时间:2023-02-27 11:15:34
序论:在您撰写变频技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一台施耐德变频器,频率只能上到20Hz,检查了各项参数,发现最高的频率上限均为50Hz,由此排除了参数的问题。再检查是不是给定方式不对,改成面板给定频率,变频器最高可运行到50Hz,因此,判断是模拟量输出电路出现了问题,检查后,发现一贴片电容损坏,更换后,变频器频率调节恢复正常。
2变频器过热
这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。
3故障出现的原因和应对方法
3.1不能调高频率的变频器
分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。
3.2变频器频率上不去
变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。
3.3变频器过热
这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。
3.4过压和欠压
变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。
3.5变频器的运行环境
在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。
4针对变频器出现故障的原因提出对策和建议
1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。
5结语
(1)交流-交流变频,使固定的交流电源转换成频率变化的交流电源,主要特点是没有中间环节,缺点为变换的频率范围不大。(2)交流-直流-交流变频,使固定的交流电源转换成直流,将直流电源转变成频率变化的交流电。由于直流到交流环节易于控制,因此,频率可调节范围和提高变频电机特性等,具有明显的优势。其装置在煤矿井下已大量使用。如图1所示为交直交变频器的主电路图。这种方法只适用于小容量逆变器,不常用。还有一种方法为脉宽调制,逆变器电压的大小经过变化,使输出脉冲进行变化。现在国内外变频器技术以惊人的速度在发展,在不同的功能上,模拟早期的设置已被设定数字量取代,特别是在我国煤矿井广泛应用,带来了巨大的经济和社会效益。
2变频调速技术的应用
使用PID控制器和可编程控制器(PLC)控制技术来控制变频器,反向,速度,加速,减速时间,实现各种复杂的控制,为适应煤矿提升,压风,排水,电牵引采煤机设备的要求。提升机PLC,PID变频控制技术更为复杂,这里不介绍了。压风机为例,对变频调速控制技术和功能的应用,证明变频调速技术的优越性和经济效益的描述。在正常操作压力风机,当罐内压力达到规定的压力,通过压力调节器处于闲置状态,风机的压力,为了降低储罐压力,当气体储罐压力低于规定压力,机器正常使用工作。但空气压缩机输出压力波动较大,不能达到理想的空气压力,直接影响到气动工具的正常运行。在变频技术的使用,确保空气压缩机输出压力保持不变,总是让空气压缩机输出压力保持在正常的工作压力水平,大大提高煤炭生产效率。与传统的PID控制对比,检测信号反馈给变频器控制量,以控制变量的目标信号进行比较,以确定它是否是预定的控制目标,根据二者之间的差异进行调整,达到控制目的。如储气罐压力超过目标值(气舱压力给定值),应调节压缩空气同气舱压力值近视平衡。相反,如储气罐压力低于目标,应调节储气罐压力同目标压力近视平衡。通过对变频调速技术在压风机上的应用,可以达到空气压缩机输出压力基本上保持恒定的生产价值的需要,空气压缩机输出压力始终保持在最佳状态下生产。
3变频调速技术优点和效益
论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。
一、引言
在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
二、能耗制动
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。
三、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。
四、新型制动方式(电容反馈制动)
1、主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。
(1)电动机发电运行状态
CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。2、系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3、主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。
一、引言
在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
二、能耗制动
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。
三、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。
四、新型制动方式(电容反馈制动)
1、主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。
(1)电动机发电运行状态
CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。
2、系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3、主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。
一、引言
在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
二、能耗制动
利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。
其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。
一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。
三、回馈制动
实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。四、新型制动方式(电容反馈制动)
1、主回路原理
整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。
(1)电动机发电运行状态
CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。
(2)电动机电动运行状态
当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。
2、系统难点
(1)电抗器的选取
(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。
(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。
(2)控制上的难点
(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。
(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。
3、主要应用场合及应用实例
正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。
随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。
我国对先进工业技术的开发有法律保障,在《中华人民共和国节约能源法》、《高耗能特种设备节能监督管理办法》中明确规定:在工业生产应用中,大力支持节能减排技术的研发、创造、展示以及推广,为了降低能源的耗损比率;大力推广企业用高效率、高能源利用率的、锅炉、电动机、窑炉、泵类等工业设备,争取开创更加先进的工业检测和工业控制技术。然而,在具体实施过程中我们需要了解面临的挑战:
1.1对机械设备的危害与干扰
从机器自身结构来看,大部分空压机生产简单有明显的技术缺陷:输入的压力数大于一定值时,变频空压机会自动打开导致电动机空转,严重浪费电力资源并且损害机器本身,继而导致异步电动机的频繁启动和频繁暂停,降低电动机的使用寿命。变频空压机启动时需要很大的电流,对电网冲击较大,而且严重磨损了电器本身的转动轴承设备。电动机在运作的时候会产生很严重的噪音污染,电动机周围的工作环境比较恶劣,也对工作人员的健康产生不利影响,且以人为调节法来调节电动机的输出压力,运转效率低,严重浪费人力资源。
1.2对机械设备相关电器的危害
对变压器的危害表现在:加大铜损和铁损,使得变压器的温度升高,影响绝缘;引起电动机附加零件的发热,引发机器本身温度的额外升高;导致电容器组温度过热,增加中介电质的感应能力,严重的情况下可以损坏电力电容器组;对开关设备的危害,启动瞬间开关将会产生较大的电流变化,达到电压保险值直至绝缘体的破坏;在保护电气的时候,改变电器固有属性,引发电器动作紊乱;引发测量仪表的数据显示误差,降低数据精确度。
2变频技术在机电控制方面的策略
2.1基本思路
在世纪工业过程中对变频技术进行较为尖端的的软件和硬件设计,先根据传统空压机电动机的特点,全方位分析其耗能原因和工作特性,从而设计出变频技术调速、空气技术压缩、压力传感技术提升等控制方式,根据控制电路进行变频器的确定以及电器初始化的设计,控制方式要用矢量控制,详细分析矢量控制原理,对变频矢量进行仿真检查,科学地改变变频器的运行参数。另一方面,变换变频器的控斜参数。通过复合信号控制变频器的输入与输出,可以在容器的进口处增加电器使用流量信号记录,容器上增加电器压力信号,这样可以减少对机械设备的危害。
2.2具体策略
首先在系统线路中建立安装滤波器,过滤掉高次谐波的干扰信号。其次是屏蔽干扰源,这是抵御干扰行之有效的方法之一,具体做法是用钢管来屏蔽输出线路。再次是将电机正确接地,接地时要与其他的动力电器设备接地点分开。然后是对线路进行合理布局,电动机设备的信号线和电源线应该尽量避开变频器的输入和输出线,而其他设备的电源线和信号线也同样要避开变频器的输入和输出线,进行平行铺设。最后是合理使用电抗器,交流电抗器中的串联电路减弱了输入电路中电流对变频器的打击,而直流电抗器减弱了输入电流中的高次谐波。在设置之前,电动机电网中的高次谐波含量已达到40%,而安装了滤波器之后,高次谐波的含量降到了20.6%,特别是三到八次过后,已经低于标准含量值了。在变频器选择方面,需要学会优先考虑谐波含量低且携带滤波器和电抗器的变频工具。变压机电动机安装时,控制信号电缆和本身的动力电缆要有属于各自的架构线路的电缆结构,做好及屏蔽措施,禁止线路交叉或者架构紊乱,安装时两者要保持距离以及设立必要的防护措施,综合达到既发展工业经济又节能减耗的“双赢”效果。值得我们借鉴的是,国际上针对变频空压机电动机重新设计了空压机,将电机由传统意义上的单相电改为三相交流电,并且具有良好的调速性能。我国目前大量生产和应用的空压机电动机,如果要持续发展就必须要开发出单相电机的变频器。最后对改造之后的空压机电动机进行相关的数据计算,并进行成本分析,验证是否能够让改造后的空压机更加有效地节省能源。
3结束语
1.1变频技术在主风机调速中的应用现状
在主风机上采用变频技术进行控制已经成为许多电力企业采用的主要方式之一。变频技术的使用可以实现大范围、高效率、连续的控制。使用变频技术可以方便地对时间进行设定和改变,相较于以前的调速方式,更便捷,更具有优越性。
1.2将变频技术应用于主风机调速的发展过程
变频技术最先由一位日本的学者提出,进而被西方国家所采用,后来经过一系列的改进与发展,逐渐演变为今天的变频器。变频技术的不断发展,为电力企业带来了便利,解决了很多突出的电力问题。
1.3将变频技术应用于主风机调速所需要的环境
变频技术尽管已经被大部分企业所应用,但是变频器工作所需要的环境是我们必须注意的。首先是环境温度和工作温度,这些都必须在一定的范围之内。其次,要尽量避免腐蚀性气体损坏器件。除此之外还要减少冲击和振动。
2应用变频技术的注意事项
2.1时间的匹配
在采用变频技术对主风机进行启动和停止时,我们必须要注意时间的匹配。这里所指的匹配主要是加速时间和减速时间的匹配。因为在启动时,如果没有很好地控制与匹配时间就可能出现过流或者过压现象,最终影响整个启动。因此,在采用变频技术进行启动时,必须根据负载情况严格计算,最终选择合理的加速和减速时间。
2.2过载
过载在风机中出现的频率一般不大,但是一旦发生过载,将对设备造成重大的影响。在采用变频技术时,必须严格注意这方面的问题,尽量控制转矩等因素,尽量避免出现过载现象。这就要求我们在采用变频技术时,对变频器的选用综合考虑容量、性能等多方面的因素,并确保变频器的容量略大于电动机的容量。
2.3共振
变频技术的核心就是通过改变频率进而改变转速等因素。在采用变频技术时就不可避免地会出现共振现象。而共振现象的出现,可能会使设备出现停运,有时甚至对设备造成毁坏。这就要求我们在采用变频时对频率的设定十分注意,尽量避免所设频率与其他设备的频率重合,尽可能减少共振情况。
2.4散热与噪音
在采用变频技术时,有时会将频率降至很低,这就会对风机的散热造成影响。散热出现故障就会影响风机的运转,进而影响整个系统的工作,甚至会导致机器的损坏。因此,在采用变频技术时,要注意采取相应的措施对风机的散热进行调节。除此之外,采用变频技术还可能会增加噪音,因此,我们在采用变频技术时还需要注意噪音问题,可以采用专用电机或者安装消音器。
2.5通风冷却
通风问题是机器工作时必须要考虑的重要问题之一。通风效果不好会造成元器件温度升高,从而使其使用寿命大大缩短,最终甚至损坏器件。因此,我们采用变频技术时必须注意变频器的通风与冷却。要实时了解变频器的工作情况,除此之外,还要经常检查风扇的情况,一旦发现损坏立刻对其进行检修和更换。
3结语