欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

客服实训总结范文

时间:2023-02-27 11:15:51

序论:在您撰写客服实训总结时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

客服实训总结

第1篇

妇产科实训小结【一】

时间过得十分之快,我已经实习将快五个月了,想想我这五个月的实习经历,实在是很充实。社会真的是一个很大的学堂。在学校上课的时候,学的东西很多,但实际运用到临床实践的却很少,一半都没有到达,唯有自己总结经验,努力地去实践了。在医院实习期间,也认识了新的老师、新的同事、新的事物。感觉很新鲜。我转的第七个科室是-妇产科,这一点我觉得并不害怕。因为我这门课程学的还能够。我到科室的第一天,我目瞪口呆了,根本就没有我想象的那么简单,我傻站了一天,也不明白自己该做什么。只看见***们都很忙。

到了第二天,在***长的安排之下,我有了指定的带教老师,姓陈。在陈老师的精心指导之下,我熟悉了各类医疗器械、药物等等东西的摆放位置,也慢慢地学会了做胎监、听胎音等。在妇产科说忙也算不上,进产房看做清宫手术的时候,刚开始的几天有点吃不消。觉得太残忍了,但时间长了,看多了,也不觉得怎样惊奇。我觉得女孩子还是自重、洁身自爱些好,要么吃亏的终是自己。那里分好几个班(中、主、大、小、值),每一天做的事情有:晨间护理、打针、输液、抹洗、接病人、听胎音、做胎监、做腹部微波治疗、测体温、量血压、配药、拿药。这通通都井然有序地干着。虽然很累,但觉得很充实。每一天以微笑应对每一位病人,耐心的讲解她们不懂的问题。并指导她们将如何照顾宝宝、要注意什么等等。

在那里能够看到婴儿,他们是最可爱的。每一次听见他们嚎啕大哭的时候就更加地感觉到他们更加可爱了。有的病房有2至3个婴儿,倘若有一个婴儿哭,那么另一个婴儿也会哭,好像是比赛一样。我还曾记得第一次抱宝宝时的情景(感觉)。当时的我并不认识怎样去抱,心里也个性害怕。但在师姐的精心讲解之下,我最后都学会了。宝宝实在是太讨人喜欢了,粉嫩粉嫩的肌肤,抱起来而是那么的轻盈。那感觉难以忘怀,毕竟第一次抱。妇产科的实习结束了,时间很短,但是也足够让我成长,原本迷茫的我现今满载而归,尽管我不明白未来的工作会怎样,但我相信有各科老师的帮忙,加上自己的努力,必须会顺利完成实习,成为一名合格的白衣天使!

妇产科实训小结【二】

透过在产前后产后分别两个星期的实习,对产科的专科知识有了极大的认识和了解,对于产科的常用操作也到达熟练掌握程度,十分感谢带教老师在这一个月的时间里的照顾和教导。

我将从以下几方面总结我这一个月的产科实习:

首先,对实习的状态挺满意的,无论在产前还是产后都比在之前的科室表现的主动,比较勇敢地去做事情,而老师也敢于放手让我自己去发挥,这让我真的感到很荣幸,有时自己在内心中也对自己捏一把汗,更加谨慎地去做操作。当自己独立成功完成操作时,那是一种极大的满足。在操作过后,老师会很细心地给我讲解作中的不足之处,给我示范正确的操作。

再者,在实习中,我更加注重了和病人之间的沟通,在做每一项的操作时,都会和病人解释这项操作,病人理解了就会很配合我的操作,不会担心实习生做不好拒绝让实习生进行操作这种状况。这样貌和病人之间的关系就变得很融洽,平时也会打打招呼。能得到病人的信任,做事情病的很顺利,自己也更加自信。

之后,在产科掌握了很多专科知识和专科操作,在产前住的有安胎的孕妇和待产的产妇,产后的主要是产妇等。对她们经常做的操作是静脉输液,会阴抹洗,氧气吸入,导尿,测生命体征,帮小孩洗澡和游泳以及换衣被等。在产前掌握了产科常用药物的使用方法和注意事项,如安宝和硫酸镁的的应用。还有掌握胎心监护仪的使用,在产房里熟悉分娩的三个分期,配合助产士进行分娩工作,学会给新生儿测血糖,帮产后产妇按摩子宫。在产后和老师一齐协助产妇哺乳,对产妇进行健康教育。

最后,对自己在产科实习不满意的地方,实习的时候未能很快的熟悉各种物品的摆放,很多东西得找半天都找不到,需要询问老师。对配合老师这个方面表现的比较差。未能和老师进行有效的沟通,和老师的交流比较少,最主要的原因是对产科的理论知识掌握的不大好,未能进行深入的思考,老师和我讲解我只能全盘理解,没有自己的见解在里面,所以和老师之间的话题也比较少。对于各种知识没能好好整理,回答问题的时候会有些张冠李戴的感觉,答错方向了。

以后我会在以上方面不断加强的。十分感谢老师们的辛勤带教。

妇产科实训小结【三】

不知不觉我们已在产科呆了一个月了,在这一个月来,使我充分扎实的学到了不少专业知识。妇产科不同于其他科室,它的专业功底是很雄厚的,只有真正的去努力学会吃透,才算得上是精益求精。

在带教王老师的指导下,每个星期我们都获得了理论的灌输,如:专科的知识要点,注意事项,护理操作。从而使我更深入地理论联系到实践中去,比方说,给婴儿洗澡时应注意什么,虽然还轮不到我们为婴儿洗澡,但我可从中学习,此外在产房的时候,为病人消毒皮肤,之中我有不足的地方,但我更愿意汲取教训,努力更正,争取做好。

第2篇

数列

第十八讲

数列的综合应用

一、选择题

1.(2018浙江)已知,,,成等比数列,且.若,则

A.,

B.,

C.,

D.,

2.(2015湖北)设,.若p:成等比数列;q:,则

A.p是q的充分条件,但不是q的必要条件

B.p是q的必要条件,但不是q的充分条件

C.p是q的充分必要条件

D.p既不是q的充分条件,也不是q的必要条件

3.(2014新课标2)等差数列的公差为2,若,,成等比数列,则的前项和=

A.

B.

C.

D.

4.(2014浙江)设函数,,

,记

,则

A.

B.

C.

D.

二、填空题

5.(2018江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前项和,则使得成立的的最小值为

6.(2015浙江)已知是等差数列,公差不为零.若,,成等比数列,且,则

7.(2013重庆)已知是等差数列,,公差,为其前项和,若成等比数列,则.

8.(2011江苏)设,其中成公比为的等比数列,成公差为1的等差数列,则的最小值是________.

三、解答题

9.(2018江苏)设是首项为,公差为的等差数列,是首项为,公比为的等比数列.

(1)设,若对均成立,求的取值范围;

(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).

10*.(2017浙江)已知数列满足:,.

证明:当时

(Ⅰ);

(Ⅱ);

(Ⅲ).

*根据亲所在地区选用,新课标地区(文科)不考.

11.(2017江苏)对于给定的正整数,若数列满足

对任意正整数总成立,则称数列是“数列”.

(1)证明:等差数列是“数列”;

(2)若数列既是“数列”,又是“数列”,证明:是等差数列.

12.(2016年四川)已知数列的首项为1,为数列的前项和,,其中,

(Ⅰ)若成等差数列,求数列的通项公式;

(Ⅱ)设双曲线的离心率为,且,求.

13.(2016年浙江)设数列{}的前项和为.已知=4,=2+1,.

(I)求通项公式;

(II)求数列{}的前项和.

14.(2015重庆)已知等差数列满足,前3项和.

(Ⅰ)求的通项公式;

(Ⅱ)设等比数列满足,,求前项和.

15.(2015天津)已知是各项均为正数的等比数列,是等差数列,且,,.

(Ⅰ)求和的通项公式;

(Ⅱ)设,,求数列的前项和.

16.(2015四川)设数列(=1,2,3…)的前项和满足,且,+1,成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列的前项和为,求.

17.(2015湖北)设等差数列的公差为,前项和为,等比数列的公比为,已知,,,.

(Ⅰ)求数列,的通项公式;

(Ⅱ)当时,记=,求数列的前项和.

18.(2014山东)已知等差数列的公差为2,前项和为,且,,成等比数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)令=求数列的前项和.

19.(2014浙江)已知数列和满足.若为等比数列,且

(Ⅰ)求与;

(Ⅱ)设.记数列的前项和为.

(ⅰ)求;

(ⅱ)求正整数,使得对任意,均有.

20.(2014湖南)已知数列{}满足

(Ⅰ)若{}是递增数列,且成等差数列,求的值;

(Ⅱ)若,且{}是递增数列,{}是递减数列,求数列{}的通项公式.

21.(2014四川)设等差数列的公差为,点在函数的图象上().

(Ⅰ)若,点在函数的图象上,求数列的前项和;

(Ⅱ)若,函数的图象在点处的切线在轴上的截距为,求数列

的前项和.

22.(2014江苏)设数列的前项和为.若对任意正整数,总存在正整数,使得,则称是“H数列”.

(Ⅰ)若数列的前n项和(N),证明:

是“H数列”;

(Ⅱ)设

是等差数列,其首项,公差.若

是“H数列”,求的值;

(Ⅲ)证明:对任意的等差数列,总存在两个“H数列”和,使得(N)成立.

23.(2013安徽)设数列满足,,且对任意,函数

,满足

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求数列的前项和.

24.(2013广东)设各项均为正数的数列的前项和为,满足

且构成等比数列.

(Ⅰ)证明:;

(Ⅱ)求数列的通项公式;

(Ⅲ)证明:对一切正整数,有.

25.(2013湖北)已知是等比数列的前项和,,,成等差数列,

且.

(Ⅰ)求数列的通项公式;

(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;

若不存在,说明理由.

26.(2013江苏)设是首项为,公差为的等差数列,是其前项和.

记,,其中为实数.

(Ⅰ)

若,且,,成等比数列,证明:;

(Ⅱ)

若是等差数列,证明:.

27.

(2012山东)已知等差数列的前5项和为105,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)对任意,将数列中不大于的项的个数记为.求数列的前m项和.

28.(2012湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金万元,并将剩余资金全部投入下一年生产.设第年年底企业上缴资金后的剩余资金为万元.

(Ⅰ)用表示,并写出与的关系式;

(Ⅱ)若公司希望经过(≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金的值(用表示).

29.(2012浙江)已知数列的前项和为,且=,,数列满足,.

(Ⅰ)求;

(Ⅱ)求数列的前项和.

30.(2012山东)在等差数列中,,

(Ⅰ)求数列的通项公式;

(Ⅱ)对任意的,将数列中落入区间内的项的个数为,求数列的前项和.

31.(2012江苏)已知各项均为正数的两个数列和满足:.

(Ⅰ)设,求证:数列是等差数列;

(Ⅱ)设,且是等比数列,求和的值.

32.(2011天津)已知数列满足,

(Ⅰ)求的值;

(Ⅱ)设,证明是等比数列;

(Ⅲ)设为的前项和,证明

33.(2011天津)已知数列与满足:,

,且.

(Ⅰ)求的值;

(Ⅱ)设,证明:是等比数列;

(Ⅲ)设证明:.

34.(2010新课标)设数列满足

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和.

35.(2010湖南)给出下面的数表序列:

其中表(=1,2,3

)有行,第1行的个数是1,3,5,,21,从第2行起,每行中的每个数都等于它肩上的两数之和.

(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表(≥3)(不要求证明);

(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12,,记此数列为,求和:

专题六

数列

第十八讲

数列的综合应用

答案部分

1.B【解析】解法一

因为(),所以

,所以,又,所以等比数列的公比.

若,则,

而,所以,

与矛盾,

所以,所以,,

所以,,故选B.

解法二

因为,,

所以,则,

又,所以等比数列的公比.

若,则,

而,所以

与矛盾,

所以,所以,,

所以,,故选B.

2.A【解析】对命题p:成等比数列,则公比且;

对命题,

①当时,成立;

②当时,根据柯西不等式,

等式成立,

则,所以成等比数列,

所以是的充分条件,但不是的必要条件.

3.A【解析】,,成等比数列,,即,解得,所以.

4.B【解析】在上单调递增,可得,

,…,,

=

在上单调递增,在单调递减

,…,,,

,…,

==

=

在,上单调递增,在,上单调递减,可得

因此.

5.27【解析】所有的正奇数和()按照从小到大的顺序排列构成,在数列

中,前面有16个正奇数,即,.当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,=

441

+62=

503

+62=546>=540,符合题意.故使得成立的的最小值为27.

6.【解析】由题可得,,故有,又因为,即,所以.

7.64【解析】由且成等比数列,得,解得,故.

8.【解析】设,则,由于,所以,故的最小值是.

因此,所以.

9.【解析】(1)由条件知:,.

因为对=1,2,3,4均成立,

即对=1,2,3,4均成立,

即11,13,35,79,得.

因此,的取值范围为.

(2)由条件知:,.

若存在,使得(=2,3,···,+1)成立,

即(=2,3,···,+1),

即当时,满足.

因为,则,

从而,,对均成立.

因此,取=0时,对均成立.

下面讨论数列的最大值和数列的最小值().

①当时,,

当时,有,从而.

因此,当时,数列单调递增,

故数列的最大值为.

②设,当时,,

所以单调递减,从而.

当时,,

因此,当时,数列单调递减,

故数列的最小值为.

因此,的取值范围为.

10.【解析】(Ⅰ)用数学归纳法证明:

当时,

假设时,,

那么时,若,则,矛盾,故.

因此

所以

因此

(Ⅱ)由得

记函数

函数在上单调递增,所以=0,

因此

(Ⅲ)因为

所以得

由得

所以

综上,

11.【解析】证明:(1)因为是等差数列,设其公差为,则,

从而,当时,

所以,

因此等差数列是“数列”.

(2)数列既是“数列”,又是“数列”,因此,

当时,,①

当时,.②

由①知,,③

,④

将③④代入②,得,其中,

所以是等差数列,设其公差为.

在①中,取,则,所以,

在①中,取,则,所以,

所以数列是等差数列.

12.【解析】(Ⅰ)由已知,

两式相减得到.

又由得到,故对所有都成立.

所以,数列是首项为1,公比为q的等比数列.

从而.

由成等差数列,可得,所以,故.

所以.

(Ⅱ)由(Ⅰ)可知,.

所以双曲线的离心率.

由解得.所以,

13.【解析】(1)由题意得:,则,

又当时,由,

得,

所以,数列的通项公式为.

(2)设,,.

当时,由于,故.

设数列的前项和为,则.

当时,,

所以,.

14.【解析】(Ⅰ)设的公差为,则由已知条件得

化简得

解得,.

故通项公式,即.

(Ⅱ)由(Ⅰ)得.

设的公比为,则,从而.

故的前项和

15.【解析】(Ⅰ)设数列的公比为q,数列的公差为d,由题意,由已知,有

消去d,整数得,又因为>0,解得,所以的通项公式为,数列的通项公式为.

(Ⅱ)解:由(Ⅰ)有

,设的前n项和为,则

两式相减得,

所以.

16.【解析】(Ⅰ)

由已知,有

=(n≥2),即(n≥2),

从而,.

又因为,+1,成等差数列,即+=2(+1),

所以+4=2(2+1),解得=2.

所以,数列是首项为2,公比为2的等比数列,故.

(Ⅱ)由(Ⅰ)得,

所以=.

17.【解析】(Ⅰ)由题意有,

即,

解得

故或

(Ⅱ)由,知,,故,于是

①-②可得

故.

18.【解析】(Ⅰ)

解得

(Ⅱ),

当为偶数时

19.【解析】(Ⅰ)由题意,,,

知,又由,得公比(舍去),

所以数列的通项公式为,

所以,

故数列的通项公式为,;

(Ⅱ)(i)由(Ⅰ)知,,

所以;

(ii)因为;

当时,,

而,

得,

所以当时,,

综上对任意恒有,故.

20.【解析】(I)因为是递增数列,所以。而,

因此又成等差数列,所以,因而,

解得

当时,,这与是递增数列矛盾。故.

(Ⅱ)由于是递增数列,因而,于是

但,所以

.

又①,②知,,因此

因为是递减数列,同理可得,故

由③,④即知,。

于是

.

故数列的通项公式为.

21.【解析】(Ⅰ)点在函数的图象上,所以,又等差数列的公差为,所以

因为点在函数的图象上,所以,所以

又,所以

(Ⅱ)由,函数的图象在点处的切线方程为

所以切线在轴上的截距为,从而,故

从而,,

所以

故.

22.【解析】(Ⅰ)当时,

当时,

时,,当时,,是“H数列”.

(Ⅱ)

对,使,即

取得,

,,又,,.

(Ⅲ)设的公差为d

令,对,

,对,

则,且为等差数列

的前n项和,令,则

当时;

当时;

当时,由于n与奇偶性不同,即非负偶数,

因此对,都可找到,使成立,即为“H数列”.

的前n项和,令,则

对,是非负偶数,

即对,都可找到,使得成立,即为“H数列”

因此命题得证.

23.【解析】(Ⅰ)由,

所以,

是等差数列.

而,,,,

(Ⅱ)

24.【解析】(Ⅰ)当时,,

(Ⅱ)当时,,

,

当时,是公差的等差数列.

构成等比数列,,,

解得.

由(Ⅰ)可知,

是首项,公差的等差数列.

数列的通项公式为.

(Ⅲ)

25.【解析】(Ⅰ)设数列的公比为,则,.

由题意得

解得

故数列的通项公式为.

(Ⅱ)由(Ⅰ)有

.

若存在,使得,则,即

当为偶数时,,

上式不成立;

当为奇数时,,即,则.

综上,存在符合条件的正整数,且所有这样的n的集合为.

26.【证明】(Ⅰ)若,则,,又由题,

,,

是等差数列,首项为,公差为,,又成等比数列,

,,,,,,

,().

(Ⅱ)由题,,,若是等差数列,则可设,是常数,关于恒成立.整理得:

关于恒成立.,

27.【解析】(Ⅰ)由已知得:

解得,

所以通项公式为.

(Ⅱ)由,得,即.

是公比为49的等比数列,

28.【解析】(Ⅰ)由题意得,

(Ⅱ)由(Ⅰ)得

整理得

由题意,

解得.

故该企业每年上缴资金的值为缴时,经过年企业的剩余资金为4000元.

29.【解析】(Ⅰ)由=,得

当=1时,;

当2时,,.

由,得,.

(Ⅱ)由(1)知,

所以,

,.

30.【解析】:(Ⅰ)由a3+a4+a5=84,a5=73可得而a9=73,则

,,

于是,即.

(Ⅱ)对任意m∈,,则,

即,而,由题意可知,

于是

即.

31.【解析】(Ⅰ)由题意知,

所以,从而

所以数列是以1为公差的等差数列.

(Ⅱ).所以,

从而

(*)

设等比数列的公比为,由知下证.

若,则.故当,,与(*)矛盾;

若,则.故当,,与(*)矛盾;

综上:故,所以.

又,所以是以公比为的等比数列,若,

则,于是,又由,得,

所以中至少有两项相同,矛盾.所以,从而,

所以.

32.【解析】(Ⅰ)由,可得

又,

(Ⅱ)证明:对任意

②-①,得

所以是等比数列。

(Ⅲ)证明:,由(Ⅱ)知,当时,

故对任意

由①得

因此,

于是,

33.【解析】(Ⅰ)由可得

当时,,由,,可得;

当时,,可得;

当时,,可得;

(Ⅱ)证明:对任意

②—③,得

将④代入①,可得

因此是等比数列.

(Ⅲ)证明:由(II)可得,

于是,对任意,有

将以上各式相加,得

即,

此式当k=1时也成立.由④式得

从而

所以,对任意,

对于=1,不等式显然成立.

所以,对任意

34.【解析】(Ⅰ)由已知,当n≥1时,

.而

所以数列{}的通项公式为.

(Ⅱ)由知

从而

①-②得

35.【解析】(Ⅰ)表4为

1

3

5

7

4

8

12

12

20

32

它的第1,2,3,4行中的数的平均数分别为4,8,16,32.

它们构成首项为4,公比为2的等比数列.将结这一论推广到表(≥3),即表各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

将这一结论推广到表,即表各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

简证如下(对考生不作要求)

首先,表的第1行1,3,5,…,是等差数列,其平均数为;其次,若表的第行,,…,是等差数列,则它的第行,,…,也是等差数列.由等差数列的性质知,表的第行中的数的平均数与行中的数的平均数分别是

,.

由此可知,表各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

(Ⅱ)表第1行是1,3,5,…,2-1,其平均数是

由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列(从而它的第行中的数的平均数是),于是表中最后一行的唯一一个数为.因此

.(=1,2,3,

…,

第3篇

不等式

第二十一讲

不等式的综合应用

2019年

1.(2019天津理13)设,则的最小值为

.

2010-2018年

一、选择题

1.(2018北京)设集合则

A.对任意实数,

B.对任意实数,

C.当且仅当时,

D.当且仅当时,

2.(2017天津)已知函数设,若关于的不等式在上恒成立,则的取值范围是

A.

B.

C.

D.

3.(2015北京)设是等差数列.下列结论中正确的是

A.若,则

B.若,则

C.若,则

D.若,则

4.(2015陕西)设,,若,,

,则下列关系式中正确的是

A.

B.

C.

D.

5.(2014重庆)若的最小值是

A.

B.

C.

D.

6.(2013福建)若,则的取值范围是

A.

B.

C.

D.

7.(2013山东)设正实数满足.则当取得最大值时,

的最大值为

A.0

B.1

C.

D.3

8.(2013山东)设正实数满足,则当取得最大值时,

的最大值为

A.0

B.

C.2

D.

9.(2012浙江)若正数满足,则的最小值是

A.

B.

C.5

D.6

10.(2012浙江)若正数满足,则的最小值是

A.

B.

C.5

D.6

11.(2012陕西)小王从甲地到乙地的时速分别为和(),其全程的平均时速为,则

A.

B.=

C.

D.=

12.(2012湖南)已知两条直线:

和:(),与函数的图像从左至右相交于点,与函数的图像从左至右相交于.记线段和在轴上的投影长度分别为,当

变化时,的最小值为

A.

B.

C.

D.

13.(2011陕西)设,则下列不等式中正确的是

A.

B.

C.

D.

14.(2011上海)若,且,则下列不等式中,恒成立的是

A.

B.

C.

D.

二、填空题

15.(2018天津)已知,且,则的最小值为

.

16.(2018浙江)已知,函数,当时,不等式的解集是___________.若函数恰有2个零点,则的取值范围是___________.

17.(2017北京)已知,,且,则的取值范围是_______.

18.(2017天津)若,,则的最小值为___________.

19.(2017江苏)某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费之和最小,则的值是

.

20.(2017浙江)已知,函数在区间[1,4]上的最大值是5,则的取值范围是

.

21.(2014浙江)已知实数满足,,则的最大值是__;

22.(2014辽宁)对于,当非零实数a,b满足,且使最大时,的最小值为

.

23.(2014辽宁)对于,当非零实数,满足,且使最大时,的最小值为

.

24.(2014湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为.

(Ⅰ)如果不限定车型,,则最大车流量为

辆/小时;

(Ⅱ)如果限定车型,,则最大车流量比(Ⅰ)中的最大车流量增加

辆/小时.

25.(2013天津)设a

+

b

=

2,

b>0,

则当a

=

时,

取得最小值.

26.(2013四川)已知函数在时取得最小值,则__.

27.(2011浙江)若实数满足,则的最大值是____.

28.(2011湖南)设,则的最小值为

.

29.(2010安徽)若,则下列不等式对一切满足条件的恒成立的是

(写出所有正确命题的编号).

①;

②;

③;

④;

专题七

不等式

第二十一讲

不等式的综合应用

答案部分

2019年

1.解析

,,,

则;

由基本不等式,(当且仅当时,即,且时,即或时,等号成立).

故的最小值为.

2010-2018年

1.D【解析】点在直线上,表示过定点,斜率为的直线,当时,表示过定点,斜率为的直线,不等式表示的区域包含原点,不等式表示的区域不包含原点.直线与直线互相垂直,显然当直线的斜率时,不等式表示的区域不包含点,故排除A;点与点连线的斜率为,

当,即时,表示的区域包含点,此时表示的区域也包含点,故排除B;当直线的斜率,即时,表示的区域不包含点,故排除C,故选D.

解法二

若,则,解得,所以当且仅当时,.故选D.

2.A【解析】解法一

函数的图象如图所示,当的图象经过点时,可知.当的图象与的图象相切时,由,得,由,并结合图象可得,要使恒成立,当时,需满足,即,当时,需满足,所以.

解法二

由题意时,的最小值2,所以不等式等价于

在上恒成立.

当时,令,得,不符合题意,排除C、D;

当时,令,得,不符合题意,排除B;

选A.

3.C

【解析】若是递减的等差数列,则选项都不一定正确.若为公差为0的等差数列,则选项D不正确.对于C选项,由条件可知为公差不为0的正确数列,由等差中项的性质得,由基本不等式得,所以C正确.

4.B【解析】,,又在上单调递增,

故,即,

,

.

5.D【解析】由已知得,且,可知,

所以(),.

当且仅当时取等号.

6.D【解析】本题考查的是均值不等式.因为,即,

所以,当且仅当,即时取等号.

7.B【解析】由,得.

所以,当且仅当,

即时取等号此时,.

,

故选B.

8.C【解析】由得,

,

当且仅当即时,有最小值1,

将代入原式得,

所以,

当时有最大值2.故选C.

9.C【解析】,,

.

10.C【解析】,,

.

11.A【解析】设从甲地到乙地所走路程为,

则.

,

,.选A.

12.B【解析】在同一坐标系中作出,(),图像

如下图,

由=

m,得,

=,得.

依题意得.

,.

13.B【解】(方法一)已知和,比较与,

因为,所以,同理由

得;作差法:,

所以,综上可得;故选B.

(方法二)取,,

则,,所以.

14.D【解析】对于A取,此时,因此A不正确;对于B取

,此时,因此B不正确;对于C取,

此时,因此C不正确;对于D,,

,

,D正确.

15.【解析】由,得,

所以,

当且仅当,即时等号成立.

16.;【解析】若,则当时,令,得;当时,令,得.综上可知,所以不等式的解集为.令,解得;令,解得或.因为函数恰有2个零点,结合函数的图象(图略)可知或.

17.【解析】由题意,,且,又时,,时,,当时,,所以取值范围为.

18.4【解析】

,

当且仅当,且,即时取等号.

19.30【解析】总费用为,当且仅当,即时等号成立.

20.【解析】,

①当时,,

所以的最大值,即(舍去)

②当时,,此时命题成立.

③当时,,则

或,

解得或,

综上可得,实数的取值范围是.

21.【解析】由得,,则

,又,所以,

解得,故的最大值为.

22.-1【解析】设最大,则必须同号,

因为,

故有,,当且仅当时取等号,此时,

所以=.

23.-2

【解析】

设,则,因为,

所以将代入整理可得①,

由解得,当取得最大值时,,

代入①式得,再由得,

所以.

当且仅当时等号成立.

24.1900

100【解析】(Ⅰ),

当且仅当时等号成立.

(Ⅱ),当且仅当时等号成立.

.

25.-2【解析】=

当且仅当,即时取等号

故取得最小值时,.

26.【解析】因为,,

当且仅当,即,解得.

27.【解析】,

,即,

,.

28.9【解析】由柯西不等式可知.

29.①③⑤【解析】令,排除②④;由,

第4篇

关键词:中职;核心素养;电子商务教学;网店客服

职业核心素养在职业教育中是一个非常重要的教育目标。通过借鉴世界各国在职业教育方面的先进经验,立足于我国国情和社会发展的需要,我国劳动和社会保障部提出了劳动就业者应该具备的8种核心能力:外语应用能力、信息处理能力、解决问题能力、与人合作能力、自我学习能力、创新能力、数字运用能力、交流表达能力。职业教育是一种以就业为导向的教育,仅靠课堂理论教学来培养学生多方面的能力和素质是不现实的,如何以提升学生的职业核心素养为中心来开展相应的实践教学活动是非常重要的课题。

我校的电子商务专业经过建设与改革,将人才培养目标定位于“网店客服”及“网店美工”两大岗位群。其中网店客服岗位群的工作任务包括在线客服、电商咨询、客户关系管理等。虽然是企业架构的最低层级,但却是所有中职毕业生的第一对口就业岗位。因为通过该岗位的工作,可以直接快速地熟悉企业文化、定位,掌握企业产品价格、特色及卖点,成为每一位电商人的首要岗位,其重要性可想而知。基于此,笔者对网店客服技能的教学实践进行探讨。

1.职业核心素养的内涵

职业核心素养指的是对劳动者的未来发展有着关键作用的一种综合素质和能力,又被称为职业核心能力或者关键能力。职业核心素养适用于各种职业,对职业主体而言,它是一种终生可持续发展能力。

电子商务专业是一个复合型专业,涉及到技术、经济、贸易、管理等综合学科,其专业如何建设还没有一个公认的模型。国内外教育学者都在积极探索电子商务专业课程体系的设置与专业建设。而“网店客服”是电子商务专业的一门必修专业课,该课程对电子商务专业学生的职业能力培养与职业素质养成起到重要支撑作用。

网店客服是企业与客户最直接最前沿的窗口,需掌握以下基本技能:(1)办公软件使用技能;(2)网店平台操作技能;(3)客户订单交易(正常、异常、纠纷)处理技能;(4)客服常用软件使用技能;(5)客户关系管理技能;(6)语言沟通与表达能力等。另外需加强职业素养的培训,如在职业心态方面,突出对责任感、学习心态、抗压能力、团队合作等的要求;在职业行为方面,则强调工作要规范,即每个任务按流程标准完成。

2.实践教学实施

职业教育的目标是培养应用型人才,应通过加强实践教学和实习实训,以提高学生的职业核心素养。实践教学活动可按照“对实践教学的目标进行明确――制定科学的实践教学内容――职业核心素养考核与评价”的流程来实施。下面说说笔者所执教的《网店客服》课程是如何围绕提升学生的职业核心素养来开展实践教学活动。

1、糅合“做”与“思”,规范实训版块。设置实训任务时应体现让学生从“模仿――操作――理解――应用”的过程,要求达到四个一:一种岗位技能、一个实训任务、一个实训小结、一个学习反思。学生通过一个实训任务,至少掌握一种岗位技能,并在实训中要分析出知识点小结,再通过实训反思,将学习心得融会贯通于职业情景。经过实训,学生能做,会思考,懂总结归纳,并形成能力迁移,掌握关键技能。

2、兼顾趣味与时尚,模拟职业环境。由于中职学生的基础薄弱,学习能力较差,因此有趣的实训课堂,教学效果往往会事半功倍;另外紧跟当下热点的实训任务,更能对接网店客服岗位的实践――多变的工作环境。因此在教学过程中可利用社会热点、行业新案例等,从中提炼实训素材。例如,天猫上的知名品牌与某电视合制作一个综艺节目《女神的新衣》,学生关注度较高。因此笔者借用其中一段视频,作为“品牌知识培训”一课的导入,在视频中有学生熟知的明星、喜爱的新品等元素,能引发他们的兴趣和积极讨论。学生通过分析产品“适合的消费人群、适合的场合穿着、价格定位”,把握各品牌的定位与消费主张;提炼各产品的卖点。类似的实训,不仅让学生理解与应用岗位知识,而且让其对行业的发展趋势有更感观的认识。

3、强调学习结果考核,树立职业道德。一名合格的网店客服,要具备良好的职业素养,即要德才兼备。实训课的教学,一是通过实训的过程与方法,增强学生的才能;二是通过实训中对学生“情感与价值观”的要求来立德。立德如何不止步于口号?可以结合课堂评价,将“德”进行量化考核,利用具体的细则标准来规范。例如,每次实训任务都会设置不同的评价标准,根据标准的不同设置考核学生的“团队合作、沟通能力、表达能力、学习积极性、责任心”等职业道德。每节实训课,不仅强调实训结果的完成度,更重要考核学生的参与度。所有实训任务的目标,都要坚持“培养学生职业素养”这个核心目标。

三、企业实战项目渗透

要提升教学有效性,还必须借助实战项目,把教学过程与生产过程进行融合,在生产过程中完成教学任务,方可真正提升学生的职业技能。因此,每年的双十一和双十二期间,笔者都会积极联系行业企业进行合作,让学生到企业中进行顶岗实战,从而让技术跟上产业行业发展,让课程内容与职业标准要求相匹配,让评价标准与企业绩效考核相符合。例如2014年与天猫品牌熙世界进行“双十一”校企合作,把此项活动作为教学平台融入至教学环节中,实施校企岗前培育、职业岗位进行轮岗实战体验,此时学生能把理论知识落实到实际工作之中,并逐步转化为自身的工作经验,实现从“校园人”到“职业人”的转变。除了能培养学生的发现和解决问题能力、交流能力、协作能力、创新思维能力,更可贵的是,学生可以在此过程中形成职业意识和职业荣誉感,培养高尚的职业素养。

四、总结

电子商务专业技能课程的实施,需遵循学生的职业成长规律和行业的生产经营规律,让学生在做中学,学中做,并在真实的工作环境中逐步形成工作经验,培养职业精神。在整个实践教学过程中必须坚持以职业核心素养为中心来开展,使学生能获得终身可持续发展的能力,实现职业院校的人才培养目标。

参考文献:

[1]胡春艳.中职网上开店实务教学中网店客服技能培训探讨[J].广西教育,2014,6

[2] 李志宏.产教融合阶梯式课程的开发与实施――以电子商务专业“网店客服”课程为例[J],中国职业技术教育,2015,(8)

[3] 方健华.中职学生职业核心素养评价及其标准体系建构研究[D].南京师范大学,2014

第5篇

【关键词】电子商务客户服务校企合作实训课改教学设计

【中图分类号】G【文献标识码】A

【文章编号】0450-9889(2020)38-0115-03

随着校企合作与工学结合人才培养模式的不断创新,在“培育企业高技能人才”思想的引领下,以真实项目为载体,培养学生具备一定的实操能力,缩短毕业生与用人单位之间的距离,是当前各职业院校电子商务专业需要解决的问题。但是,当今大部分职业院校电子商务专业设置的实训课程大多基于实验室与课堂练习,与企业要求存在差距,难以适应企业岗位要求。如何通过工学结合创新人才培养模式?笔者从成立校企合作工作室出发,探索基于校企合作项目的电子商务客户服务课程设计。

一、电子商务客户服务课程教学存在的问题

(一)教学设计不合理,学生缺乏学以致用的机会

电子商务客户服务是一门实践性要求较高的专业课程,而大部分教师主要依据教材及相关资料来设计教学,往往包括课前预习、课中授课、课后作业三个环节,教学偏向理论知识讲授,无法给学生提供真实岗位情境,最终导致学生缺乏学以致用的机会。学生对课程内容掌握大都停留在知识认知阶段,无法有效掌握岗位技能,提升岗位综合素质。而在实际工作中,学生需要具备具体操作及解决问题的能力,因此教学亟须改革创新。

(二)职业素养培养缺失

在招聘时,企业更看重学生的综合素养,喜欢录用综合素质高的复合型毕业生。电商客服岗位需要具备几个方面的素质:一是技能素质,要求具备一定的营销技巧、电脑基本操作技能,熟悉平台交易操作流程及规则和产品知识;二是心理素质,要求了解客户的购物心态,能倾听客户需求和意见,并有强烈的责任心和团队精神;三是职业道德,具有较强时间观念及服务意识。各职业院校的人才培养方案中虽然对职业素养培养提出了要求,但最终细化并落实到教学设计中的却不多,获得较好效果的更少。电子商务客服岗位属于一线销售人员,对学生的岗位素质要求更高,在教学设计中应强化技能素质、心理素质及职业道德的培养。

(三)实操培养模式单一,学生实践能力不够

在电子商务客户服务课程教学中,电商客服实操课培养模式单一,主要体现在教学授课者、教学设计、教学内容、教学方法等方面。在教学中,教学授课者均为学校教师,缺乏企业导师;教学设计多以教学案例和模拟情境为主,缺乏真实项目实战;教学内容选取多以教材、网上资源为主,内容选取过于陈旧,与电商企业客服岗位需求有一定差距;教学方法大多依托模拟软件、教学案例的形式进行,无法有效调动学生学习积极性。三年级顶岗实习时学生的技能达不到企业用人要求,归根结底是学生缺少学以致用的环节,无法将所学知识进行转化,缺少提升相应实操能力的环境。

二、基于校企合作项目的电子商务客户服务课程设计

近年来,广西工商技师学院与电子商务企业共同成立工作室,引入真实项目,为师生提供开放式的实践环境,提升学生的实践能力、创新能力及团队合作能力。主要包括:一是通过“校企合作工作室”的教学模式,改革实训课程及其教学方法,并带动电子商务专业建设,达到有效推进电子商务人才培养模式改革创新的目的;二是校企合作工作室以真实项目为载体,培养学生职业素质;三是为师生提供开放式的实践环境,促使教学与实践应用衔接,注重培养学生的动手能力,提升学生的专业实践水平。

电子商务客户服务教学对象是电商专业二年级学生,课程开设的目标是培养学生的客户服务职业素养和专业技能。随着网络购物的兴起,在网店运营中客服人员扮演了极其重要的角色。客户已经不再是简单的“聊天”,而是直接面对买家的销售员。其典型的工作任务包括客户信息的收集整理、客户沟通技巧、客户服务技巧、客户投诉处理、客户服务关系管理、呼叫中心服务、在线客服等内容。面对电子商务客户服务课程教学中存在的问题,教师与企业专家针对客服岗位为校企合作工作室运营设计一套针对性较强的客户服务课程的培养方案(大纲、计划、教学设计),同时也对学生提出一定的岗位要求。针对企业岗位要求,笔者的课程设计主要包括:课前设置过关任务,实现知识传递;课中探究典型任务,实现新知构建和内化;课后布置拓展任务,达到巩固、拓展知识的目的。如图1所示。

(一)课前设置过关任务,实现知识传递

教师首先应根据上节课的反馈数据进行教学反思,再结合学生的学情进行本节课教学设计,具体工作如下。

1.教师

(1)岗位分析。根据真实项目下客服岗位需求,教师开发教学资源、筛选并学习任务。学校教师和企业导师共同开发教学资源,根据真实情境岗位需求收集授课所需课件、学习指导资料、企业岗位要求。

(2)教学设计。首先,进行学生学情、项目实施进度背景分析;其次,针对本节课教学内容,根据校企合作项目要求确定具体的教学目标(知识目标、能力目标、素质目标);最后,根据教学目标再结合校企项目设计本节课的教学方式、教学手段、教学过程等,并突出本节课岗位技能要求。

2.学生

(1)课前预习。根据教师提供的学习资源,进行在线预习。

(2)回忆旧知。通过回忆旧知及项目实施情况,学生再思考课程知识点,从而带着疑问进行有目的的课堂学习。

(二)课中探究典型任务,实现新知构建和内化

在教学中,学生不能是被动参与者,而应是知识的主动构建者,知识构建中最重要的是将职业岗位要求和教學进行对接,这更有利学生将来就业。知识构建的过程,除了外界刺激、创设情境外,更重要的是老师课堂引导,组织学生探索。课中教学设计如下。

1.教师

(1)任务导学。课前虽然已设置过关任务,实现知识传递,但学生并没有达到构建新知的目的。教师需要在课中结合项目进展选取典型客服岗位任务,通过创设情境、疏导、激活、讲授等,按照“课程引入(旧知回忆)—任务导学(旧知+新知勾建)—应用探究(建构新知)授课”等环节进行客服岗位的任务导学,帮助学生实现新知构建和内化。

首先,课程引入,让学生进行旧知回忆。教师应根据企业岗位要求创设情境并抛出问题,从而引导学生学习。此时,教师需结合上节课考评数据创设学习情境。学生应带着相应问题在旧知基础上进行课程学习;教师进行实时观察并记录,对下一步的任务学习起铺垫作用。其次,任务导学,让学生进行旧知和新知构建。学生应以小组的形式,探究教师布置的任务。探究的具体步骤为“个人分享—小组讨论—总结发言”。分享指每位学生回忆旧知并思考老师提出的问题。在小组分享时,尽可能让每位学生都有展示自己的机会,同时,考评员应做好记录、考评工作,把其考评数据上传到平台上,并进行本节课的过程评价。此时,教师还需及时对本节课进行相应点评,以帮助学生学习。最后,应用探究,让学生建构新知。在此环节,教师主要起到课堂创设情境,并进行引导、考评、组织教学实施的作用;学生则是建构的主体,他们不断探究并进行新知构建。

(2)实践指导。任务导学后,学生还未掌握真实工作情境下的客服岗位技能,此时教师应指导学生进行拓展实训(新知拓展),以帮助学生提升客服岗位技能,最后通过作业小结,布置课后(新知实践)任务,达到教师课中导学的目的。

2.学生

(1)任务学习。学生通过课前过关任务的学习,已对本节课程知识有基本认知。课中完成教师布置典型任务,经过“联系旧知—参与思考—新旧知构建—反思提问—新知构建”等环节完成课堂知识内化。

(2)项目实践。完成典型任务后,学生在教师的指导下根据真实项目客服岗位要求进行新知拓展实训。在小组协作实训中,经过与教师、同学的交流讨论,完成实训任务以掌握客服岗位技能的目的。最终,学生将逐步转变为客服岗位的熟练技术人员。

(三)课后布置拓展任务,达到巩固、拓展知识的目的

教师在课程结束后,应思考本节课教学中的精彩之处和不足之处,并及时进行归纳总结,为以后教学提供依据。

1.教师

(1)评价考核。教师课后通过收集真实项目实训拓展作业进行评阅,根据完成情况进行打分;并对学生课中表现、课后学习情况进行综合评价赋分;最终联系企业检验实践效果。

(2)教学反思。首先,是否根据学情结合客服岗位需求进行教学目标、教学内容设计,并能引起学生的学习兴趣;其次,教学实施环节是否合理,能否引导学生发现问题及探究其解决方案以达到客服岗位要求,实现学生新知构建和内化的目的;最终教师是否进行有效的考核反馈并及时做好教学总结。

2.学生

(1)实训拓展。学生应完成客服实训作业,并及时向教师和企业导师咨询存在的问题,寻求解决问题的方案,以达到拓展新知的目的。

(2)技能提升。在课后结合真实项目实战,提升学生的客服岗位技能,达到教学设计与客服岗位要求的无缝对接。

上述提出“课前(岗位任务分析)—课中(岗位认知+实战)—课后(反思+实训拓展)”的教学设计,以校企合作工作室为载体进行实训课设计,达到培养符合企业要求人才的目的。

三、典型教学设计案例简述

以电子商务客户服务课程项目六、任务二“处理交易纠纷”为例介绍教学设计的主要内容。

课前,教师与企业导师根据企业电商客服岗位需求筛选及收集与本节课“处理交易纠纷”有关的教学内容。在教学设计中,教师针对二年级电商学生的学情,确定教学重点为交易纠纷类型和交易纠纷处理,难点为如何高效解决交易纠纷。教学目标确定为:(1)知识目标,掌握常见交易纠纷类型及交易纠纷处理步骤;(2)能力目标,能识别交易纠纷类型并有效处理交易纠纷达到企业岗位要求;(3)素质目标,培养学生自主探究、耐心、语言表达和应变能力等综合素质。学生根据教师要求完成相关课前预习任务。

第6篇

文献标识码:A

doi:10.19311/j.cnki.16723198.2017.14.091

1 电商客服岗位与课程

电子商务行业井喷式的发展带来了新兴的岗位――电商客服,狭义上也称网络在线客服,主要包括采用千牛工作台、京东咚咚和电子邮件等方式与客户沟通,以促成交易的岗位。电商客服课程是电子商务专业核心课程,其课程目标是培养具备良好职业素养和专业知识以及行业知识的电商客服专员。最初开始电商客服这一课程时,许多学生觉得太简单了,还有不少这样的说法“会打字就能当客服”。显然,学生们对电商客服的认识是不全面的,态度是有失稳妥的。因此,本人认为想要在电商客服客服中取得良好的教学效果,我们必须采取一定的措施激发并维持学生的学习动机。

2 模拟公司项目教学法

本人有幸参与研究了由广东省增城职业技术学校李涛老师主持的、在中国职教学会教学工作委员会立项的课题“模拟公司项目教学模式”,这是李涛老师经过多年的实践与研究,探索出的模拟公司项目教学模式,该模式主要适用于中高职工科项目教学。模拟公司项目教学是“模拟公司”与“项目教学法”的有机融合,发挥了两者的优势。所谓“模拟公司”,是为实践教学场所和组织形式,创造的活动仿真的模拟环境,体现了行为导向教育哲学思想。模拟公司项目教学法是在行动导向理念引领下,以工作过程为依据、以岗位典型任务为载体,基于模拟公司、采用项目教学的教学方法。

经过两年多教学实践,我发现使用模拟公司项目教学,较有效地解决我校电商客服课程的实践教学的难题,进一步提升了学生的专业技能和实践能力。在未使用模拟公司项目教学法之前,学生对电商客服兴趣缺乏,觉得太简单了,不用学也会,教学效果不理想,期末考试前的电商客服实训课程效果也不尽如人意。经过实践,发现模拟公司项目教学法在电商客服课程的教学中起到了较大作用,获得了良好的教学效果。基于工作过程、以行动导向教学理念引领教学进程的模拟公司的项目教学形式,实现了做中教、做中教、教学合一,能够激发并维持学生的学习兴趣,教?W过程培养了学生的不同公司间的竞争与同公司内的合作意识,通过公司利润的评价机制充分调动了学生的主观能动性,学生在学习过程中动手、动脑、动口,实现全程参与全情投入。下文我将详细阐述我在电商客服课程中是如何使用模拟公司项目教学法的。

3 模拟公司项目教学法在电商客服实训中的应用

柏林工大的教育专家杜霖先生形象地把学习比作强调学习者不仅要“吸进”还要“呼出”的“呼吸”的过程,他认为实践是“呼吸”的最有效方式,而建立模拟公司既为学生进行“手脑并用”的实践操作提供模拟操作环境,也避免因学生的失误有可能造成的社会经济损失。

为培养学生的客服素养并熟练运用客服平台和工具开展电商客服岗位的工作,我采用模拟公司项目教学法,以“电商客服外包工程竞标会”为载体展开课程实训。具体分为三个步骤。

3.1 充分准备,铺垫成功

充分的准备是成功的前提,在实施模拟公司项目教学之前,至少必须做好以下的准备。

准备1:创建模拟公司。

创建模拟公司包括招兵买马、角色分配和建设模拟公司环境三个环节。首先在班级层面通过公开演讲,由师生共同确定八个公司的总经理,然后由各公司的总经理招兵买马组建公司的项目团队。在此基础上再进行角色分配,一般的客服公司包括总经理、客服主管、客服组长以及客服成员若干名等,这样,公司成员各司其职,各尽其能。最后在老师的引领下,各公司的总经理领导成员共同创建模拟公司环境。模拟公司环境的创建从影响学生的学习动机和学习效果的物质环境、心理环境、社会环境和现场等方面入手。根据教学内容的需要,在教学过程中也可以采用学生自由组合分组,角色轮换的方式组建模拟公司。

目标管理理论的提出者彼得?德鲁克认为,如果一个领域没有目标,这个领域的工作必然被忽视;管理者应该通过目标对下级进行管理。与目标管理紧密相关的是绩效考核,……要真正实施目标管理,就必须以绩效考核为后盾。因此,为有效实施模拟公司项目教学,教师必须明确教学目标,并围绕教学目标选择模拟公司项目任务,同时展示清晰的绩效考核标准。为此,我选择了电商客服外包工程作为教学项目工程,此项目为我校与企业的合作实践活动。每年,为迎接“双十一”、“双十二”购物节或者其他促销活动,企业需要从学校招聘学生兼职做电商客服。时下,也有不少电商企业将客服业务外包给专门的电客客服公司。为此,我代表甲方“NEW牛”公司电商客服外包的项目工程,各公司通过竞标形式承包该项目。为此,我制定了详细的招标文件和评标准则。

3.2 分工合作,自主探究,竞争激励

根据招标文件,各公司在总经理的领导下分工合作,完成竞标方案竞标和答辩PPT。这个过程包括了工程项目需求的分析与信息收集、工程项目方案设计与计划制定、项目决策、项目实施、项目反馈与成果评估等环节。

我引导各公司列出各个环节的主要问题以及解决措施,并形成纲要。

3.2.1 项目需求分析与项目计划制定

在工程项目需求的分析与信息收集环节,各公司围绕甲方“NEW牛”公司需要怎么样的电商客服外包服务,如何才能满足“NEW牛”公司电商客服外包工程的需求,“NEW牛”公司的产品有哪些,我们作为外包公司需要具备哪些专业能力与产品知识?

经过群策群力、小组讨论,在对“NEW牛”公司电商客服外包工程进行信息收集、需求分析的基础上,各公司制定了项目计划并根据该项目需求进行了人员的合理分工,确保项目成员各司其职。

3.2.2 项目决策与项目实施

在项目决策阶段,各公司较综合地回答了为达到获得承包项目工程而具体采取什么措施如何做这个问题。下面是其中一个模拟公司经过调研、讨论,确定了如下项目框架:

Part1:“NEW牛”公司电商客服外包工程项目需求分析。

Part2:模拟公司客服团队能力展示。

?公司简介;

?项目团队;

?打字水平;

?商品明细及销售准则或者编制产品手册;

?淘宝网购物流程及后台操作;

?千牛工作台的使用情况;

?客户接待与沟通;

?制作销售话术模板;

?化解非好评能力。

Part3:结论――我们有能力承接“NEW牛”公司电商客服外包工程。

而项目实施则是各公司遵从项目决策,完成外包项目竞标方案、制作答辩PPT的过程,完成项目成果公开演示与答辩。从成果展示中,各公司都展示了各自公司健康的形象、公司完成外包项目的所具备的专业能力(公司客服成员的平均打字速度、客服素质与意识、电商平台的使用以及客服工具的掌握等方面展示详尽的阐述)、对“NEW牛”公司文化的认识和产品知识的理解等内容。有些项目还展示公司与“NEW牛”公司合作合作的诚恳态度等。

3.2.3 项目反馈与成果评估

项目反馈与成果评估包括“NEW牛”公司最终选择哪个公司的最终反馈,也包括教师对各小组答辩的表现、答辩PPT的制作、专业能力、产品知识、竞标方案的过程评价与综合点评。当然还包括组内自评(各公司各评)和组内互评(对其他公司的评价)。

此环节各模拟公司还得回答其他公司的问题,回答正确加10分,错误或者不回答加10分,提问的公司可指定被提问公司的某一成员回答问题。这样促进组内偷懒现象的出现。当提问公司提出的问题被提问公司不能够回答或者回答错误时,提问公司可得10分。

3.3 总结完善,更上层楼

第7篇

【关键词】电子商务;校企共建;教学模式;改革

1.《客户服务与管理》课程教学改革的背景

“十三五”以来,我国电子商务发展势头强劲、成果显著。目前电子商务客户服务岗位的需求也大量增加,客户服务岗位也是电子商务专业毕业生重要的就业岗位。同时随着人们消费水平的提高,消费者对服务的要求越来越高,如今企业之间的竞争愈演愈烈,企业的管理模式开始从“产品为主”转变为“客户为主”,企业只有通过提高服务能力和服务水平,才能进一步增强企业竞争力。

《客户服务与管理》是我校电子商务专业的专业核心课程,课程共计72个学时,理论学时和实践学时各占50%。本课程的教学思路是从认识客户服务、分析客户需求、客户沟通与技巧、电话客服、网络客服、客户关系管理等模块出发,给学生讲授客户服务管理的相关理论知识。在当前产教融合校企合作的趋势下,客户服务与管理作为一门以客户为中心的学科,在实际教学过程中上存在着偏离中心的问题,教学内容较为片面,偏重于信息化的作用,弱化了客户关系的实践性教学。虽然教学方式采用案例式、情景模拟式、启发式和小组任务驱动式等多种形式,但部分教学内容与电子商务的实际情况契合度不高,实践性不强,难以达到课程本应的教学效果,培养的学生不能真正与企业的需求保持一致。为了满足企业对人才的培养需求,《客户服务与管理》课程教学模式的改革也要做到“客户为主”。

2.电子商务客服实训项目的现状与存在的问题

2.1校企共建电子商务客服实训项目的现状

我校电子商务专业于2017年立项为院级现代学徒制试点专业,与山东网商教育集团、山东汇客电子商务有限公司、山东群拍电子商务有限公司进行校企合作。连续三年,电子商务专业学生参与电商双十一客服实训项目。在2019年“双十一”,电子商务专业132名同学共同参与了电商双十一客服实训项目,为马克华菲、坦博尔、特步等大品牌“双十一”活动做网上客服售前、售中和售后业务。其中助力马克华菲客服项目,当日销售业绩突破3亿元。

客服实训项目突出了该课程的职业性和实践性,调动了学生的学习积极性和主动性,达到了学以致用、以用促学的目的,为学生从事客户服务岗位打下良好基础,学生在实训中提前感受“客服”岗位的职业氛围,便于自己对以后的职业发展做出正确的规划。同时合作企业也非常肯定我们的教学效果,认为在职业环境下的教学,潜移默化的培养了学生的职业素养,精确地培养了学生的职业技能,也能为企业培养出更多优秀的客户服务人才。

2.2校企共建电子商务客服实训项目存在的问题

(1)《客户服务与管理》教材与实际脱节。教材理论性较强,教学内容未结合企业的网络客服岗位工作,未将企业的项目引入作为课堂教学内容。教材内容与电子商务客服实际工作岗位联系不强,对天猫、淘宝客服的实际工作没有较好的指导作用。

(2)传统的教学模式与学习方法未达到良好的教学效果。使用传统的教学模式学习理论知识,传统的教学方法往往采用案例分析和理论讲授相结合的方式,学生的学习积极性不高,对课程内容理解不够,无法通过自己的思考得到实用的知识并最终将其转化为自己的经验,容易造成理论与实际脱节。

(3)学生服务意识淡薄。现在的大学生多为90后、00后,他们以自我为中心,服务意识淡薄,这是客户服务岗位中非常致命的弱点。在客户服务中,如何让学生提高服务意识,是电子商务客户服务与管理课程教学的一个难点。

(4)学生对于实训的认识不到位。大部分学生由于对工作的不了解或对本工作所需知识掌握不牢,而对参与实训项目的积极性不高,并且认为实训比较辛苦,心理压力大,很难实现由学生到社会人的角色转变。

3.《客户服务与管理》校企共建教学模式改革对策分析

(1)选择合适的实训项目。双十一作为电商企业的重大活动,对客服人员的需求量是巨大的。因此,结合双十一开展实训项目教学是最好的选择。但是部分学校的课程开设时间和双十一时间上存在冲突,那么在实训项目的选择上,可以选择店铺内部流量比较大的一些活动,如聚划算等平台活动。让学生参与到合适的、多样的实训项目中,以帮助实现由学生到社会人的角色转变。

(2)学校与企业共同编写教材。学校老师与企业导师以合作企业为主要案例,结合理论知识、消费者不断变化的需求、电商行业最新发展以及不断更新的电商平台规则,紧扣线上店铺日常运营共同编纂出校本教材,邀请企业与行业专家进行审核、修改和校正,以供学生上课和实训使用。

(3)传帮带,以老带新,引导学生尽快适应社会角色。邀请以入职客服工作岗位的往届学生在线指导在校学生;安排学生与企业师傅的拜师仪式,让学生跟随师傅进行学习,学生在企业师傅的指导下切身感受真实的职业环境,熟练掌握电子商务企业客服岗位技能标准。

(4)课程中融入阿里巴巴云客服的真实项目。阿里巴巴云客服是全球领先的在线服务众包平台,在线为淘宝、天猫的会员提供咨询和售后服务。课程团队教师须要全部通过阿里巴巴云客服考试,亲自实战工作。课堂上学生们一起扫描阿里巴巴云客服的报名二维码,手机在线报名。通过注册、培训、考核后,即可参与阿里巴巴真实的在线客服体验,提供阿里巴巴的实习证明,同时特别优秀的云客服学生还可以获得阿里巴巴内推机会,直接进入阿里巴巴工作。最后,客户服务管理课程的教学形式改为课堂上接受阿里巴巴云客服的培训,同时手机在线完成培训和考试。考核方式改为能否順利通关成为一名阿里巴巴云客服,并完成一定量的在线服务人数。