时间:2022-10-05 07:54:03
序论:在您撰写钢结构设计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.1钢结构住宅的定义
钢结构建筑体系的主体结构体现在一般分为钢框架结构体系、钢框架核心筒结构体系、钢框架-支撑结构体系、钢框架-剪力墙结构体系、交错桁架结构体系和轻钢结构住宅体系。
1.2钢结构住宅的主要特点
一般情况下,在梁高相同的条件下,钢结构的开间要比混凝土结构的开间大50%左右,所以钢结构体系的建筑布置可以更加灵活,为住宅空间的搭配提供了很大的自由度。这种大自由度与高建材强度的结合基本就是钢结构住宅的最大优势。通过该比较可以看出,虽然钢结构在具体应用中造价成本较高,但是造价比和建筑重量等因素都远远超出单纯的混凝土结构。在经过详细的论证之后,钢结构的应用被通过,以下是该小区的钢结构住宅的最终设计方案。
1.3钢结构住宅在河北省具体可行性
目前,河北省的建筑行业发展还比较粗放,要达到节能减排、保护环境的要求,就必须进行住宅的统一产业化,钢结构住宅所需钢材一般都是产业化生产,符合建筑业产业集群和保护环境节能减排的要求,能成为住宅产业化发展的有力推动技术。钢结构住宅的另一个优势是施工工期较短和施工所需人员少,有效地节约了劳动成本和劳动力,为经济发展转型做出了较大贡献。
2钢结构住宅设计中遇到的具体问题以及解决策略
2.1钢结构住宅的设计规范
根据2001年原国家建设部印发的《钢结构住宅产业化技术导则》,钢结构住宅在初期设计的过程中,应该遵守以下规范。1)总体设计方面:钢结构住宅建筑应该满足标准化、定型化、多样化和通用化的原则,在钢结构住宅的各部分设计中应该严格做到模数协调,在总体设计方面追求钢结构建筑的建筑、结构、水电暖气综合设计的原则。2)平面设计方面:应该充分体现钢结构设计的系列化原则,充分适应钢结构构件的标准化设计和标准化应用,要做到标准化与多样化组合的结合,实现多样模块化以应对多种建筑情况,考虑梁、柱、楼板等实际情况进行钢结构设计中的模块化设计,充分适应钢结构住宅个性化、多样化和可操作性的需要。3)竖向设计方面:楼板构造的选型应该充分考虑到受力、隔音和管线布置等要素来合理确定层高,在管线铺设方面应该尽量使用空闲的空间来集中铺设管线,易于管线的维修管理等。4)围护结构方面:围护结构应该对抗震性能和连结性有较高的要求,围护结构的墙体应该采用轻质且高强的墙体,确保隔热、保温、隔音、防水、防火和防裂等各方面的综合性能,对墙面涂料也要有较高的要求。
2.2钢结构节点的设计
一般情况下,铰接点的形式较为简易,施工也较为方便,但是它会使梁跨中弯矩加大,从而增加建筑的钢材用量,刚性节点形式复杂,但是对钢材的利用有所节约,与之相比,半刚性节点由于其复杂的受力特性,应用较为罕见。根据实际情况调查,在选用钢结构进行住宅建筑的企业中,半刚性节点的应用率仅为10%,说明它的技术还需要进一步提升。
2.3钢结构建筑墙体材料的选用
钢结构的特点是轻便、灵活,所以在墙体材料的选择方面,要符合其特点,不适合采用黏土砖等质量较大的材料,而应该采用空心混凝土砌块、加气混凝土和压型钢板与轻质保温材料组成的符合墙体或者CS板、OSB板等。这些轻质材料的防水和放渗透能力都比较好,保温效果也很好,施工较为简便,作为建筑墙体的强度也足够。在墙体设计的过程中,要注重对连接件的详细参数有所规定,以减少施工的复杂程度,从另一个方面来说,详细的参数也有利于提高设计的精确性。
2.4钢结构建筑中的厨卫设计
厨卫设计在钢结构设计中占有很重要的地位,其重要的原因是因为厨卫设计比较考研钢结构设计的钢材防腐蚀和防水能力,钢结构住宅设计中,结构防水比较实用,框架结构体系要把卫生间和厨房放到核心筒内,其他的结构体系则需要根据工程的实际情况来决定。
2.5钢材的防火问题
钢结构虽然有着各种优点,但作为一种常见的金属,它必须要考虑防火、防水和防腐蚀的问题,钢材的耐腐蚀性、耐热性都比较差,一旦被热源、腐蚀源或者水源靠近太长时间,就极易产生问题,对钢材的承载能力产生一定的损伤。以一般的建筑用钢材(Q235或a345)为例,在全负荷的状态下,失去静态平衡稳定性的温度极值大约500℃,在300℃以上时就会产生一定危险,如果在发生火灾的情况下,火场温度大约800℃以上,钢材结构远远达不到防火要求。钢材防火措施中较为常用的是防火涂料或者在外面包裹混凝土等,而事实上这就丧失了钢结构本身的优势。合适的钢结构住宅的防火措施可以分为主动防火措施和被动防火措施,主动防火措施一般有防火探测和警报系统、消防喷淋系统(气体、液体、泡沫灭火)、防火隔离区等,而被动防火措施则主要利用各种技术对钢材的防火性能进行强化,一般情况下有以下几种形式:使用外包保护层对钢材进行保护使其耐火性增加的外包法,外包法一般有实体外包(如混凝土外包)或者板材外包(如防火石膏板外包)等;利用膨胀材料使钢材在受热时材料产生膨胀,以形成一层耐火保护层;将钢材设计成空心注水也是防火的良好方法,可是这种方法的造价和技术要求都比较高,不适合广泛应用;或者把钢结构屏蔽在耐火材料建造成的墙体中,但是这会导致建筑的有效使用面积有所减少。
2.6钢材的防腐蚀和防水问题
钢材防腐蚀和防水的问题重点都在于在某种环境下保护钢材不受极端环境的影响,从而产生恶劣的形状变化,所以两者之间有一定互相参考的元素。钢材本身在酸性或者化学气雾的情况下容易受到腐蚀,从而影响建筑的质量安全,在成本允许的情况下可以采取特殊耐候钢,但更多的情况下,还是要采取一定措施来降低建筑成本。
3结语
关键词:门式刚架钢结构
一。设计方面
1.屋面活荷载取值
框架荷载取0.3kN/m2已经沿用多年,但屋面结构,包括屋面板和檩条,其活荷载要提高到0.5kN/m2.《钢结构设计规范》规定不上人屋面的活荷载为0.5kN/m2,但构件的荷载面积大于60m2的可乘折减系数0.6.门式刚架一般符合此条件,所以可用0.3kN/m2,与钢结构设计规范保持一致。国外这类,要考虑0.15-0.5N/m2的附加荷载,而我们无此规定,遇到超载情况,就要出安全问题。设计时可适当提高至0.5kN/m2.现在有的框架梁太细,檩条太小,明显有人为减少荷载情况,应特别注意,决不允许在有限的活荷载中“偷工减料”。
2.屋脊垂度要控制
框架斜梁的竖向挠度限值一般情况规定为1/180,除验算坡面斜梁挠度外,是否要验算跨中下垂度?过去不明确,可能不包括屋脊点垂度。现在应该是计算的。一般是将构件分段,用等截面程序计算,每段都要计算水平和竖向位移,不能大于允许值,等于要验算跨中垂度。跨中垂度反映屋面竖向刚度,刚度太小竖向变形就大。要的度本来就小,脊点下垂后引起屋面漏水,是漏水的原因之一。有的工程由于屋面竖向刚度过小,第一榀刚架与山墙间的屋面出现斜坡,使屋面变形。本人有此想法,刚架侧移后,当山尖下垂对坡度影响较大时(例如使坡度小于1/20),要验算山尖垂度,以便对屋面刚度进行控制。
3.钢柱换砼柱
少数设计的门式刚架,采用钢筋混凝土柱和轻钢斜梁组成,斜梁用竖放式端板与砼柱中的预埋螺栓相连,形成刚接,目的是想节省钢材和降低造价。在厂房中,的确是有用砼柱和钢桁架组成的框架,但此时梁柱只能铰接,不能刚接。多高层建筑中,钢梁与墙的连接也是如此。因为混凝土是一种脆性材料,虽然构件可以通过配筋承受弯矩和剪力,但在连接部位,它的抗拉、抗冲切的性能很并,在外力作用下很容易松动和破坏。有些设计,在门式刚架设计好之后,又根据业主要求将钢柱换成砼柱,而梁截面不变。应当指出,砼柱加钢梁作成排架是可以的,但将刚架的钢柱换成砼柱,而钢梁不变,是不行的。由于连接不同,构件内力也不同,要的工程斜梁很细,可能与此有关。
4.檩条计算不安全
檩条计算问题较大。檩要是冷弯薄壁构件,受压板件或压弯板件的宽厚比大,在受力时要屈曲,强度计算应采用有效宽度,对原有截面要减弱,不能象热轧型钢那样全截面有效。有效宽度理论是在《冷弯薄壁型钢构件技术规范》(GB50018-2002)中讲的,有的设计人员恐怕还不了解,甚至有些设计软件也未考虑。但是,设计光靠软件不行,还要能判断。软件未考虑的,自己要考虑。再有,设计人员往往忽略强度计算要用净断面,忽略钉孔减弱。这种减弱,一般达到6-15%,对小截面窄翼缘的梁影响较大。刚架整体分析采用的是全截面,如果强度计算不用净截面,实际应力将高于计算值。《规范》4.1.8、9条规定:“结构构件的受拉强度应按净截面计算;受压强度应按有效截面计算;稳定性应按有效截面计算。变形和各种稳定系数均可按毛截面计算”。有的单位看到国外资料中檩条很薄,也想用薄的。国外檩条普遍采用高强度低合金钢,但我国低合金钢Q345的冲压性能不行,只有用Q235的。国外是按有效截面计算承载力的。如果用Q235的,又想用得薄,计算时还不考虑有效截面,荷载稍大时檩条就要垮。二。施工方面
1.柱子拔出
有的刚架在大风时柱子被拔起,这是实际中常出现的事故。主要原因不是刚架计算失误,而且设计柱间支撑时,未考虑支撑传给柱脚的拉力。尤其是房屋纵向尺度较小时,只设置少量柱间支撑来抵抗纵向风荷载,支撑传给柱脚的拉力很大,而柱脚又没有采取可靠的抗拔措施,很可能将柱子拔起。,因此,在风荷载较大的地区刚架柱受拉时,在柱脚应考虑抗拔构造,例如锚栓端部设锚板等。
2.没有柱间支撑
这种情况最近较多,这样肯定不行。目前没有任何一本规范允许不设支撑。特别是柱间支撑,受力较大,绝不能省略。
3.端板合不上
端板连接是结构的重要部位。由于加工要求不严,而腹板与端板间夹角又,有的工程两块端板完全对不上,合不起来。强行用螺栓拉在一起,仍留下很宽缝隙,严惩影响工程质量。
4.锚栓不铅直
框架柱柱脚底板水平度差,锚栓不铅直,柱子安装后不在一条直线上,东倒西歪,使房屋外观很难着,这种情况不少。锚栓安装应坚持先将底板用下部调整螺栓调平,再用用无收缩砂浆二次灌浆填实。
5.保温材吸水超重
有些房屋雪不大就垮了,究其原因,是屋面防水施工太差,雪融化后水逐渐渗入,为保温村所吸收。今年冬季落雪多次,迁延时间较长。屋面的设计荷载很小时,当吸水量达至一定程序,超过了结构的承载能力,就要倒塌。
要想有效实现混凝土框架顶层加建钢结构的目标,就一定要明确两者之间的区别。混凝土框架具有自重大、刚度大、震害明显、密闭性好、整体性好、抗压性好、不易受外界侵蚀等特点;钢结构具有自重小、延性好、耐火性差、密闭性差、易受外界侵蚀等特点。混凝土框架与钢结构均是借助传统力学和数学公式进行受力计算的,同时在进行抗震设计的时候,均需要设置多道抗震防御体系,这样才可以保证结构的整体性与牢固性;在进行管理的时候,无论是混凝土框架还是钢结构,均需要管理人员具备相应的专业素质与技能,对施工中可能出现的风险、隐患、质量问题等进行预防与处理,保证施工的顺利完成。当然,两者之间也存在着明显的区别:首先,材质方面。混凝土框架主要就是由钢筋与混凝土构成,自重非常大;钢结构主要是由钢构件连接组成,自重比较小。其次,震害结果。根据相关资料显示,混凝土框架震害主要表现为裂缝,局部倒塌,很少出现整栋楼倒塌的情况;钢结构在地震作用下,经常发生失稳、扭曲、变形的情况,并且因为整体性比较差,因此在进行设计的时候,定要对整体性进行充分的考虑。最后,施工管理方面。在实际施工中,对于相同面积的施工,钢结构要比混凝土框架施工快;在现场施工的时候,混凝土框架施工需要进行现场支模浇筑,进行预制构件工厂加工的情况不多,而钢结构需要在工厂加工很多的预制构件,之后运输至施工现场,进行相应的安装与焊接。除此之外,针对工程造价而言,钢结构也要比混凝土框架低一些,在进行实际施工时,可以根据市场情况,进行适当的选择。
2加建工程的现状
我国加建设计起步比较晚,与世界先进国家之间存在着一定的差距。随着社会的不断发展与进步,科学技术水平的不断提高,加建工程得到了很大的发展空间,并且在我国各地都开展了一些旧房挖潜、改造、加建等工程,并且在上海、重庆、广州、贵阳、昆明等地都将旧房改造工程列入到了城市规划项目当中,颁布了相应的文件与规章制度。由此可以看出,我国加建工程得到了很大的发展空间。1)由以往的单个房屋加建发展为成片住宅区的加建工程;2)各种新材料、新工艺应用到了加建工程当中;3)轻钢结构加建技术得到了深入的分析与研究,并且在加建工程中得到了广泛的应用。
3钢结构加建的优缺点
开展钢结构加建工程的时候,具有以下优点:1)节约土地,提高土地面积的使用效率,缩短建设工期;2)因为钢结构的自重比较轻,因此,加建部分的荷载作用对原结构的影响非常小,不需要单独对地基进行加固处理,这样不仅可以减少工作量,还可以缩短工期,节省部分施工成本;3)钢结构具有较强的多样性,在进行加建的时候,可以充分发挥空间的优势,降低对原建筑结构的影响;4)钢结构加建的适用范围比较广,不仅可以对房屋建筑进行加建,还可以对工业建筑进行加建,因此,在建筑加建工程中得到了广泛的应用。当然,其也存在着一些缺点:1)在进行钢结构加建之后,其整体建筑结构就会呈现一种上柔下刚、上轻下重的质量与刚度分布,导致建筑整体性较差,缺乏一定的抗震性能;2)钢结构耐久性较差,在进行加建的时候,需要进行防腐、防火等措施的考虑,这样就会增加一些建筑材料的使用,此时不仅会涉及到原材料的质量问题,还要考虑原材料的成本问题,因此,存在着一定的不足。
4混凝土框架顶层加建钢结构设计
1)楼板设计。在设计楼板的时候,现阶段一般选用的都是现浇灌技术。目前,现浇灌技术是楼板设计中最为常用与有效的方法,在采用此种方式进行钢结构施工的时候,可以有效提高建筑结构整体的稳定性、牢固性与安全性。同时,在钢结构施工中,此种方法可以对出现的问题进行灵活的处理与调整,根据实际情况,提出有效的解决办法,保证楼板设计与施工的顺利进行,确保建筑工程的整体施工质量。2)梁设计。在进行梁设计的时候,一定要结合国际设计标准与实际设计情况,制定合理、科学的钢构设计要求:首先,在进行梁设计的时候,一定要保证其截面宽度不会低于200mm,同时宽度与高度之间的比值不要超过4。其次,在梁设计中必然要使用一些钢筋,对其使用钢筋也要进行一定的规定,保证梁结构具有一定的硬度与抗震性能,进而确保建筑工程整体结构的牢固性与安全性。最后,在设计扁梁的时候,一定要保证梁中线和柱中线重合,采用双向布置结构。同时对扁梁进行严格的计算与设计,保证其结构的合理性与科学性,增强建筑工程整体结构的稳定性。3)柱设计。在进行柱设计的时候,一定要保证其截面符合设计标准:通常情况下,柱截面宽度与高度均不可低于300mm,柱直径一定要超过350mm,截面短边与长边的比值不可以超过3,柱纵向钢筋配比不可以低于0.2%等。在设计柱的时候,一定要严格遵照以上要求,这样才可以保证柱设计的合理性与科学性,同时增强钢结构的稳定性,保证建筑工程施工的顺利完成。4)基础承载重量构件设计。在进行基础承载重量构件设计的时候,一定要综合考虑各方面的因素,结合建筑负荷、结构形式、施工状况等,加强基础设计的合理性与科学性,使其达到建筑工程整体设计要求。针对设计不合理、不符合要求的部分,一定要进行相应的修改,保证其设计的合理性与科学性,这样才可以保证建筑工程整体的施工质量。
5结语
1.1钢结构设计防腐方面的问题及对策
钢材受自然因素影响较大,一旦长时间暴露在室外环境中,就极易被锈蚀,不仅钢材的外观会深受影响,钢材的质量也会大打折扣。因此,在钢结构建筑设计中钢材防腐问题也是必须引起高度重视。当前,钢结构建筑设计中对于防腐方面问题的解决方法通常是采用涂抹防腐涂料的措施。设计人员会根据钢结构建筑的要求选用合适的防腐涂料,并要求施工人员在施工中严格按照相关要求规范进行操作。此外,对于钢结构构件也有不同的要求,例如有的构件在出厂前需要涂刷一层底漆。在钢材上涂抹防腐涂料就目前来看是最为有效的防腐措施。但是这样做只是基础性的防腐,因而为了提高钢结构的防腐效果,就必须选用耐候钢作为钢结构建筑的首选材料,并利用热浸镀锌技术对其进行处理,利用镀层,达到保护钢结构不被腐蚀,尤其是应加强有机涂料配套技术的应用,以及阴极保护技术的应用,才能更好地确保其防腐性能得到有效的提升。
1.2钢结构设计在物理方面的问题及对策
1.2.1噪声问题及对策
噪声问题是现代建筑中最为常见的问题之一,且一直没有得到彻底的解决。怎样有效降低噪声已经成为当前建筑学中的重要研究课题之一。人类耳朵能够听到许多种声音,而这些声音又大致能够分为两类,一类是无害悦耳的声音,例如音乐声、鸟鸣声等;另一类则是有害的噪声,例如各种机械发出的轰鸣声,刺耳的喇叭声等。一般情况下,建筑使用功能的不同对隔音的效果要求也不同,例如大型商场建筑,其隔音效果要求较低;寻求安静的住宅建筑隔音效果要求就较高,这就需要设计人员根据建筑使用功能以及隔音效果的不同要求进行专门的设计。在钢结构建筑设计中所采用的隔音措施主要有:使用隔声门、隔声窗,并在建筑或需隔音的房间外墙上使用隔声性能较好的材料。根据建筑使用功能的不同,其对吸音的效果要求也不相同。例如音乐厅类型的建筑,其主要使用功能就是让人类的耳朵吸收发出的音乐声,所以在音乐厅类型的建筑中通常会在顶棚增加反射板用来反射声音,若是音乐厅中的声音无法反射,那么人类的耳朵所听到的声音就会有缺失,甚至是听不到声音。当前,解决吸音问题的主要措施有两种:第一种是科学的设计吸声结构,例如孔石膏板吊顶。第二种是采用先进的吸声材料,例如玻璃、岩棉等吸声性能较好的材料。
2建筑工程中钢结构设计的稳定性与设计要点
2.1建筑工程中钢结构稳定设计的特点
建筑工程中钢结构稳定设计的特点主要表现为:第一,钢结构的多样性。建筑工程中钢结构设计方面的问题直接影响着钢结构的稳定性,特别是承荷载力大的钢结构部位,在进行这类钢结构部位设计时必须进行多方面的考虑,并对钢结构的稳定性进行认真分析、探究。第二,钢结构的整体性。钢结构建筑是由多种构件共同组成的一个整体,任何一个构件所具有的作用都是不容忽视的,若是当任意一个构件出现问题,例如失稳、变形等情况,那么必定会对其他构件造成影响,最终导致钢结构整体稳定性出现问题。
2.2钢结构稳定性的计算方法
(1)整体刚度计算。在现行的钢结构计算规范中,通用的计算方法是轴心压杆稳定计算方法,其主要采用是折减系数方法和临界压力求解法。其中,临界压力由欧拉公式给出。(2)整体稳定性分析。钢结构建筑是由多种构件共同组成的一个整体,其整体稳定性受各种构件的制约较大,各构件之间是否具有良好的稳定性,是确保钢结构整体稳定性的前提基础。所以,应对其整体稳定性进行分析。(3)其他特点的稳定计算。钢结构的各种组成构件又能分为两大类,为弹性构件和柔性构件,因而,在进行钢结构稳定性时应重视这一特点。由于柔性构件容易发生变形,进而导致钢结构内部也发生变化,最终对钢结构整体稳定性产生严重的影响,所以,必须重视柔性构件的分析。
2.3钢结构稳定性的分析方法
(1)静力法。静力法的分析原理是结合已经出现了微小变形后的一些结构受力的条件,并根据这些条件来建立相对平衡的微分方程。通过建立的微分方程仔细的计算出构件受力的临界相关荷载。在实际中应用静力法构件平衡微分方程时,应遵循相关设定,具体表现为:直杆构件应该为截面,其压力应始终遵循之前的轴线进行作用。(2)动力法。当钢结构的结构体系处于平衡状态下时,若是受到一定的干扰,那么整个结构体系就会产生振动,这时应采用动力法对钢结构的稳定性进行分析。钢结构整体稳定性与其所承受的荷载有着密切关联,在钢结构出现变形以及钢结构振动加速时,这种联系更加紧密。若是钢结构所承受的荷载值低于钢结构自身稳定性的极限荷载值时,会出现加速度和之前的钢结构变形的具体方向相反的状况。(3)能量法。若是在实际应用中钢结构载着保守力并且已经具备结构变形的相关受力条件,那么就能以此条件构建总体势能。如果要计算钢结构的总体势能,则必须满足一个前提条件,即钢结构处于相对平衡的状态下。
3结语
关键词:钢结构现场施工
1.前言
《门式刚架轻型房屋钢结构技术规程》公布以来已经快三年。这几年,这类工程发展,《规程》起了很大推动作用,但也陆续听到一些令人不安的情况。今冬雨水较大,降雪较多,有些地方雪特别大,结构压坏恐怕很难避免,但有的地方雪不大房子也有垮的,漏水的更多。最近某厂屋顶漏水解决不了,找到钢结构委员会来了,不是雨水,是冷凝水,以前还没有碰到过。另外,也看到一些工程,有的框架梁太细,令人担心,遇到大雪很可能出问题。有的骨架立起来摇摇幌幌,没有支撑,说装上墙板就好了,好象有了墙板就可以不要支撑。现在排架多起来。用钢筋砼柱、轻钢梁,造价较低,但有的严重不合规定。现在是市场驱动,有些企业搞承包能省就省,尽量压低造价,管它是否符合规定。有的连规定也不清楚。利用开年会的机会,结合了解到的一些情况,就门式刚架房屋设计施工中的问题,作一个发言,抛砖引玉,希望和与会代表交流,取得一致看法。
2.设计方面
1)屋面活荷载取值
框架荷载取0.3kN/m2已经沿用多年,不打算修改。但屋面结构,包括屋面板和檩条,其活荷载要提高到0.5kN/m2。《钢结构设计规范》征求意见稿规定不上人屋面的活荷载为0.5kN/m2,但构件的荷载面积大于60m2的可乘折减系数0.6。门式刚架一般符合此条件,所以可用0.3kN/m2,与钢结构设计规范保持一致。国外这类,要考虑0.15-0.5N/m2的附加荷载,而我们无此规定,遇到超载情况,就要出安全问题。现在有的框架梁太细,檩条太小,明显有克扣荷载情况,今后应特别注意,决不允许在有限的活荷载中“挖潜”。
2)屋脊垂度要控制
框架斜梁的竖向挠度限值一般情况规定为1/180,除验算坡面斜梁挠度外,是否要验算跨中下垂度?过去不明确,它可能讲课时说过不包括屋脊点垂度。现在了解到,美国是计算的。他们作框架分析,一般是将构件分段,用等截面程序计算,每段都要计算水平和竖向位移,不能大于允许值,等于要验算跨中垂度。跨中垂度反映屋面竖向刚度,刚度太小竖向变形就大。要的度本来就小,脊点下垂后引起屋面漏水,是漏水的原因之一。有的工程由于屋面竖向刚度过小,第一榀刚架与山墙间的屋面出现斜坡,使屋面变形。现在打算做个规定,刚架侧移后,当山尖下垂对坡度影响较大时(例如使坡度小于1/20),要验算山尖垂度,以便对屋面刚度进行控制。
3)钢柱换砼柱
少数单位设计的门式刚架,采用钢筋混凝土柱和轻钢斜梁组成,斜梁用竖放式端板与砼柱中的预埋螺栓相连,形成刚接,目的是想节省钢材和降低造价。在厂房中,的确是有用砼柱和钢桁架组成的框架,但此时梁柱只能铰接,不能刚接。多高层建筑中,钢梁与墙的连接也是如此。因为混凝土是一种脆性材料,虽然构件可以通过配筋承受弯矩和剪力,但在连接部位,它的抗拉、抗冲切的性能很并,在外力作用下很容易松动和破坏。还有的单位,在门式刚架设计好之后,又根据业主要求将钢柱换成砼柱,而梁截面不变。应当指出,砼柱加钢梁作成排架是可以的,但将刚架的钢柱换成砼柱,而钢梁不变,是不行的。由于连接不同,构件内力也不同,要的工程斜梁很细,可能与此有关。建筑结构是一门科学,如果不按科学办事,是要吃苦头的。今后国家要执行建筑法,实行强制性条款,违反其中一项,出了工程事故,是要受罚的。
4)檩条计算不安全
檩条计算问题较大。檩要是冷弯薄壁构件,受压板件或压弯板件的宽厚比大,在受力时要屈曲,强度计算应采用有效宽度,对原有截面要减弱,不能象热轧型钢那样全截面有效。有效宽度理论是在《冷弯薄壁型钢构件技术规程》中讲的,有的设计人员恐怕还不了解,甚至有些设计软件也未考虑。但是,设计光靠软件不行,还要能判断。软件未考虑的,自己要考虑,否则就不需要高级工程师了。再有,设计人员往往忽略强度计算要用净断面,忽略钉孔减弱。这种减弱,一般达到6-15%,对小截面窄翼缘的梁影响较大。刚架整体分析采用的是全截面,如果强度计算不用净截面,实际应力将高于计算值。《规程》3.1.7条规定:“结构构件的受拉强度应按净截面计算,受压强度应按有效截面计算,稳定性应按有效截面计算,变形和各种稳定系数均可按毛截面计算”。曾有人问,这条规定是什么意思?如果有人再提这样的问题,我想问他,钢结构学过没有?因为这是钢结构的基本概念问题。如果这样的问题都签不出,说明他还不具备钢结构的设计资格的。有的单位看到国外资料中檩条很薄,也想用薄的。国外檩条普遍采用高强度低合金钢,但我国低合金钢Q345的冲压性能不行,只有用Q235的。人家是按有效截面计算承载力的。如果用Q235的,又想用得薄,计算时还不考虑有效截面,荷载稍大时檩条就要垮。
3.施工方面
1)柱子拔出
有的刚架在大风时柱子被拔起,这是实际中常出现的事故。主要原因不是刚架计算失误,而且设计柱间支撑时,未考虑支撑传给柱脚的拉力。尤其是房屋纵向尺度较小时,只设置少量柱间支撑来抵抗纵向风荷载,支撑传给柱脚的拉力很大,而柱脚又没有采取可靠的抗拔措施,很可能将柱子拔起。,因此,在风荷载较大的地区刚架柱受拉时,在柱脚应考虑抗拔构造,例如锚栓端部设锚板等。
2)没有柱间支撑
这种情况最近较多,需要大声疾呼,这样不行。蒙皮作用虽然各国都在研究,但没有任何一本规范允许不设支撑。蒙皮作用的影响因素太多,并非在任何情况多能发挥作用。特别是柱间支撑,受力较大,绝不能省略。蒙皮作用最多只能视为一种刚度储备。
3)端板合不上
端板连接是结构的重要部位。由于加工要求不严,而腹板与端板间夹角又,有的工程两块端板完全对不上,合不起来。强行用螺栓拉在一起,仍留下很宽缝隙,严惩影响工程质量。
4)锚栓不铅直
框架柱柱脚底板水平度差,锚栓不铅直,柱子安装后不在一条直线上,东倒西歪,使房屋外观很难着,这种情况不少。锚栓安装应坚持先将底板用下部调整螺栓调平,再用用无收缩砂浆二次灌浆填实,国外此法施工。最近在上海讨论轻钢施工验收规程,不少专家强调了这种方法。
5)保温材吸水超重
有些房屋雪不大就垮了,究其原因,是屋面防水施工太差,雪融化后水逐渐渗入,为保温村所吸收。今年冬季落雪多次,迁延时间较长。屋面的设计荷载很小时,当吸水量达至一定程序,超过了结构的承载能力,就要倒塌。
6)保温材料胡乱安装
保温材料一般采用玻璃棉,其厚度根据热功计算确定。正规做法是采用背面带铝箔隔汽层的玻璃棉,有的不用铝箔,用牛皮纸,我不清楚牛皮纸是否可作隔汽层,如果可以,也比不用任何隔汽层好。防止冷凝水向室内滴水,是房屋的使用要求之一。有人以为铝箔只是为了美观,或承受拉力,实际上它的主要作用是作隔汽层。承受悬挂时的拉力还可以用玻璃纤维布或钢丝网。现在看到有些工程,玻璃棉不用任何隔汽层。另外,当采用内层钢板吊顶时,不是将保温卷材压在檩条上,而是为了施工方便,将保温材剪断,放在檩条之间的吊顶上,形成冷桥。某工程在这样处理的同时,又将吊顶钢板搭接方向弄反。加之,冬季混凝土地坪施工作业时,将周边门窗关闭,由于室内外温差大,大量水汽在屋顶凝集,由吊顶钢板搭接处流下,形成了“外面不下里面下”的状况,使工程不能交工。经验告诉我们,当保温卷材有隔汽层并保持接缝处密封时,卷材是干燥的,无隔汽层时卷材是湿的。在水份的长期浸泡下,随着时间的推移,保温棉将被逐渐压实,最终失去应有的保温作用,因此安装方法是否对头,关系很大。
4.其它
关键词:建筑钢结构经济性能工程造价优化设计
1、引言
由于国家政策、钢材生产、构件制作、设计研发、标准规范修订等方面的有利因素,近几年我国的建筑钢结构进入了一个全新的发展时期。新材料、新部品、新结构体系不断出现,钢结构设计研发、制作安装能力日益强大,建筑钢结构向多样性、适用性、经济性方向发展。
建筑钢结构的经济性能一直是大家最为关注的一个问题。如何控制工程造价,充分发挥钢结构建筑技术经济上的综合优势,工程设计阶段是关键阶段。据权威资料统计分析,在初步设计阶段,影响工程造价的可能性为75%-95%;在技术设计阶段,影响工程造价的可能性为35%-75%;在施工图设计阶段,影响工程造价的可能性为5%-35%。因此设计质量的好坏、设计是否优化对工程造价将产生直接的影响。下面以门式刚架轻钢结构厂房和多、高层钢结构建筑的设计为例,在材料选用、结构体系等方面进行简要分析,探讨在设计阶段控制工程造价,提高建筑经济性能的可行性。
2、材料选用方面工程造价控制
由于我国钢产量已经突破两亿吨,钢材品种更趋于多样化。各种新型建材,如轻质保温墙板、彩涂压型钢板、楼承板等不断开发出来并推广应用。建筑钢结构在设计阶段材料的选择上有了更大的空间。材料选择不同,工程直接费不同,总造价不同。设计阶段合理选择建筑材料,控制材料单价或工程量,是控制工程造价的有效途径。试举例如下:
(1)彩涂钢板:彩涂钢板一般用于轻钢厂房屋面板和墙面板,有不同板型、不同基板厚度和钢号、不同镀锌板类别和镀锌层厚度以及不同的彩涂层类别,在形式上又可选用单板、保温复合板、单板加内保温层等,其中保温层又有超细玻璃丝棉、硬质岩棉、聚苯乙烯等类别及厚度的不同,这些不同都造成单方材料价格的差异,从而影响厂房工程总造价。所以设计时要根据厂房性质、大气环境等因素综合考虑,合理选用板材,控制工程造价。
(2)多、高层住宅钢结构体系的墙体材料:墙体材料造价一般占土建工程造价的15%-25%。对于多、高层住宅钢结构体系来说,选用配套、经济、节能的墙体材料至关重要。目前,设计选用的外墙材料主要有水泥保温外墙板、轻质加气混凝土砌块、NALC板等;内墙材料主要有改性石膏板、GRC内墙板、水泥保温复合板等。莱钢集团自主研发的LCC-A系列、LCC-B系列和LCC-C系列轻质保温复合墙板也已应用于在建钢结构节能住宅工程中,逐步使钢结构住宅体系走向标准化、定型化和工业化,为降低综合造价创造了基础条件。
(3)多、高层钢结构建筑楼(屋)面的楼承板:设计时,根据在楼(屋)盖结构体系中的作用,楼承板可采用两种形式,即①楼承板只作为永久性模板,一般采用普通镀锌压型钢板即可,对最小镀锌量和耐火时间要求较低,价格较便宜;②施工时作为模板,在使用阶段则替代受拉钢筋,即组合楼板。由于在设计中考虑楼承板作为受拉筋,其使用寿命必须与主钢结构的使用寿命保持一致,所以对其最小镀锌量和耐火时间要求较高,单方价格相对较高。
(4)钢材规格及材质:由于钢材品种的增多,结构设计时可选择的构件形式也多了。比如框架柱,可采用热轧H型钢、焊接H型钢、螺旋焊接圆钢管、焊接方钢管以及组合截面等形式,钢梁可采用等截面、变截面等形式。材质可采用Q235普碳钢,也可采用Q345低合金钢。设计时应尽可能采用高强度等级的材料,比如采用Q345钢比采用Q235钢就可节约钢材15%-25%,用于受拉或受弯构件节约比例较大。设计时要选用经济截面型材,比如热轧H型钢、T型钢等。在某些情况下,采用热轧H型钢柱、梁可能比采用焊接H型钢用钢量稍多,但从加工成本、施工进度等方面综合考虑,其造价可能更有优势。
3、结构体系方面工程造价控制
不同的结构体系和平、立面布置对工程造价的影响较明显。在设计阶段只有根据建筑物的使用功能要求,确定合理的平、立面布置和结构体系,才能有效控制工程造价,做到经济适用。列举如下:
(1)根据有关资料测算分析,对于多层建筑,不同层数对土建工程造价的影响为10%-25%;不同层高对土建工程造价的影响为1.5%-12%。
(2)门式刚架轻钢结构厂房设计,同样存在经济跨度和刚架最优间距。在工艺要求允许的情况下,尽量选择小跨度的门式刚架较为经济。一般情况下,门式刚架的最优间距为6m-9m,当设有大吨位吊车时,经济柱距一般为7m-9m,不宜超过9m,超过9m时,屋面檩条、吊车梁与墙架体系的用钢量也会相应增加,造价并不经济。下表(表3.3)是按《门式刚架轻型房屋钢结构技术规程》(CECS102:98)进行设计的厂房主钢用钢量,通过横向、纵向比较,可以看出各影响因素在设计阶段合理确定的意义。设计荷载取值:恒载0.3KN/m2、活载0.5KN/m2、基本风压0.55KN/m2、不考虑吊车及悬挂荷载。
柱距7.5m
檐高6.0m
用钢量
(kg/m2)
柱距7.5m
檐高6.0m
用钢量
(kg/m2)
柱距7.5m
檐高6.0m
用钢量
(kg/m2)
跨度
Q345
Q235
跨度
Q345
Q235
跨度
Q345
Q235
1×18.0m
7.20
8.72
2×18.0m
7.16
8.92
3×18.0m
7.38
8.95
1×21.0m
8.41
9.90
2×21.0m
8.45
10.28
3×21.0m
8.43
10.12
1×24.0m
9.22
11.43
2×24.0m
9.68
11.75
3×24.0m
9.29
11.36
1×27.0m
10.54
12.72
2×27.0m
10.86
13.12
3×27.0m
10.35
12.96
1×30.0m
11.57
13.95
2×30.0m
11.92
14.53
3×30.0m
11.35
13.54
1×33.0m
12.86
15.10
2×33.0m
13.21
16.58
3×33.0m
12.46
15.61
(3)在多、高层钢结构中,楼板结构体系的工程量占有较大比重,对结构的工作性能、造价都有重要影响。在确定楼板结构方案时,主要考虑要保证楼板有足够的平面整体刚度,能减轻结构的自重及减小结构层的高度,有利于现场安装方便及快速施工,还要有较好的防火、隔音性能,并便于管线的敷设。常用楼板做法有:压型钢板组合楼板、预制楼板、叠合楼板和普通现浇钢筋混凝土楼板等。目前最常用的做法为压型钢板组合楼板和普通现浇钢筋混凝土板。当采用这两种做法时,考虑现浇板与钢梁组合成为共同受力的组合梁,能有效降低钢梁高度,较多地节约钢材。
(4)在高层钢结构中,框架柱采用圆形钢管混凝土柱,梁、板采用钢-砼组合结构,总用钢量比普通钢结构用钢量有大幅度减小,能有效降低工程造价。
4、结束语
钢结构建筑所具有的优点决定其必将具有强大的生命力。设计阶段技术创新、选材配套、设计优化是控制造价、促进建筑钢结构走向产业化的关键阶段。为此,强调以下几点:
(1)提高设计人员的素质,重视设计人员的继续教育和业务知识的更新培训。同时,要强调技术与经济相结合,设计中注重价值工程的运用,要做多方案比较,把控制工程造价放到重要位置。
关键词:钢结构结构稳定结构设计
1、引言
稳定性是钢结构的一个突出问题。在各种类型的钢结构中,都会遇到稳定问题。对于这个问题处理不好,将会造成不应有的损失。现代工程史上不乏因失稳而造成的钢结构事故,其中影响最大的是1907年加拿大魁北克一座大桥在施工中破坏,9000吨钢结构全部坠入河中,桥上施工的人员75人遇难。破坏是由于悬臂的受压下弦失稳造成的。而美国哈特福特城的体育馆网架结构,平面92m×110m,突然于1978年破坏而落地,破坏起因可能是压杆屈曲。以及1988年加拿大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌落,这两次事故都和没有设置适当的文撑有关[1]。在我国1988年也曾发生l3.2×l7.99m网架因腹杆稳定位不足而在施工过程中塌落的事故。从上可以看出,钢结构中的稳定问题是钢结构设计中以待解决的主要问题,一旦出现了钢结构的失稳事故,不但对经济造成严重的损失,而且会造成人员的伤亡,所以我们在钢结构设计中,一定要把握好这一关。目前,钢结构中出现过的失稳事故都是由于设计者的经验不足,对结构及构件的稳定性能不够清楚,对如何保证结构稳定缺少明确概念,造成一般性结构设计中不应有的薄弱环节。另一方面是由于新型结构的出现,如空间网架,网壳结构等,设计者对其如何设计还没有完全的了解。本文针对这些问题提出了在设计中应该明确在钢结构稳定设计中的一些基本概念,以及对新型钢结构稳定性研究应该了解的一些问题并且应该懂得如何解决这些问题。只有这样我们在设计中才能更好处理钢结构稳定问题。
2、钢结构稳定设计的基本概念
2.1强度与稳定的区别[2]
强度问题是指结构或者单个构件在稳定平衡状态下由荷载所引起地最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。极限强度的取值取决于材料的特性,对混凝土等脆性材料,可取它的最大强度,对钢材则常取它的屈服点。稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。如轴压柱,由于失稳,侧向挠度使柱中增加数量很大的弯矩,因而柱子的破坏荷载可以远远低于它的轴压强度。显然,轴压强度不是柱子破坏的主要原因。
2.2钢结构失稳的分类[1]
(1)第一类稳定问题或者具有平衡分岔的稳定问题(也叫分支点失稳)。完善直杆轴心受压时的屈曲和完善平板中面受压时的屈曲都属于这一类。
(2)第二类稳定问题或无平衡分岔的稳定问题(也叫极值点失稳)。由建筑钢材做成的偏心受压构件,在塑性发展到一定程度时丧失稳定的能力,属于这一类。
(3)跃越失稳是一种不同于以上两种类型,它既无平衡分岔点,又无极值点,它是在丧失稳定平衡之后跳跃到另一个稳定平衡状态。
区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。随着稳定问题研究的逐步深入,上述分类看起来已经不够了。设计为轴心受压的构件,实际上总不免有一点初弯曲,荷载的作用点也难免有偏心。因此,我们要真正掌握这种构件的性能,就必须了解缺陷对它的影响,其他构件也都有个缺陷影响问题。另一方面就是深入对构件屈曲后性能的研究。
2.3钢结构设计的原则
根据稳定问题在实际设计中的特点提出了以下三项原则并具体阐明了这些原则,以更好地保证钢结构稳定设计中构件不会丧失稳定。
(1)结构整体布置必须考虑整个体系以及组成部分的稳定性要求
目前结构大多数是按照平面体系来设计的,如桁架和框架都是如此。保证这些平面结构不致出平面失稳,需要从结构整体布置来解决,亦即设计必要的支撑构件。这就是说,平面结构构件的出平面稳定计算必须和结构布置相一致。就如上述的1988年加拿大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌落,这两次事故都和没有设置适当的文撑而造成出平面失稳。
由平面桁架组成的塔架,基于同样原因,需要注意杆件的稳定和横隔设置之间的关系。
(2)结构计算简图和实用计算方法所依据的简图相一致,这对框架结构的稳定计算十分重要[3]。
目前任设计单层和多层框架结构时,经常不作框架稳定分折而是代之以框架柱的稳定计算。在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,自应通过框架整体稳定分析得出,才能使柱稳定计算等效于框架稳定计算。然而,实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。GBJl7—88规范对单层或多层框架给出的计算长度系数采用了五条基本假定,其中包括:“框架中所有柱子是同时丧失稳定的,即各柱同时达到其临界荷载”。按照这条假定,框架各柱的稳定参数杆件稳定计算的常用方法,往往是依据一定的简化假设或者典型情况得出的,设计者必须确知所设计的结构符合这些假设时才能正确应用。在实际工程中,框架计算简图和实用方法所依据的简图不一致的情况还可举出以下两种,即附有摇摆拄的框架和横梁受有较大压力的框架。这两种情况若按规范的系数计算,都会导致不安全的后果。所以所用的计算方法与前提假设和具体计算对象应该相一致。
(3)设计结构的细部构造和构件的稳定计算必须相互配合,使二者有一致性。
结构计算和构造设计相符合,一直是结构设计中大家都注意的问题。对要求传递弯矩和不传递弯矩的节点连接,应分别赋与它足够的刚度和柔度,对桁架节点应尽量减少杆件偏心这些都是设计者处理构造细部时经常考虑到的。但是,当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。例如,简支梁就抗弯强度来说,对不动铰支座的要求仅仅是阻止位移,同时允许在平面内转动。然而在处理梁整体稳定时上述要求就不够了。支座还需能够阻止梁绕纵轴扭转,同时允许梁在水平平面内转动和梁端截面自由翘曲,以符合稳定分析所采取的边界条件。
2.4钢结构稳定设计特点
(1)失稳和整体刚度:现行规范通用的轴心压杆的稳定计算法是临界压力求解法和折减系数法。
(2)稳定性整体分析:杆件能否保持稳定牵涉到结构的整体。稳定分析必须从整体着眼。
(3)稳定计算的其它特点:在弹性稳定计算中,除了需要考虑结构的整体性外,还有一些其他特点需要引起重视,首先要做的就是二阶分析,这种分析对柔性构件尤为重要,这是因为柔性构件的大变形量对结构内力产生了不能忽视的影响,其次,普遍用于应力问题的迭加原理[4].在弹性稳定计算中不能应用。这是因为迭加原理的应用应以满足以下条件为前提:
1)材料服从虎克定律变成正比;
2)结构的变形很小。
而弹性稳定计算一般均不能满足第2)个条件,非弹性稳定计算则两个前提都不符合。
了解了一些在钢结构设计中应该明确的一些基本概念,有助于我们在设计中更好地处理稳定方面的问题,随着新型钢结构体系地不断发展,我们对稳定问题的研究要求也不断地提高,之所以在设计中出现结构失稳问题,另一个重要原因就是我们对新型结构稳定知之甚少,也就是目前钢结构稳定研究中存在的问题。
3、钢结构稳定性研究中存在的问题
钢结构体系稳定性研究虽然取得了一定的进展,但也存在一些不容忽视的问题[5]:
(1)目前在网壳结构稳定性的研究中,梁-柱单元理论已成为主要的研究工具。但梁-柱单元是否能真实反映网壳结构的受力状态还很难说,虽然有学者对梁-柱单元进行过修正[3]。主要问题在于如何反映轴力和弯矩的耦合效应。
(2)在大跨度结构设计中整体稳定与局部稳定的相互关系也是一个值得探讨的问题,目前大跨度结构设计中取一个统一的稳定安全系数,未反映整体稳定与局部稳定的关联性。
(3)预张拉结构体系的稳定设计理论还很不完善,目前还没有一个完整合理的理论体系来分析预张拉结构体系的稳定性。
(4)钢结构体系的稳定性研究中存在许多随机因素的影响,目前结构随机影响分析所处理的问题大部分局限于确定的结构参数、随机荷载输入这样一个格局范围,而在实际工程中,由于结构参数的不确定性,会引起结构响应的显著差异。所以应着眼于考虑随机参数的结构极值失稳、干扰型屈曲、跳跃型失稳问题的研究。
从上面可以看出,我们的钢结构稳定理论还是不够完善,我们在设计中一般都是把钢结构看成是完善的结构体系,针对上述问题(4),我们可以看出在设计中我们没有考虑一些随机因素的影响。但是我们在考虑这些因素之前,应该弄清楚这些随机因素的来源,一般情况下把影响钢结构稳定性随机因素分为三类:
(1)物理、几何不确定性:如材料(弹性模量,屈服应力,泊松比等)、杆件尺寸、截面积、残余应力、初始变形等。
(2)统计的不确定性:在统计与稳定性有关的物理量和几何量时,总是根据有限样本来选择概率密度分布函数,因此带来一定的经验性。这种不确定性称为统计的不确定性,是由于缺乏信息造成的。
(3)模型的不确定性:为了对结构进行分析,所提的假设、数学模型、边界条件以及目前技术水平难以在计算中反映的种种因素,所导致的理论值与实际承载力的差异,都归结为模型的不确定性。
以上都是钢结构稳定设计中存在的问题,只有我们进一步地深入研究这些稳定,钢结构稳定理论将会进一步完善,如对于钢结构稳定设计中涉及到随机因素的影响,国外已经引入了钢结构稳定的可靠度设计,这也表明了钢结构稳定设计理论也在不断的完善。
4、结束语
钢结构稳定问题区别于强度问题。在实际设计中,设计人员应该明确知道结构构件的稳定性能,以免在设计过程中发生不必要的失稳损失。针对上述问题,本文提出了在设计过程中设计人员应该明确的一些基本概念;其次,随着新型结构的出现,设计人员对其性能认识的不足,从而导致构件的失稳,本文就这个问题阐述了新型结构现存的一些问题,并且针对一些问题论述了产生的原因。总之,只有深入了解这些问题,才会使得钢结构稳定理论设计不断地完善。
参考文献
[1]陈绍蕃.钢结构设计原理.科学出版社,2000.23-25.
[2]夏志斌,潘有昌结构稳定理论.高等教育出版社.1988.11-12.
[3]陈绍蕃.钢结构稳定设计指南.中国建筑工业出版社,1995.
[4]朱步范,罗建华.钢结构稳定性设计计算要点.新疆石油科技.l998年第3期(第8卷)-69-.
[5]卢家森,张其林.钢结构稳定问题的可靠性研究评述同济大学学报.
[6]吴剑国.网壳结构稳定性的可靠性研究.博士论文,同济大学,2001.