时间:2022-05-02 11:05:50
序论:在您撰写桩基检测论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.1静力负载检测法
直接在桩基上逐级施加各种不同的负载,观察桩基在负载下的位移情况,通过计算得出桩基的承载力水平,以此评价桩基的质量。一般多采用锚桩法,地锚法和孔底预压法来进行静力负载测量。
1.2超声波脉冲检测法
超声波脉冲检测法是从混凝土检测中引申出来的检测方法。基本原理是在桩基混凝土灌注长度方向上,安设一些专门的测量仪器以及管道,配备好超声波接收装置以及能量转换装置,测量过程中,超声波探头在管道中移动,通过仪器可以收集到不同深度下桩基横截面灌注混凝土的部分性质参数,然后按照超声波测量原理分析桩基的整体质量水平。
1.3钻芯检测法
钻芯检测法一般用于直径比较大的钻孔灌注桩基的检测。在桩身上用地质钻机在长度方向上取样,对样品进行检测,并通过一定的计算方法来拟合整个桩基的质量。钻芯检测法可以检测桩基的基本长度,检测灌注混凝土的物理强度,桩底的基本沉渣情况,分辨桩体岩石的性状,并且可以观察桩体的基本完整程度。钻芯检测法的弊端主要在于消耗设备较多,周期长,如果采样密度设置不合理,可能导致大量的资金浪费,所以一般抽查密度为总桩基数量的5%左右。
1.4其他方法
除了以上三种外,使用比较常见的就是射线检测法。射线检测法主要利用了放射性同位素的一些物理性质,通过不同混凝土条件下的辐射吸收量以及辐射散射等,判断被辐射混凝土是否存在缺陷,存在何种缺陷。该方法需要选择合适的放射性同位素作为放射源,使用放射性射线接收设备来检测射线穿过混凝土的各项参数,以此来判断桩基的质量。
2建筑工程中桩基检测主要存在的问题
2.1施工工艺以及技术方面存在的问题
桩基检测过程中,检测数据应当能够直接反映出桩基性能如何,而在一些测量过程中,对于检测变量的控制不足,导致部分数据受到多个质量因素的影响,而无法直接的反映质量问题,或者对于质量问题的描述有偏差。技术上在使用低应变检测法时,采集曲线一致性差,锤重和落距的选择不够精准,锤击力不足,在分析时选择的参数不合理,这些也都导致了桩基检测时质量描述出现误差。桩基检测过程中,检测数据应当能够直接反映出桩基性能如何,而在一些测量过程中,对于检测变量的控制不足,导致部分数据受到多个质量因素的影响,而无法直接的反映质量问题,或者对于质量问题的描述有偏差。
2.2施工条件以及环境方面存在的问题
很多建筑工程在桩基检测后,报告内容不是很规范,不能反映出全部的问题,技术水平和基本结论可用性较差,不具有权威性和规范性。很多建筑工程中图方便,虽然做了相关的检测工作,但是检测内容都有所不同,检测工作的执行也缺少规范的约束,一些重要的观测标准和设备精度,都极大的影响了最终的数据。而且在测量过程中,因为外部因素的影响需要重新测量,原有的记录随便修改,导致测量工作误差比较大。检测单位的专业技术水平很难保证,检测工作的效果也受到影响,很多检测单位因为检测报告撰写不够完整,使得失去法律效率,不具有检测资料的指导性,对工程质量的评估影响较大。
3解决策略的研究
3.1在静力负荷检测过程中
适当的改进平台结构,提高检测平台的稳定性,适当降低平台与桩基周边的接触面积,使应力满足测量需求,确保平台测量过程中不会因为平台的状态影响最终的测量数据。
3.2周期负载的频率与负载作用时间需要一定的协调
较低的频率作用较长的时间,能够更好的拟合实际状态,确保桩基土层性能与静止状态一直。同时,还可以采用试桩法,动静结合进行周期负载的测量更为准确。
3.3政府部门主要加强对桩基测量工作的监督
制定相关的规定以法律条文,让建筑工程能够按照一定的行为规范进行检测,确保桩基检测工作能够更加全面。如果检测工作与实际验收条件不符,应当不予验收,在确定完全合格后才能批准后续的工作,这样才能保证桩基检测工作的统一性和规范性,严格保证建筑工程的整体质量。
3.4提高检测单位的专业技术水平
在传统桩基检测方法应用的基础上,不断研究新的测量方法,提高测量精度和效率,同时引进先进的测量仪器,定期组织测量人员的技术培训,保证上岗人员都具有相应的检测工作资格,能够按照行业规范以及技术要求进行测量,保证测量结果的准确性和有效性。
4结语
1.1桩基成孔质量检测
在建筑工程桩基础施工过程中,其成孔质量会直接影响混凝土灌注桩的质量。当成孔直径低于标准值时,会直接影响桩基的承载能力,如果成功直径高于标准值,则有可能造成桩基上部阻力增加而限制桩基承载能力的充分发挥。如果桩孔位置出现偏差,则会在一定程度上影响桩基承载力的发挥。因此,桩基成孔的大小与桩基的质量有直接的关系,对成孔质量和大小产生影响的因素主要包括成孔的位置、深度、垂直度等因素,这些因素也是成孔质量检测过程中检测的主要内容。
1.2桩基承载力检测
桩基承载力对整体建筑结构的稳定性有极大的影响,因此做好桩基承载力的检测对保证整个建筑工程的质量具有重要意义。
1.2.1静荷载试验法
静荷载试验法主要是对桩基的静荷载进行检测,检测主要采用横向静荷载测试和纵向静荷载测试两种方法,在实际工程中对桩基进行检测时,普遍使用纵向静荷载测试对桩基进行检测。静荷载试验法通常是用来检测工程试桩的承载力,但是由于工程试桩不能进行破坏性试样,而导致检测的结果准确度不是很高。
1.2.2高应变动测法
高应变动测法主要是通过重锤的方式对桩基顶部进行桩基试验,当重锤时,会产生较大的瞬时冲击力,这个冲击力可能会导致桩身发生塑性变形,然后通过桩基的变形速度和曲线进行测量,可以获得相关的参考数据,然后分析桩基在接近极限阶段时的工作性能,以获得相关的质量检测数据,以此来计算出桩身的承载能力。
1.3桩基完整性检测
通过桩基完整性检测,能够提前发现存在问题的桩基,以便采取措施进行处理,保证工程的质量。
1.3.1低应变动测法
低应变动测法通过使桩顶承受激振力量使桩身产生形变,同时还会引发桩体周围土体发生小幅度颤动,这时通过利用仪表对桩顶的震动速率进行记录,然后对记录结果进行分析,进而得到桩身完整性相关的数据,并以此数据来判断桩身的完整性。
1.3.2声波透射法
声波透射法是通过利用超声波在混凝土中传播时的声学参数来对混凝土的连续性及断层、蜂窝等缺陷的位置、大小进行分析的一种方法。该方法中主要利用的参数包括超声波传输的速度、频率、振幅及波形。
2工程实例
本文选择某地的一栋高楼为作为研究对象,该建筑檐高39.5,建筑面积9884.2m2,建筑整体采用框剪结构。该建筑的基础设计采用了钢筋混凝土灌注桩承台基础,灌注桩数量达到240根,灌注桩直径为600mm,有效桩长25.5m。本次研究主要采用单桩静荷载试验法及低应变反射波法作为桩基的检测方法。
2.1单桩静荷载试验检测
2.1.1选择试验方法
该测试中选择静荷载试验检测作为桩基的检测方法,主要使用一个采用钢槽及锚桩组成的法力系统,并用液压泵对桩顶施加纵向压力作为测试数据。在施压的过程中,利用千斤顶进行配合,不断增加其荷载,同时在千斤顶上安装一个荷载传感器,对千斤顶产生的荷载进行记录。如果桩身发生形变或沉降,传感器能及时对该变化进行记录,以记录的结果作为实验的数据。
2.1.2分级加载
本次试验过程中,分为10个等级对桩身进行加载,每个等级所增加的荷载需保持相同,本试验中每次所增加的荷载值为220KN/m 。
2.1.3形变观测
在每级加载完成后,分别间隔5分钟对桩身的变形进行以此记录,然后每隔30分钟对桩身的数据进行测量并记录,当数据变化趋于平稳时停止观测。
2.1.4沉降标准
针对每隔一小时沉降在0.1mm以内,且连续出现两次时,说明桩基的沉降已经趋于稳定,这时可以进行下一级的荷载测试。
2.1.5终止加载条件
当桩身在荷载作用下的沉降值与上级荷载的沉降值差异达到5倍以上时;或者桩基在荷载作用下与上级荷载的沉降值差异达到两倍且桩基经过24小时的加载试验,其沉降仍未达到规定值时,针对上述两种情况应立即停止对桩基进行加载试验。
2.1.6检测结果分析
本次检测中使用的是钻孔灌注桩,进行了三组静荷载的试验,符合随机抽检原则检测比例满足规程要求。
2.2低应变检测
在桩身顶端安装一个传感器,在对桩基进行重锤的过程中,桩基动测仪会产生一定的加速信号,这时可以通过传感器采集桩基的相关数据并显示出来。针对本工程,本次测试的桩基检测数量为48根,检测的数量及比例符合桩基检测规范的要求。对低应变实测所得曲线进行分析,当波速在3700-4000m/s时,波形比较规则,桩底能对超声波进行清晰的反射,测试出桩身并未出现大的缺陷。
电路设计尤其是超声波信号的收发处理采用诸如TX734激励电路、MAX2038回波放大处理电路等专用IC效果固然理想,但考虑到研发专用设备仅需小批量试制的因素,故在电路方案选型设计时遵循简单实用、器件易于采购的原则,尽量选用通用元器件实现,系统电路主要由超声波发射激励和电源变换单元、超声波回波信号处理单元、时间差测量单元、单片机控制和数据处理单元组成。排版布线亦尽量参照IC生产厂商的DEMO方案,采用贴片元件的双面PCB设计制作,以提高样机研发的一次性成功率。
1.1超声波收发电路由于检测装置工作于井下,井口只为其提供了一路+24V直流电源,各单元电路的工作电源需要依靠DC/DC变换电路获得。控制系统和信号处理系统使用的+5V和±12V电源由LM2596-5.0承担,其主路输出+5V/2A电源供单片机等数字系统使用,将其储能电感改用5026-47μH环形功率电感,并在其上增加两个辅助绕组,经整流、滤波和LM78(79)L12三端稳压IC后产生±12V/0.1A直流电源供信号处理系统使用;超声波发射采用了高压脉冲激励方式,+200~300V激励电压由+24V供电电压经简单的Boost升压电路获得,利用单片机送来的1ms周期、5μs脉宽脉冲信号控制MOSFET开关管实现对超声波发射探头的激励,储能电感选用TDK-NL565050T-822J-PF(8.2mH)贴片电感,NMOS开关管选用2N60即可。超声波激励及电源变换电路如图2所示。经实测,激励脉冲会在接收探头中产生一个较大的谐振频率为5MHz、大约5个周期的串扰信号,为此,接收电路设计了一个对发射激励脉冲延迟6μs、持续30μs的使能控制信号,控制接收放大处理电路仅在使能信号有效期间实现回波信号的放大和输出,使之能够在钢管内壁和外壁反射的一次、二次回波信号到来之前有效地消除激励脉冲串扰的影响,使能控制信号时序关系见图3。检测装置中用于时间差测量的TDC-GP2的典型应用是作为超声波流量计、激光测距仪的时间间隔测量、频率和相位信号分析等高精度测试领域。在这些应用中输入信号一般都较强,经简单处理后即可作为TDC-GP2的START、STOP控制信号使用,而该检测装置的超声波回波信号尤其是多次反射回波信号非常微弱且杂波较大(实测回波信号大约在mV数量级),必须经高增益宽带放大器放大和滤波、检波、整形处理后才能胜任。宽带放大器由AD604承担,可获得6~54dB的增益并可由VGN端电压连续控制,可较好地满足超声波回波信号高速高增益放大的要求[2]。考虑到仅需将回波信号放大处理后形成STOP控制脉冲即可,故电路仅利用可调电阻对2.5V基准电压(由TL431产生)分压获得的VGN电压进行增益设定,但设计电路亦有预留接口可用于接受经单片机和DAC输出的AGC控制电压,实现增益的闭环控制。AD604前级放大电路如图4所示。带通滤波器选用由MAX4104构成,设计中心频率为5MHz,带宽约为1MHz;钳位和检波由AD8036完成,具有卓越的钳位性能和精度高、恢复时间短、非线性范围小、频带宽的特点;检波输出信号的整形处理由MAX9141负责,这是一款具有锁存使能和器件关断功能的高速比较器,具有高速、低功耗、高抗共模能力和满摆幅输入特性等,回波信号经其整形处理后可获得理想的脉冲前沿,并便于与TTL逻辑电平接口,还可以方便地实现回波信号输出的使能控制。信号调理电路如图5所示。
1.2时间差测量电路回波信号时差测量选用了德国ACAM公司的高精度时间间隔测量芯片TDC-GP2。TDC-GP2采用44脚TQFP封装,内含TDC测量单元、16位算术逻辑单元、RLC测量单元及与8位处理器的接口单元和温度补偿单元等主要功能模块,利用内部ALU单元计算出时间间隔,并送入结果寄存器保存。TDC-GP2基于内部的硬件电路测量“传输延时”,以信号通过内部门电路的传输延迟来实现高精度时间间隔测量,测量分辨率可达pS数量级,可以很好满足项目测量的要求。单片机在给超声波传感器提供发射激励脉冲的同时给TDC-GP2提供START信号指令使之开始计时工作,超声波接收头接收到的反射回波信号经放大、处理后作为STOP指令信号,由TDC-GP2完成两次反射波时间间隔的测量。由前述可知,STOP与START信号的时间差大约在6~40μS之间,时差测量分辨率约为0.07μs,为此,设定TDC-GP2工作于“测量模式2”,在该模式下芯片仅使用通道1,可允许4个脉冲输入,实现STOP1与START信号之间的时间差测量,测量范围在60ns~200ms,然后,由TDC-GP2计算出各回波信号间的时间差Δt=tB-tS=tn-tn-1。测量原理如下:在输入START信号指令后,芯片内部测量出该信号前沿与下一时钟上升沿的时差,标记为Fc1;之后,计数器开始工作,得到predivider的工作周期数,并标记为Cc;这时,重新激活芯片内部测量单元,测量出输入的STOP1信号的第一个脉冲(一次反射回波)前沿与下一时钟上升沿的时差,标记为Fc2,将STOP1信号的第二个脉冲(二次反射回波)前沿与下一时钟上升沿的时差标记为Fc3,……;Cal1和Cal2分别表示一个和两个时钟周期。
1.3单片机接口电路实现系统控制和数据处理的单片机选择余地较大,项目结合TI公司中国大学计划选用了美国德州仪器公司生产的MSP43016位单片机,具有16位总线、带FLASH的微处理器和功耗低、可靠性高、抗强电干扰性能好、适应工业级运行环境的特点,很适合于作现场测试设备的控制和数据处理使用[4]。TDC-GP2其与单片机的通信方式为四线串行通信(SPI),利用MSP430的4个P2.x和P4.2I/O口实现GP2的选通、中断和开始、结束使能以及复位等控制功能。MSP430除用来对GP2控制和数据处理外,还可以留出一些资源实现设备其他电路和动作机构的控制使用。单片机接口电路原理和程序流程分别如图8和图9所示。
2结束语
1.1桩施工质量的概念
本文讨论时将支护桩和基桩统一称为基桩。文献[3]第9章为桩基工程质量检查和验收,该章表述了桩基工程施工质量检查和验收的要求,但未能完全表达清楚桩基施工质量检验和桩身完整性的内涵。文献[3]中的9.4.2条为强制性条文,其规定为“工程桩应进行承载力和桩身质量检验”,在9.4.5条中指出桩身质量还包括对桩身混凝土强度的认定。
1.2桩身完整性的概念
文献[4]中3.1.1条为强制性条文,其规定为“工程桩应进行单桩承载力和桩身完整性抽样检测”,本文仅对桩身完整性进行讨论,而不讨论单桩承载力检验。文献[4]中对桩身完整性的定义为反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标;对桩身缺陷的定义为:使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性的降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。从桩身完整性和桩身缺陷的定义可见:桩身完整性是一个综合性指标,且为定性指标,而非定量指标,表征了桩身质量的特定属性,由于其是定性指标,对桩身完整性的判定可能有一定人为影响因素,即对同一根基桩桩身完整性的判定类别会因人而异。按文献[4]对桩身完整性的定义理解,在极端情况下,桩体全部由相同浮浆组成,其桩身完整也可判定为Ⅰ类桩;此外,桩身缺陷的表述也是一个定性指标,在现有技术手段条件下难以完全量化表达。以上分析可知:桩身完整性不包括桩身混凝土强度等级、钢筋配置、钢筋混凝土保护层厚度、基桩位置、沉渣厚度及桩底岩土体的性能等指标,换言之,桩身完整性只表达了基桩施工质量的某些特性,其合格判定不能说明基桩施工质量合格。
2基桩桩身完整性检测方法探讨
文献[4]中对桩身完整性的检测给出了3种方法:低应变法、钻芯法和声波透射法。3种非破损、局部破损检测方法各有特点,检测费用也有较大差异。对人工挖孔混凝土灌注桩上述3种检测方法均可,处于节约检测费用的考虑,人工挖孔混凝土灌注桩采用低应变法检测桩身完整性的较多,但由于重庆地区人工挖孔混凝土灌注桩多为嵌岩桩,该检测法本身就有先天不足,对于短桩(长径比小于5)采用低应变法检测,检测数据难以反映桩头缺陷。由于各种技术的、非技术的原因,当前旋挖钻孔混凝土灌注桩在重庆地区使用较多,出现的基桩施工质量问题也较多,为此,重庆市城乡建设委员会组织有关单位编制了《旋挖成孔灌注桩工程技术规程》DBJ50-1560-2012[5],该规程规定旋挖钻孔灌注桩只能采用钻芯法和声波透射法检测桩身完整性,初始检测时推荐采用声波透射法进行全数检测,有关职能部门要求对旋挖成孔灌注桩在第一家检测机构对桩身完整性检测的基础上,由第二家检测机构抽测总桩数的15%进行复检,复检方法可采用钻芯法或声波透射法,上述要求在确保旋挖成孔灌注桩桩身完整性检测的真实性及保证基桩施工质量实践中证明是非常有效的。旋挖成孔灌注桩桩身完整性复检方法本文推荐钻芯法,而非声波透射法。理由如下:有资质的检测机构采用声波透射法(且用相同的检测设备)按国家、行业和地方现有专业检测规范,对同一根基桩其检测结果一般差别不大。钻芯法检测基桩不仅能反映桩身完整性,还可反映桩身混凝土实际强度,文献[4]中7.6.4条给出了钻芯法检测桩身完整性的判别标准,而7.6.5条却给出的是基桩成桩质量的评价标准,2个条款规定的本质有所差别,即桩身完整性即使是Ⅰ类桩,也不表明该桩成桩质量合格。在采用钻芯法检测桩身完整性及成桩质量时应注意以下问题。(1)抽样和复检抽样数量的选择。抽样数量选择的原则是成本与质量平衡的综合结果,文献[4]规定为10%,重庆地区规定是15%;当发现抽检基桩中部分基桩存在不合格问题时,对未采用本方法检测的基桩,其质量如何按批评定?文献[4]中无具体规定;可能的解决方法是在未检测样本中再复检,复检应抽样数量的选择原则为:首先可按国家现行有关规范[1,8]进行复检抽样,其次也可按基桩完整性检测方案约定的复检方法进行复检。(2)钻芯位置的选择。文献[4]对钻芯法检测基桩完整性的钻孔数量和钻孔位置在其7.3.1中有明确规定,一般情况下应严格执行。但对扩底桩检测可能存在一定问题,例如,某人工挖孔扩底混凝土灌注桩采用声波透射法检测因桩底缺陷判定为Ⅲ桩,采用钻芯法在桩中心附近钻芯检测判定为Ⅱ桩,开挖检查扩孔部分混凝土为松散骨料,因此,判定该桩为Ⅳ桩,并采取了相应处理措施。(3)钻具的选择。文献[4]要求采用单动双管钻具,钻头选择适当的金刚石钻头。实际现场检测钻孔时,钻具不符合要求造成检测结果失真。如某工程基础为旋挖成孔灌注桩,钻芯最初未采用单动双管钻具,所钻芯样均为松散混凝土骨料,而后用500mm直径旋挖钻筒钻取混凝土芯样,所钻500mm直径芯样完整,随后钻芯改为单动双管钻具,各基桩检测芯样均完整,未出现芯样只有混凝土骨料情况。(4)沉渣厚度的检测。成桩后桩底沉渣厚度的检测一直较为困难,但对端承桩而言,沉渣厚度的大小直接影响基桩承载力,对此文献[3]有专门说明,实际现场操作时沉渣厚度检测应按文献[4]中7.3.6条的规定执行。(5)同孔位、相同或不同位置高度的混凝土芯样特征的判读和认知问题。通常认为钻芯法检测基桩桩身完整性和判定桩身完整性比低应变法和声波透射法要严,特别是钻孔数为1孔时情况更是如此,加之文献[4]中用表7.6.4判类表达与该条条文说明有一定出入,因此,Ⅱ、Ⅲ类桩的判定人为因素可能性较大;出现基桩完整性判类差异也与钻具关系较大,如某工程旋挖成孔灌注桩完整性检测时,因钻头选择欠佳,混凝土钻芯芯样外表面较粗糙,后改进钻头后此现象基本消失,但最初基桩完整性检测的结果多判为Ⅱ类桩,而后面检测的基桩则判为Ⅰ类桩。(6)芯样取芯率问题。目前部分检测技术人员使用芯样取芯率来判别基桩桩身完整性,这种思路在地标《旋挖成孔灌注桩工程技术规程》DBJ50-156-2012[5]附录B得到反映,但行业标准《建筑基桩检测技术规范》JGJ106-2003[4]未做出类似规定。在具体实践中应根据检测现场钻具等实际情况,合理使用相应规范判定基桩桩身完整性。(7)芯样有效的问题。芯样有效性的问题实质上是检测机构检测人员工作态度问题。当前钻芯法检测基桩桩身完整性多数情况由钻桩队伍完成,在现场检测人员不到位的情况下钻桩队伍有可能提供假芯样,这会造成如下后果:完整性合格桩可能判为不合格,完整性不合格桩可能判为合格;桩底沉渣厚度无法判定;桩身长度判定不准确,桩底岩样不真实。上述问题应引起检测机构等单位的高度重视,否则将会出现虚假报告。
3基桩检测实例分析
实例1:某混凝土框架结构厂房工程,基础采用人工挖孔灌注桩基础,基桩坐落在抛填土地基上,抛填土最大厚度为20m左右,厂房验收合格后拟交付使用。厂房闲置期间发现局部混凝土框架梁开裂严重,业主委托某检测中心对梁裂缝进行检测,并提出处理建议。工程技术人员现场检测时,发现一层局部填充墙有斜裂缝,开挖探坑发现开裂梁段柱下地梁也存在斜裂缝,为此,查阅基桩检测报告及有关竣工验收资料,发现某检测机构出具的基桩完整性检测报告反映该厂房基桩为全数检测,检测结果均为合格桩。随后某检测中心要求委托方对基桩进行开挖检测,检测中心工程技术人员根据现场情况初步拟选了3根基桩进行开挖检测,3根基桩均为抛填土最深位置,3根基桩开挖深度均为9m左右时,其中1根桩桩长只有8m,坐落在抛填土上;1根桩在距桩头4m处桩身断裂,裂缝宽度20mm,从裂缝处观察及检测,下部基桩混凝土无配筋;1根桩经施工单位自查获知基桩未嵌岩。该实例说明,检测机构及相关单位应严格按国家现行有关法律、法规和标准严把施工质量关,杜绝虚假检测报告,否则害人害己。实例2:某住宅小区4栋底框砖混住宅楼,基础采用旋挖成孔灌注桩。第1家检测机构采用声波透射法对旋挖成孔灌注桩桩身完整性进行全数检测,第2家检测机构采用钻芯法对旋挖成孔灌注桩桩身完整性进行复检。其中4号楼共有75根旋挖成孔灌注桩,钻芯法抽样检测桩身完整性的桩数为12根,其中包括第1家检测机构判断的2根Ⅳ桩,结果为1根桩桩身完整性判定为合格,但沉渣厚度为300mm超过规范[3]允许值,1根桩桩身完整性判定为Ⅱ桩,且沉渣厚度未超过规范[3]允许值。钻芯法检测12根基桩结果为:Ⅰ类桩有7根,Ⅱ类桩有4根,Ⅲ类桩有1根,无Ⅳ类桩;其中4根桩桩头存在浮浆,3根桩桩底沉渣厚度超过50mm。上述实例说明,基桩桩身完整性和其施工质量是两个既有联系但也非完全相同的两个概念。因此,委托检测项目和要求有所差别;其次实例表明声波透射法对旋挖成孔灌注桩的浮浆识别可能存在漏判的情况,当沉渣厚度在100mm左右时声波透射法识别桩底沉渣问题也可能存在误判的情况。
4结语
【关键词】桩基检测;问题;对策
中图分类号:TU473.1文献标识码: A
一、前言
不论在桩基检测中遇到了什么问题,只要能够分析出问题出现的原因,就能够根据原因来制定应对的措施,所以,面对桩基检测工作中的问题,我们要做的第一步就是找出问题的原因。
二、桩基检测技术的分类
桩的测试方法分为静载荷试验和动力测桩两大类,还有抽芯法和静力、动力触探以及埋设传感器法等辅助类方法。目前桩的静载荷试验主要采用锚桩法、堆载平台法、地锚法、锚桩和堆载联合法以及孔底预埋顶压法等。用低应变法检测桩的完整性,用高应变法检测桩的承载力和桩的完整性。高应变法试桩一般用CASE法、CAPWAP法。低应变检测常用应力波反射法(锤击波动法)、声波透射法。按检测部位分,桩基检测可分为六类:一是各类桩、墩、桩墙竖向或横向承载力检测,包括单桩及群桩承裁力检测;二是墩底持力层承载力及变形性状的检测;三是各类桩、墩及桩墙结构完整性检测;四是考虑桩同作用或复合地基中桩土荷载分担比的检测,桩体及土体应力应变的检测;五是施工中对环境影响的检测,如震动、噪音、土体变形等;六是特殊条件下或事故处理中的其它检测。按检测时间分,桩基检测可分为四类:一是为设计提供依据的先期检测;二是施工阶段的施工检测;三是施工完毕后的验收检测;四是施工阶段或使用阶段的鉴定检测。
三、建筑桩基检测方法的应用现状
目前,桩基一般使用低应变动测法、声波透射法及钻孔取芯法进行普检,各种方法由于各自的理论假设及各种因素影响,均存在一定局限性,故充分利用各种方法的强项,解决工程实际问题是很有必要的。在低应变动测法的适用范围内,尽量采用动测法进行检测,在动测法的适用范围外,地质条件复杂(如溶洞地区),主墩桩或较重要部位的桩基,可采用声波透射法进行检测;动测结果发现桩基施工存在沉渣及持力层不符合要求时,可采用低应变动测法对声波透射法进行校核,在发现动测法受地质条件影响,桩底持力层、沉渣等较难判断时,可采用钻孔取芯法进行校核。在取芯发现个别桩基存在局部缺陷或持力层稍差而加固处理又难解决问题时,可采用高应变动测法进行承载力检验。
在桩基检测方法选用时应注意:各类桩、墩及桩墙结构完整性检测,一般采用低应变或高应变动力试桩法检测,大直径桩宜采用声波透射法或钻芯法检测;由散体材料桩或低粘结强度桩和土组成的复合地基(碎石桩、石灰桩等),采用静载荷试验也可采用静力触探分别对撞和土进行检测,确定复合地基承载力;由高粘结强度桩和土组成的复合基地(水泥土桩、CFG桩、低标号混凝土桩等),采用静载荷试验检测竖向承载力,单桩承载力的检测同其它刚性桩;复合地基中,桩、土荷载分担比的检测一般采用钢弦或压力盒通过静载荷试验进行测定。也可采用特制的应力传感器测试;施工中由于震动对环境的影响,一般采用质点速度监测系统或加速度监测系统进行测试,也可用地震仪检测。
四、建筑桩基检测中存在的主要问题
近些年来,我国在高层建筑桩基检测方面相继了有关桩基工程检测的标准、规范,这些标准的对保证工程质量起到了良好的法律保障。在取得成绩和进步的同时我们也应该认识到在高层建筑在桩基检测中存在的问题,概括起来主要包括以下四个方面:
1、工程检测报告结果不精确、不规范。检测人员施工、编写的检测报告结果不精确,检测报告的内容不够具体,达不到国家行业检测标准要求。报告中应反映的资料不全,结论含糊不清或结论简单,不具备建筑工程质量检测权威部门的权威性和约束力。
2、检测市场运作体系不规范。近些年来,我国相继、施行了有关桩基工程检测的标准、规范,但是一些社会中介检测单位存在出卖资质或与不具备检测能力的单位联营,更加严重的情况是中介机构将盖好章的空白检测报告交给施工单位使用。有的法定检测单位在得到施工方的好处后,将工程中的三类桩改为二类桩,给建筑工程质量埋下隐患。
3、检测单位内部管理不完善。目前国内建筑工程检测市场主要有法定检测单位和社会中介检测单位,这两类检测单位都存在内部管理制度不规范、不健全,检测人员不具备相应的专业技术水平和职称,出具的检测报告不完整、签字不清楚等,使得出具的法律文书不真实,从而使检测结果失去了科学性、严肃性和规范性。
4、检测人员的技术水平不高。桩基工程的复杂性和隐蔽性决定了无论采用哪种检测方法,都有可能不能真实反映桩基的全部问题,检测结果和实际情况有可能存在一定差距。因此,要确保检测结果的质量,必须重视检测队伍的建设,要不断提高检测人员的技术水平和综合素质。
五、桩基检测工作中对应问题的对策
1、各项规章制度的完善
以《建设工程质量管理条例》的精神及要求为基础,加强对建筑工程的检测中各项规章制度的完善及桩基检测工作和转机检测单位的管理。根据各地方情况完善符合质量检测法规制度。
2、监管机制和体系的建立
行政主管部门必须加强对质量检测体系的监督管理,尤其是对强制性执行标准情况方面的检查,指定具有可行性的管理办法,尤其是完善的检测方法。当出现不符合国家现行规范的情况时应当不予验收,并禁止后续工程施工。
3、检测人员的业务素质和道德素质的提高
对在职的检测人员进行阶段性的技术培训,对技术负责人及在岗人员进行有关的法律法规的培训,对建设行政主管部门进行桩基管理方面的行业规范进行培训,提高对工作人员的质量意识、道德意识及责任意识的要求。检测人员正确地输入、分析、判断和处理数据,才能出具正确的报告数据[2]。
4、加强管理体系模式化管理
形成一种科学的管理模式有利于管理体系达到规范。制定管理模式有利于检测人员克服长官意识、任意践踏、随意裁量规范的行为。除了内部管理工作的加强检测,对检测单位的ISO质量体系的贯标及计量认证给予鼓励,使检测质量体系健全及行之有效,使各项管理工作确实落实到每个环节的检测工作中。
5、管理工作的规范化的加强
《桩基检测工作手册》除了记录检测单位开展的工作和现场的测量情况,还是对桩基检测单位真实的工作情况的反映,也是对检测单位的工作考核的动态管理重要依据。重视填写和管理《桩基检测工作手册》,是确保数据的准确性、真实性和完整性的唯一行之有效的办法。
6、采用合同管理与市场监督约束
桩基检测在很大程度上加大了市场行为的管理和约束力度,对桩基检测合同审查备案制度的推行和桩基检测行业自律公约的制定,严肃查处专业水平和到的素质底下的检测单位及利用非法手段恶性竞争的单位,是确保桩基检测行业有序健康发展的唯一出路。
7、学习现代网络技术,促进行业健康发展
随着科技的进步,网络科技逐渐被应用到桩基工程的管理中。网络信息发表的高效快速性在桩基工程的管理中加强了检测市场的公开化和透明化,引导了检测单位的良性竞争。桩基工程的质量信息的及时,能让社会更快更便捷地了解工程的质量,加强了社会舆论对检测单位的监督力及约束力,也加强了检测单位及其工作人员的法律责任意识及对工程负责意识
六、结束语
在今后桩基检测工作中,如果遇到了检测方面的问题,需要及时的采取科学的措施进行应对,避免因为问题的出现而延误了检测的最佳时机,保证检测工作能够顺利实施。
【参考文献】
【关键词】桩基工程;检测技术;检测方法
桩基作为现今高层建筑普遍采用的基础形式,应用的范围很广泛,要想保障工程的质量,就必须要提高工程质量的检测手段和技术,总结现在桩基工程检测中存在的问题,进一步的进行改善,使检测技术得到进一步的发展,为桩基检测事业的发展做出更大的贡献。
1、桩基工程检测中存在的问题
目前桩基工程检测的工作,总体的情况是比较好的,但是由于各个检测单位和地区的情况出现一定的差异,也会在不同程度上存在着一定的问题。
1.1 技术上存在的问题
桩基工程检测技术是由成孔后检测和成桩后检测两个部分构成,我国现今桩基检测技术的发展特点是成桩检测技术比成孔检测技术更加的优秀,但是从防范于未然的观点上来看,桩的成孔检测应比成桩后检测更加的重要。
承载力检测试验做得不够到位,在成桩检测的技术中,承载力检测试验的工作仍需要加强,不能为了省时省钱而减少了静载试验的数量。在桩的动力检测方法未取得突破性进展之前,桩的静载试验仍是检验桩承载力值的评定标准。在桩的承载力的检测问题上,任何企图以更省时、更省力的方法来等同静载试验效果的想法是不现实的。
在检测的仪器上面,个别单位使用的仪器性能比较老旧,不能满足当前桩基检测的有关标准和规程的要求,一些单位低应变检测时的传感器采用速度计,会导致检测波形质量不高,在仪器上没有贴准用的标签,仪器周期检测的执行情况较差,这些都是重要的问题。
目前我国的桩基检测技术标准已经初步的建成了完整的检测体系,但是各标准和规程之间还缺乏协调和衔接,适用的范围不够的明确,甚至会出现重复、遗漏、矛盾之处,因此要更加的规范它们之间的协调关系。
1.2 管理上存在的问题
市场检测的行为不够规范,由于检测市场的不规范和片面的压价,一些单位在检测的过程中,现场数据的采集不够认真,资料数据的处理比较的草率,个别的单位还出现了卖资质给无资质方进行使用的现象。
检测单位的硬件设备参差不齐,有一些单位的办公场所比较的拥挤破旧,没有专门的档案存放地点,在技术的装备上,有的单位是采用进口的低应变和高应变设备,而有些比较差的单位,甚至连计量器都不能进行定期的标定工作。
检测单位内部管理比较混乱,一些单位的法律意识和责任意识比较缺乏,在其内部没有建立相互制约的监督机制。即使有了相关的制度,但是也缺乏制约的力度,也就是形同虚设。在岗位的管理上存在着持证人员变动大,岗位人员不到位,有无证人员在现场开展检测工作等问题。在档案的管理上,有些单位没有专门的档案存放地点、设施和管理人员,资料杂乱混装,没有按照“一个工程一份档案”的要求装订成册。
1.3 检测成果精确度不高
执行的规范不够严肃,采用非规范规定的检测方法做出报告,应反映或引用的材料不够齐全,数据不是十分的准确,结论比较简单或者结论含糊,抽检的数量没有满足有关规程的要求,动测报告中的使用单位和专业术语不符合相关的规程规定。
动测报告中的实测波形质量比较差,一些单位采用高应变推算承载力的报告中,没有提供实测波形,低应变完整性检测的波形质量差,多为速度计测得,
在声波透射法报告中的波形图大多偏小。静载实验的内容一致性的规范不符,原始记录潦草且涂改严重,基准梁安置不标准,观测时间不充分,长度不够,S-L曲线和Q-S曲线采用手工绘制,误差比较大,极限承载力基本值和标准值判断不准,原始记录出具的检测报告无编号或者符号大小书写不规范。
报告结论的正确性存在一定的问题,低应变完整性检测时以振荡波形出报告,结论的随意性很大,高应变检测推算承载力时,报告中无计算公式、无实测曲线、无参数取值,仅有最终承载力值,基本上属所谓的暗箱操作,高应变检测的曲线拟合质量不高,拟合时间段长度也不够。
高应变检测采集的曲线没有注意锤重、一致性差、落距的选择,锤击力不够,分析时选用的参数不合理或过于简单、不全。引、有一些单位没有编制相关的检测方案或检测方案过于简单、不能对整个检测过程起到指导作用。报告的签名不用手签,却采用打印,个别单位出现无证人员签字。
2、桩基检测的方法
桩基检测的方法分为静载荷试验和动力测桩两大类,还有钻芯法和静力、动力触探以及埋设传感器法等辅助类方法。
2.1 基桩检测的分类
桩基的检测类型可分为:特殊条件下或事故处理中的其它检测;桩(墩)底持力层承载力及变形性状的检测;各类桩、墩、桩墙竖向或横向承载力检测,包括单桩及群桩承载力检测;施工中对环境影响(如噪音、震动)的检测;各类桩、墩及桩墙结构完整性检测;考虑桩同作用或复合地基中桩土荷载分担比的检测,桩体及土体应力一应变的检测。
桩基按检测的时间可以分为:为设计提供依据的先期的检测;施工阶段的施工检测;施工完成后的验收检测;施工阶段或使用阶段的鉴定检测。
2.2 检测的方法与讨论
在进行各类桩、墩及桩墙结构完整性的检测时,一般会采用高应变动力或低应变测桩法进行检测,大直径桩一般采用钻芯法或声波透射法进行检测。由散体材料桩或低粘结强度桩和土组成的复合地基(碎石桩、石灰桩等),一般采用静载荷试验,也可以采用静力触探分别对桩和土进行检测,确定复合地基的承载力。由高粘结强度桩和土组成的复合地基(水泥土桩、低标号混凝土桩等)一般采用静载荷试验检测竖向的承载力。在施工工程中噪音的测试可以采用分贝计加以判定。在施工工程中由于震动对环境的影响因素,一般会采用加速度监测系统或者质点速度监测系统进行测试,也可使用地震仪进行检测。使用阶段桩体应力一应变的测试,使用钢筋应力计,混凝土应力计或特制的传感器。在复合地基中,桩、土荷载分担比的检测一般采用压力盒或钢弦通过静载荷试验进行测定,也可以采用特制的应力传感器测试。在施工工程中由于挤土效应对于环境的影响,可以使用变形传感器(测斜仪)进行工程的监测,也可以使用沉降变形标配合水平仪,经纬仪进行检测。当桩长大于30m,用其它的检测方法难以准确判定桩完整性时,可以采用抽芯的方法,也可以采用声波透射法进行目标的检测。
在进行桩基工程检测时,要根据不同的情况进行检测方法的合理选用。在动测的技术没有取得突破性的发展之前,静载荷试验仍然是桩基检测最基本最可靠的方法,动测只是为静载实验作补充的,是工程验收的方法之一,动测确定承载力的方法还要进一步的完善。
3、总 结
桩基施工的质量关系到整个建筑物工程的质量,它既不同于常规的建筑材料试验,又不同于普通建筑结构的测试。因此,不断提高桩基检测的质量水平,强化对桩基检测队伍的管理,有很重要的意义。
参考文献:
[1]杨绍富.浅谈桩基检测技术的发展和应用[J].科技创新导报.2011(17):46-51
[2]柏玉鹏.桩基检测工作中的问题与对策[J].中国城市经济.2011(11):76-82
[3]段玉凤.建筑工程桩基检测技术实践与探析[J].科技传播.2011(15):17-24
关键词:水轮发电机组状态监测LONWORKS神经元芯片
水电机组是电力网络中的重要元件,保证大型水电机组的正常运行,对其运行状态进行监测,及时发现故障征兆,做到“事前检修”是工程界梦寐以求的理想,也是大型电站机组检修的发展方向。实时状态监测可以减少机组停机时间,提高利用率。
这里所说的状态监测实际上是对水轮机组众多参数进行的实时在线监测。水轮机组的参数较多,为了分析方便,对部分参数还需要进行高速采样。这样,一个监测系统通常要由分布在不同现场位置的多个采集节点组成。各节点将大量的采集数据传送到上位机,由上位机从多角度评估机组的运行状态。采用全数字化通信的现场总线整合整个监测系统可以实现彻底的分散控制,抵抗各种干扰因素,简化系统的结构,提高数据传输效率。于是,本文设计实现了一种基于LONWORKS现场总线的水轮机组状态监测系统。
1LONWORKS现场总线的技术特点
LONWORKS总线是美国Echelon公司推出的一种现场总线技术。具有开放性、高速性和互操作性;采用面向对象的设计方法,使网络通信的设计简化为参数设置,降低了开发难度;支持多种传输介质,网络容量可达32000个节点,网络通信速率可达1.25Mbps/130m,直接通信距离可达2700m/78kbps;其网络采取了配置1500V直流隔离变压器进行隔离等适合于工业现场环境的措施,具有很强的抗干扰、抗振动能力,适合于水电厂等较恶劣的工业环境。
在水轮机组状态监测系统中,有几十个现场数据采集节点,它们通过现场总线将采样结果传送到距离较远的上位机,并且数据通信频繁。考虑到LONWORKS总线技术具有强大的强信能力,以LON总线来组成系统的实时数据通信网络,极大地简化了系统的通信软、硬件设计,使数据的传输与通讯变得十分便捷。
2系统构成
基于LONWORKS现场总线的水轮机组状态监测系统由上位监控机和多个现场监测单元组成,其系统结构如图1所示。
每个现场监测单元监测三个现场数据采集节点,现场数据采集节点的现场监测单元主要负责对现场数据进行采集、存储和传送。现场监测包括压力监测;温度监测;水位及油位等液位监测;水流量监测;机组振动摆度监测、机组电气监测、机组转速及导叶开度监测、效率监测;水沦机气蚀监测;发电机气隙监测;发电机绝缘监测;尾水管真空监测等。
各个现场采集节点通过LONWORKS总线组成一个现场监测网络。用开发的LONWORKS-ETHERNET互连适配器把LON总线上采集节点发送的数据转换为UDP格式,利用速度较高的工业以太网将其发送到上位同,再把上位下达的命令转换为LonTalk协议的形式发给各个现场节点,从而实现上位机和底层各个现场节点之间的通信。与以短训班采用昂贵的LON总线适配器的方法相比,这种方法既提高了数据的传输速度又节省了方法费用。上位机将现场节点传送上来的各种监测数据存进MS-SQLSERVER2000数据库,提供人机交互的界面,并完成实时数据的图形化、格式化显示,同时用傅立叶变、换(FT)和小波变换(WT)对数据进行分析。
2.1现场节点设计
现场节点既要接收上位机发出的采集命令,命令标准传感器采集现场信号;又要把采集到的现场信号通过LON总线送到上位机,由上位机进行处理。其结构如图2所示。
2.1.1节点组成
节点由神经元芯片Neuron3150、LONWORKS双绞线、网络收发器、程序程序器、数据存储器、十二位A/D转换芯片AD1674等组成。其中,3150神经元芯片选用TOSHIBA公司生产的TMPN3150;FLASHROM选用AT29C512;数据存储器(RAM)选用ISSI公司的IS61C256;Neuron3150芯片与LON总线的网络介质接口选用Echelon公司的自由拓扑型收发器FTT10A,它是一种变压器耦合收发器,可提供一个与双绞线的无及性接口,且支持网络的自由拓扑结构;网络通讯介质采用最常用的双绞线;A/D转换芯片采用性价比较高的AD1674芯片,其转换精度为1/2LSB,转换速率为100kSPS,具备三态输出缓冲区。
2.1.2存储空间分配
Neuron3150芯片片内存储器的地址范围为E800H~FFFFH,包含2KB的RAM(E800~EFFF)、0.5KB的EEPROM(F000~F1FF)、2.5KB的保留空间(F200~FBFF)和1KB的用于存储器映像I/O的空间(FC00~FFFF)。外部扩展存储器的地址由Neuron3150的地址引脚和控制引脚来确定:给FLASHROM分配的地址空间为0000~7FFF,其中,0000~3FFF的16KB空间用于系统固件(Firmware),系统固件实现了LonTalk协议,4000~7FFF的16KB空间用于用户程序代码;给RAM分配的地址空间为8000~E7FF的24KB地址空间;将E000~E7FF的2KB地址空间分配为外部设备的内存映像I/O的空间。
2.1.3A/D转换接口方案
本文在设计时曾考虑过使用Neuron芯片为A/D转换电路提供串行I/O及并行I/O接口方式。然而串行I/O方式速度太慢;并行I/O方式实现起来需要占用Neuron芯片全部11个I/O接口,同时还要编程实现Neuron芯片的握手/令牌传递算法,开发费用和难度比较高。因此本文将节点保留的E000~E7FF的2KB地址空间分配给A/D转换芯片,作为AD1674的端口地址,采用内存映像的方法直接读取AD1674的数据。对于本设计而言,AD1674转换数据的高8位地址为E002H,低4位数据地址为E003H。由于实现软件没有使用NeuronC的内嵌函数,因此执行速度得到大幅度的提升,实验证明,对同样采用AD1674转换芯片的节点而言,采用这种方法设计的节点,采集速度超过了其它两种方法设计的采集节点的采集速度,而且节省了Neuron芯片的全部11个I/O引脚。
3系统通信程序的设计
3.1现场节点通信程序
现场节点向上位机发送的数据首先发送到LONWORKS-ETHERNET互连适配器,该适配器实际上是一个特殊的LONWORKS节点,它把接收到的LON总线上的数据用UDP封装,然后通过以太网发送到上位机。
图3
LONWORKS网络的节点之间的通信方式主要有两种方式:网络变量和显式消息。使用网络变量不必考虑消息的打包、发送以及接收问题,可以大大简化编程,缩短应用开发周期,但每个周期变量的数据长度一经确定就不能改变,且最多只有31字节。而显式消息的数据长度则是灵活可变的,最长可以是228字节,但实现方法更为复杂。鉴于水轮机组状态监测系统对数据传输的实时性要求较高,同时需要提高足球场采集数据的上传速度,因此希望每一次传送的报文包含尽量多的数据,因而在设计中采用显示消息的方式实现与上位机的通信,每个显式消息报文携带134个字节的数据,其中的128个字节为传送的数据,另外6个字节为附加信息。报文的帧结构如图3所示。
显示报文的初始化和发送部分的实现程序如下:
初始化节点地址
#include<ADDRDEFS.H>所需头文件
#include<ACCESS.H>
#include<MSG_ADDR.H>
domain_structmydomain;//定义域结构
mydomain=*(access_domain(0));//读节点域表
mydomain.subnet=0;//设置节点子网号
mydomain.node=5;//设置节点号
update_damain(&mydomain,0);//写节点域表
发送数据报文
msg_tagtest_out;//声明报文标签
msg_out.tag=test_out;//传递报文标签
msg_out.dest_addr.snode.node=0;//定义目的地址节点号
msg_out.dest_addr.snode.subnet=0;//定义目的地址子网号
msg_out.code=0x0c;//定义报文码
msg_out.service=ACKD;//定义报文服务类型
msg_out.dest_addr.snode.type=1;//定义目的节点类型
memcpy(msg_out.data,a0,nLength);//填充报文内容
msg_send();//发送报文
在初始化程序中,用数据结构domain_struct定义节点的子网号、节点号,即设置节点在LON总线上的地址。在发送程序中利用msg_out结构构造报文,其中,目的地址指向适配器。显示报文的接收程序与发送部分类似,不再多述。
3.2上位机通信程序
上位机与现场节点通讯的数据通过适配器转发,适配器的IP必须事先指定。上位机利用msg_out变量(如前所述)创建显示报文,将目标节点的地址、需要改变的参数或要下达的命令填充到该变量中,然后用UDP封装该变量,通过以太网发往适配器;适配器解析上位机发来的数据包,得到显示报文,将该显示报文直接向相应的节点发送。同样,适配器也将现场节点发来的显示报文通过UDP封装后发往上位机,上位机解包后根据节点等信息将数据存入相应的数据库,等待后后续的信号处理模块和故障诊断模块调用。
4故障诊断
系统采用连续小波变换对采集的信号进行处理,通过变换结果进行故障诊断。下面以采集到的水轮机的主轴上导Y轴方向径向摆度信号(图4)的数据为例说明通过小波变换进行故障诊断的结果。