,R 1 和R 2 组成分压式欧姆调零器。调零电阻R 2 和电阻R 1 串联,可使支路的分流作用限制在一定范围内,R 7 、R 8 和R 9 为各相应挡的串联电阻,它们的作用是使各挡总内阻都等于该挡的欧姆中心值。因此电阻挡不同,欧姆中心值也不同。例如MF30型万用表当拨到R×1挡时,欧姆中心值为25Ω;拨到R×10挡时,欧姆中心值为250Ω;拨到R×100挡时,欧姆中心值为2.5kΩ;拨到R×1k挡时,欧姆中心值为25 kΩ。
由此可以看出,不同电阻挡,欧姆中心值也不一样,当电阻挡越大时,欧姆中心值也越大,此时整个电路的电流将减小,即流过被测电阻的电流就越小。
二、晶体二极管正向电阻测量电路的直流图解分析
若把图1中的被测电阻R X 改为晶体二极管,如图3所示,则该图即为晶体二极管正向电阻测量电路。由于晶体二极管为非线性器件,因此该测量电路属非线性电路,而欧姆定律只适用于线性电路,因此图3电路宜采用图解法分析。图中u D 下端晶体二极管支路伏安特性表达式为i D =f(u D )=I S (e uD/uT -1) ,其对应正向伏安特性曲线如图4中OQP,为一非线性曲线;u D 上端线性支路的特性方程为u D =E-i D (R+Rc),该方程所描述的是图4中的直线MN,其斜率等于-1/(R+Rc)。论文参考网。直线MN与晶体二极管正向伏安特性曲线相交于Q点,Q点即为直流工作点,它反映了晶体二极管直流工作时的正向电压和电流。
图3测量电路中的晶体二极管处于正向直流工作状态,此时所呈现的电阻为正向直流电阻R D 。对应于图4,R D =U Q /I Q ,显然R D 值等于直流工作点Q与原点O间所连直线OQ的斜率的倒数,当工作电流I Q 不同时,Q点会沿着伏安特性曲线而移动,这时Q点与原点间所连直线OQ的斜率就不同,正向电阻R D 值也就不同,而且I Q 越小,R D 越大。
由此可知,当流过被测晶体二极管的正向电流越小时,晶体二极管的正向电阻就越大。
综合上面两个方面的分析,由于万用表电阻测量电路中,电阻挡越大,欧姆中心值越大,流过晶体二极管的电流就越小,又由于晶体二极管正向电阻测量电路中,流过晶体二极管的电流越小,直流工作点Q就越低,直线OQ的斜率越小,因而正向电阻就越大。因此,当用万用表不同电阻挡测同一晶体二极管的正向电阻时,测得的结果是不同的,电阻挡越大,正向电阻也越大。反之,则越小。
那么,究竟用哪一电阻挡测得的电阻值作为晶体二极管的正向电阻呢?一般情况下,取万用表R×1k挡测得的电阻作为其正向电阻。论文参考网。其实,同一晶体二极管在用同一万用表不同电阻挡测时正向电阻不相同,用不同万用表相同电阻挡测时也是不相同的。也就是说,在改变测量条件时,晶体二极管的正向电阻也将随之改变。因此,用万用表电阻挡测量晶体二极管的正向电阻和反向电阻,通常仅仅是用来判别其正负极或检查其单向导电性能的好坏而已,正向电阻具体数值的多少并无实际意义。
参考文献:
[1]文春帆,金受非主编.电工仪表与测量(第二版).北京:高等教育出版社,2004
[2]童诗白,华成英主编.模拟电子技术基础(第三版).北京:高等教育出版社,2001
[3]闵锐,徐勇,孙峥编著.电子线路基础.西安:西安电子科技大学出版社,2003