欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

测量论文范文

时间:2023-02-24 18:12:42

序论:在您撰写测量论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

测量论文

第1篇

论文摘要:对目前重要的不同的流量计(容积式计量表,质量流量计,电磁流量计)的原理、测量方法、应用条件、注意事项等进行了总结,进而对流量测量有进一步的了解。

1研究背景:

计量是工业生产的眼睛。流量计量是计量科学技术的组成部分之一,它与国民经济、国防建设、科学研究有密切的关系。做好这一工作对于保证产品质量、提高生产效率、促进科学技术的发展都具有重要的作用。特别是在能源危机、工业生产自动化程度愈来愈高的当今时代,流量计在国民经济中的地位与作用更加明显。

节约能源和环境保护是大多数先进企业非常关心的问题。而要确保压缩空气系统高效地运转,流量测量是至关重要的。对一个典型压缩空气系统的全部成本进行分析后,我们发现最大的成本是由电力消耗,而不是系统的投资或维护产生的。

一台新式的压缩机将百分之九十的电力转换成热量,而仅将百分之十转换成压缩空气,这就使得压缩空气比电要贵十倍。测量耗电量随处可见,但是测量压缩空气消耗量的企业并不多。不进行测量就意味着不知道系统的效率。统计数据显示百分之三十的压缩空气会由于泄漏而损失掉,这本来是可以被检测出来并修理好的。

还有另外一个重要问题:二氧化碳总排放量的百分之四十来自于工业。这些二氧化碳是在燃烧矿物燃料(媒、石油、煤气等)来发电的过程中产生的。我们都知道,过多的二氧化碳会造成全球变暖。在能源变得短缺并且环保和我们每一个人息息相关的时候,流量测量将帮助您依据消耗量和泄漏检测来分析您的系统,从而减少能耗和成本。

2调研目的:

由于流量是一个动态量,流量测量是一项复杂的技术。从被测流体来说,包括气体、液体和混合流体这三种具有不同物理特性的流体;从测量流体流量时的条件来说,又是多种多样的,如测量时的温度可以从高温到低温;测量时的压力可以从高压到低压;被测流量的大小可以从微小流量到大流量;被测流体的流动状态可以是层流、湍流等等。此外就液体而言,还存在粘度大小不同等情况。

调研的目的就是对目前重要的不同的流量计的原理、测量方法、应用条件、注意事项等进行了总结,进而对流量测量有进一步的了解,对以后的研究工作起一定的指导意义。

3调研内容

3.1概述

3.1.1流量的概念

流体在单位时间内流经某一有效截面的体积或质量,前者称体积流量(m3/s),后者称质量流量(kg/s)。

如果在截面上速度分布是均匀的,则:

如果介质的密度为,那么质量流量

流过管道某截面的流体的速度在截面上各处不可能是均匀的,假定在这个截面上某一微小单元面积上速度是均匀的,流过该单元面积上的体积流量为,整个截面的流量为;测量某一段时间内流过的流体量,即瞬时流量对时间的积分,称之流体总量。,用来测量流量的仪表统称为流量计。测量总量的仪表称为流体计量表或总量计。

3.1.2流体的几个概念

(1)粘性

在流体的内部相互接触的部分在其切线方向的速度有差别时会产生减小其速度差的作用。这是因为流速快的部分要加速与其相接触的流速慢的部分,而流速慢的部分要减小与其相接触的流速快的部分,流体的这种性质,称为粘性。衡量流体粘性大小的物理量称为粘度

设有两块面积很大距离很近的平板,两平板中间是流体。令底下的平板保持不动,而以一恒定力推动上面平板,使其以速度v沿x方向活动。由于流体粘性的作用,附在上板底面的一薄层液体以速度v随上板运动。而下板不动故附在其上的流体不动,所以两板间的液体就分成无数薄层而运动,如图所示。作用力F与受力面平行,称为剪力,剪力与板的速度v、板的面积S成正比,而与两板间的距离y成反此,即

(图)平板间流体速度变化

h称为粘度,或动力粘度(dynamicviscosity),单位是:泊(P)(Pa.s)

(2)层流和紊流

流体在细管中的流动形式可分为层流和紊流两种。所谓层流(laminarflow)就是流体在细管中流动的流线平行于管轴时的流动。所谓紊流(turbulentflow)就是流体在细管中流动的流线相对混乱的流动。利用雷诺数可以判断流动的形式。如果雷诺数小于某一值时,可判断为层流,而大于此值时则判断为紊流。

由此,我们发现管内流体流动时存在着两种状态:一为层流状面一为紊流状态.在不同的流动状态下,流体有不同的流动特性。在层流流动状态时,流量与压力降成正比;在紊流流动状态时,流量与压力降的平方根成正比,而且在层流与紊流两种不同的流动状态时,其管内的速度分布也大不相同。这些对于许多采用测量流速来得到流量的测量方法是很重要的。

(3)雷诺数

雷诺数是表征流体流动时惯性力与粘性力之比。利用细管直径d,可求出雷诺数:

为细管中的平均流速;为流体的运动粘度,d为管径。Rd<2320时为层流,Rd>2320时为紊流;所谓平均流速,一般是指流过管路的体积流量除以管路截面积所得到的数值。

(4)流体流动的连续性方程

流体在管道内作稳定流动的情况:,若流体是不可压缩的,即则

(图)某一段流体管道

即流体在稳定流动,且不可压缩时,流过各截面流体的体积为常量。因此利用上式,很方便的求出流体流过管道不同截面时的流速。

(4)流体伯努力方程

3.2流量计

3.2.1容积式计量表

这类仪表用仪表内的一个固定容量的容积连续地测量被测介质,最后根据定量容积称量的次数来决定流过的总量。习惯上人们把计量表也称为流量计。根据它的结构不同,这类仪表主要有椭圆齿轮流量计、腰轮流量汁、活塞式流量计等。

(1)椭圆齿轮流量计

(图)椭圆齿轮流量计原理图

腰轮流量计(罗茨流量计)

(图)腰轮流量计原理图

腰轮流量计除可测液体外,还可测量气体,精度可达±0.1%,并可做标准表使用;最大流量可达1000m3/h。

(2)容积式流量计的误差

仪表输出由指针指示,指示值I:

其中:

流量较小时,误差为负值,在流量增大时、误差为正值、且基本保持不变(曲线1)。这种现象主要是由于在运动件的间隙中泄漏所引起的。这个泄漏量与间隙、粘度、前后压差有关,另外也和流过体积V所需的时间有关。

容积式流量计的测量误差值E,可由指示值与真值之差与指示值之比表示。设:V为通过流量计的流体体积真值;I为流量计指示值,则误差值E可表示为

,为流量仪表的流量,,

(图)容积式流量计的误差曲线

(3)适用范围

1)可用于各种液体流量的测量,尤其是用于油流量的准确测量

2)高压力、大流量的气体流量测量

3)适用于性较好、粘度较高的重质油品,如原油、重质成品油等的计量

4)计量范围受到转子重量的影响,其精度只适用于一定流量的计量,计量更大流量时,要几台并联使用

由于椭圆齿轮容积流量计直接依靠测量轮啮合,因此对介质的清洁要求较高,不允许有固体颗粒杂质流过流量计.

3.2.2浮子流量计(转子流量计)

(1)原理

浮子流量计的测量本体由一根自下向上扩大的垂直锥管和一只可以沿着锥管的轴向自由移动的浮子组成.如图下

(图)浮子流量计测量原理图

当被测流体自锥管下端流入流量计时,由于流体的作用,浮子上下端面产生一差压,该差压即为浮子的上升力。当差压值大于浸在流体中浮子的重量时,浮子开始上升。随着浮子的上升.浮子最大外径与锥管之间的环形面积逐渐增大,流体的流速则相应下降,作用在浮子上的上升力逐渐减小,直至上升力等于浸在流体中的浮子的重量时,浮子便稳定在某一高度上。这时浮子在锥管中的高度与所通过的流量有对应的关系。

(2)所受力的分析

作用在浮子上的力有:

流体自下而上运动时,作用在浮子上的阻力F;浮子本身的垂直向下的重力W;流体对浮子所产生的垂直向上的浮力B。当浮子处于平衡状态时,可列出平衡方程式

式中,cd为浮子的阻力系数;ro为流体密度;v为环形流通面积的平均流速:Af为浮子的最大迎流面积。

为浮子材料的重度;为浮子的体积

浮子在流体中所受的浮力为:为流体的重度

该环形流通面积为A0,则体积流量为

设,称为流量系数,则

(3)注意事项

只要保持流量系数a为常数,则流量与浮子高度h之间就存在一一对应的近似线性关系.我们可以将这种对应关系直接刻度在流量计的锥管上.显然,对于不同的流体,由于密度发生变化,所以qv与h之间的对应关系也将发生变化,原来的流量刻度将不再适用.所以原则上,转子流量计应该用实际介质进行标定.

3.2.3电磁流量计

电磁流量计是根据法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。属于测速式流量计

(1)原理

(图)电磁流量计原理图

如图所示,设在均匀磁场中,垂直于磁场方向有一个直径为D的管道。管道由不导磁材料制成,当导电的液体在导管中流动时,导电液体切割磁力线,因而在磁场及流动方向垂直的方向上产生感应电动势,如安装一对电极,则电极间产生和流速成比例的电位差。

式中,c为感应电动势:B为磁感应强度,D为管道内径;v为液体在管道内平均流速。

(2)使用条件

优点:

1)可以测量各种腐蚀性介质:酸、碱、盐溶液以及带有悬浮颗粒的浆液

2)此流量计无机械惯性,反应灵敏,可以测量脉冲流量,而且线性较好,可以直接进行等分刻度局限性:

1)只能测量导电液体,因此对于气体、蒸气以及含大量气泡的液体,或者电导率很低的液体不能测量

2)由于测量管内衬材料一般不宜在高温下工作,所以目前一般的电磁流量计还不能用于测量高温介质[(3)分类

直流励磁、交流励磁、低频方波励磁

3.2.4质量流量计

在工业生产中,由于物料平衡,热平衡以及储存、经济核算等所需要的都是质量,并非体积,所以在测量工作中,常需将测出的体积流量,乘以密度换算成质量流量。但由于密度随温度、压力而变化,所以在测量流体体积流量时,要同时测量流体的压力和密度,进而求出质量流量。在温度、压力变化比较频繁的情况下,难以达到测量的目的。这样便希望用质量流量计来测量质量流量,而无需再人工进行上述换算。

(1)分类

1)直接式:即直接检测与质量流量成比例的量,检测元件直接反映出质量流量。

2)推导式:即用体积流量计和密度计组合的仪表来测量质量流量,同时检测出体积流量和流体密度,通过运算得出与质量流量有关的输出信号。

3)补偿式:同时检测流体的体积流量和流体的温度、压力值,再根据流体密度与温度、压力的关系,由计算单元计算得到该状态下流体的密度值,最后再计算得到流体的质量流量值。

补偿式质量流量则量方法,是目前工业上普遍应用的一种测量方法。

(2)热式质量流量计

热式质量流量计是由外热源对被测流体加热,测量因流体流动而造成的温度变化来反映质量流量,或利用加热流体时流体温度上升所需能量与流体质量之间关系测量流体质量流量的仪表。比较典型的一种是托马斯流量计。

(图)托马斯气体流量计原理图

加热气体所需要的能量和加热器上下游温差之间的关系可表示为:

由上式可得气体的质量流量可表示为

从上式知,若采用恒定功率法,即保持功率E为常数,则温差与质量流量成反比,测量温差即得流量;若采用恒定温差法,即保持温差为常数,则加热器输入功率E与质量流量成反比,测得加热器功率E即可得值。实用上,无论从特性关系或实现测量的手段看,恒定温差法都比恒定功率法简单,因而应用较多。

(3)推导式质量流量计

它是由体积流量计和密度计组合而成的,其形式可分为

1)检测的流量计和密度计的组合方式;

2)检测的流量计和密度计的组合方式;其中为流体密度,为体积流量

3)检测的流量计和检测的流量计的组合方式;

(图)检测器与密度计的组合质量流量计原理图

(图)检测器和密度计组合的质量流量计原理图

(图)检测器和检测器组合的质量流量计原理图

4调研总结

首先,由于流量是一个动态量,流量测量是一项复杂的技术。对在一定通道内流动的流体的流量进行测量统称为流量计量。流量测量的流体是多样化的,如测量对象有气体、液体、混合流体;流体的温度、压力、流量均有较大的差异,要求的测量准确度也各不相同。因此,流量测量的任务就是根据测量目的,被测流体的种类、流动状态、测量场所等测量条件,研究各种相应的测量方法,并保证流量量值的正确传递。

经过几天的调研,对目前重要的不同的流量计的原理、测量方法、应用条件、注意事项等进行了总结,进而对流量测量有了进一步的了解。达到了调研目的。

其次,流量仪表伴随着现代工业的发展有必要逐步完善其性能,而技术的进步也让流量仪表的完善成为可能。尽管有些仪表(如电磁)的性能相对较为优越,但也并非尽善到可取代所有的流量仪表,况且,它当前的价格还较昂贵,使用的经验还不足,有待积累。工业领域十分广阔,还没有一种仪表可以满足一切要求。所以尽管发展趋势有增有减,而取代的过程将是缓慢的。

最后,调研内容有一定的根据性,对现实中流量的测量、应用,都有一定的帮助

参考文献

[1]刘彦军等,圆柱齿轮流量计计量特性研究,计测技术,2008,28(增刊):92-95.

[2]陈霈,对容积式流量计的误差特性分析及使用维护,计量与测试技术,2007,34(11).

[3]陈晓梅,周岩,电磁流量计在硫酸装置中的应用,当代化工,2009,38(1).

[4]崔海亮,电磁流量计的正确选择与安装,机械与电子,2008(23).

[5]史秀丽等,流量计量在工业上的应用及其重要性,计量工作者论坛,2006.

[6]毛新业,秦自耕,流量仪表发展概述,综述,2007.

[7]袁加维,董连鹏,电磁流量计的分类和选型,农业与技术,2009,29(1):52-54.

[8]陈渤海,质量流量计计量系统在原油生产中的应用,科技资讯,2009

[9]黄雪莲,质量流量计相对误差测量结果的不确定度评定,2008.

第2篇

1.1悬浇施工控制

(1)箱梁水准点引测从0#、1#块顶板水准点利用钢尺引测到左右箱室人孔旁所做高程点,测算出所布设高程点的高程,用以作为以后底模标高测量的后视水准点。(2)底模标高测量在每个块段底腹板浇筑前,测算出底模最外缘侧的模板高程,按照监控单位发放的施工指令中给出的立模标高进行复核,调整。(3)底模高程点标高测量在每个块段底腹板浇筑前和浇筑完成后,各测出左右箱室焊设的模板高程点的高程,算出其变化量。(4)顶板高程点标高测量在每个块段顶板张拉前和张拉完成后,各测出顶板焊设的模板高程点的高程,算出焊设的测点的挠度变化量。

1.2箱梁合拢控制

(1)在各孔的边跨合拢块施工前,对各悬臂箱梁高程进行联测。(2)合拢段施工的高程观测按以下6个工况实测:①安装模板前;②浇筑混凝土前;③浇筑混凝土后;④张拉部分纵向预应力钢束后;⑤拆除临时支撑后;⑥张拉完所有预应力钢束后。(3)对于连续箱梁的中孔合拢,还应在主墩临时支座拆除的前后对各测控点进行监测。

2对称平衡施工

施工中严格按照平衡施工的要求进行,最大混凝土浇筑重量误差不得大于该梁段自重的30%,并在混凝土浇筑过程中实施监控,确保箱梁自重误差不大于设计要求的3%,控制梁段上的施工堆积物并及时清理箱梁中的施工垃圾,以避免由于施工荷载和桥面杂物的不平衡引起测量数据的不正确。

3质量保证措施

3.1抓好事前控制

3.1.1抓好人的质量施工测量放样工作是靠人干出来的,人是工作质量的决定因素,因此提高自身的思想水平、业务技术,工作能力、工作责任是极其重要的,同时必须了解和管理好所管辖内测量人员,有利于开展工作,必要时做好配合工作。3.1.2抓好测量仪器的质量测量放样必须有符合精度的仪器设备,才能确保精度和速度,除必要按规定进行鉴定,还必须在使用中时刻注意仪器的性能和状态,发现异常及时校正。3.1.3抓好基准点的精度平面高程控制点是实施施工放样的基准点,它的精度优劣直接影响放样精度。因此,施工前必须对控制点进行复测,并根据建筑物的分布,为便于放样,还需进行加密。施工阶段确保控制点的稳定完好,有破坏变动,应及时补埋补测。3.1.4抓好设计图纸的复核按设计图纸的数据进行施工,是我们的职责,设计单位要求对图纸进行复核是我们的义务,也是为了我们确保施工放样数值的准确。在复核发现问题,应及时地向设计单位反映。3.1.5学好规范、掌握规范、执行好规范规范是我们判别测放精度施工质量的标准,要养成严格执行规范的习惯,为此全面地学好规范,深刻地理解规范,认真地执行规范。在保证质量的前提下,把好执行规范,不断地总结提高。

3.2抓好事中控制

在检查时尽可能用自己的仪器自己测,及时发现问题及时解决,有些问题应及时汇报给相关的专业工程师。并有严格报验制度。3.2.1平面位置控制设站检查:全站仪对中整平后设置气象元素棱镜常数,输入站点后视点坐标,后视定向后要测距测坐标,一般误差控制在3mm以内。对每个放样点的检查,一般采用极坐标法,即以方位角定向、距离定点,再测坐标作校对。当检查点较多或时间较长时,要及时地复查后视点。当测放水中桩或不能直接定桩时,可放辅桩,但要标明辅桩与主桩的关系(方向和距离)。检查结束后,应到点位处一看一量,看所放的点组成的线形是否与设计院设计相符,量各桩间距是否与设计值相同。护栏的放样应保证其线形流畅,保证桥面宽度,其线形要确保不出现折角。3.2.2高程检查首先要经常检查水准仪的i角,确保其良好的性能,还需检查脚架及塔尺接头是否完好。检查时须从一个水准点联测到另一个水准点,这样可以:①发现所观测的是否闭合;②水准点是否变动;③水准仪有无问题。当要引测结构物上部或下部时可采用钢尺倒挂法,钢尺必须要垂角,最好用正、倒挂尺校检。

3.3事后总结

(1)平面控制方面目前采用的坐标系:①WGS-84大地坐标系;②1980西安坐标系;③1954北京系。(2)高程控制方面国家规定:采用1985国家高程基准点,它与1956黄海高程系的关系式:1985国家高程基准时1956年黄海高程值0.0286m。苏南地区采用吴淞值高程系,它与1956黄海高程系的关系式:吴淞系1956年黄海高程系值+1.8971.6972.097,根据不同地区而定。(3)加密控制对被破坏的不稳定的点必须重新埋测。桥梁处的点必须稳定可靠,并作为以后联测的起讫点。复测时设计路线不宜太长,尽量控制在2-3km,以减少误差的积累。(4)导线平差中对X、Y的fx、fy分配,可应仅考虑距离而应当按方位角距离的联合影响来分配。(5)采用全站仪用极坐标放样最大距离的控制国家规定最大误差是中误差的2倍,以J2级测一个单角,其精度约在10″左右,而放样桥梁桩、柱的平面位置,则最大要求<5mm。S=ρ″/10″×5mm=103m,最好控制在100m以内。

4结语

第3篇

地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。

1.1选定基准站

基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。

1.2基于GPS-RTK的测绘作业

GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。

1.3内业处理

测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。

2GPS-RTK在地籍测量中的质量控制

GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。

2.1构建控制网约束测量数据

控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。

2.2排除干扰控制测量误差

虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。

3结束语

第4篇

首先将已标定过的螺线管和HWR腔安装就位,并且用三维可调机构反复调节各元件至理论位置,其实际安装精度见表1.然后将测微准直望远镜所用十字丝目标及其支架,安装在冷质量元件上,并将其对准至设计位置.

2配置偏心距和旋转角

由于测微准直望远镜低温下监测,只能透过观察窗向真空室内部的光学靶观测.而光的传播存在折射和衍射,会对光学观测产生误差.采用数字水平仪调平望远镜的视准轴,并且借助激光跟踪仪事先将远近两处的基准靶和望远镜的视准轴中心调整至统一高程面,可以消弱光透过空气和玻璃观察窗不同介质时的折射误差.为了避免光的衍射误差,可以人为将不同十字丝目标的上下左右配置在±0.2mm以内不同偏心距上(见图4).由于六个十字丝之间间隔太小,为了便于观测,可以将不同十字丝目标配置不同的旋转角(30度和60度),间隔放置在螺线管和超导腔下方(见图4).

3理论模拟

在低温压力容器的元件中,除了承受由载荷(压力、外载)产生的机械应力外,由于在运行过程中元件的温度场发生变化,还将承受热应力的作用[5].为了确定腔体、磁体、支撑以及氦容器在重力和冷缩变形时的补偿量和热应力,以减小或消除应力和变形.必须采用有限元方法,模拟低温下所有冷质量组件的热应力和冷缩变形.本文采用SOLID-WORKS建模,使用ANSYS进行热应力模拟.

3.1有限元模型及其材料属性

冷质量及其支撑组件的有限元模型如图3所示.模型中磁体、氦槽及其本身焊接连接支架采用316LSS不锈钢材料,HWR腔及其本身焊接连接支架为钛材,冷质量支撑组件和腔体的6根横梁采用钛材料,准直支架及十字丝目标采用G10材料.模型中支撑杆室温端为球铰接,支撑杆低温端与钛架之间为绑定.不同接触材料之间采用螺栓连接,模拟为不同接触材料之间可相互滑动且不分离.所有冷质量材料的机械特性见表2.

3.2边界条件与模拟结果

实测的两次试验采用液氮降温,模型中支撑室温端球铰链接触面为300K室温,所建模型腔体、氦容器以及超导磁体接触面处为80K,80K表面热负荷0.1W/m2.80K下竖直和横向位移计算结果见表3,螺线管和HWR底部上移约2.0mm,横向向中心收缩约1mm.

4实测分析

4.1低温监测

先用WYLER电子水平仪,将测微准直望远镜的视准轴调平,精度控制在0.05mm/m内[6].再调焦至远处基准靶,使用旋转按钮,摆动镜筒使其对齐远处目标中心(见图5第1步);然后调整焦距瞄准近处基准靶,使用平移工作台,移动镜筒至近处目标中心(见图5第2步).重复上述两步“远旋转移”多次,调整镜筒至两基准靶偏心线上,控制其直线度误差在0.1mm以内.图5中虚线矩形框代表已旋转的测微准直望远镜,实线矩形框代表已平移的测微准直望远镜,圆形目标为MAT基准靶.由于同轴十字丝目标存在加工误差,所以需要使用测微准直望远镜,借助可调丝扣,调整六个十字丝中心上下左右至设计偏心线位置.由于光学仪器不可避免地存在瞄准误差,而且瞄准误差的大小与距离成正比,呈正态分布.所以为了提高测量精度,应该采用多次测量取平均值,和尽量缩短瞄准距离的方法[7].

4.2数据分析

两次试验降至液氮温区时跟踪仪和望远镜监测数据见图6和7.80K时竖直方向上跟踪仪监测到2号螺线管向上移动1.8mm,望远镜监测到2号螺线管向上移动1.9mm;80K时横向跟踪仪监测到2号螺线管向中心移动1mm,望远镜监测到2号螺线管向中心移动0.9mm.

5结论

第5篇

关键词:顾客资产,构成,测量

顾客资产的提出,是基于在企业生产经营的各种要素中,只有顾客(忠诚顾客)能为企业持续创造价值(汪涛等,2001)。随着企业经营和发展环境不确定性的增强,一些学者更开始考虑用顾客资产来整合企业的内部资源(能力)和外部环境,试图以顾客资产为导向重组企业流程,并充分利用顾客资产影响各种外部力量,在经营和管理顾客资产的过程中形成持久的竞争优势(汪涛等,2002)。然而,顾客一旦成为资产,必然需要对其进行测量和计算,否则,该理论也就失去了其现实的意义。顾客资产的价值也就是所有顾客的终身价值的总值。本文从现有的对顾客终身价值的认识与计算方法出发,分析顾客可能创造的价值,试图剖析顾客资产的结构与测量方法。

一、对顾客终身价值的认识与测量

在对顾客终身价值的早期研究中,Reichheld(1996)的观念较有代表意义,他认为顾客终身价值是指在维持顾客的条件下企业从该顾客持续购买所获得的利润流的现值,主要取决于三个因素,一是顾客购买所带来的边际贡献,二是顾客保留的时间长度,三是贴现率。用数学公式表示为:

LTV=∑at(1+i)-t

其中,a表示顾客购买所带来的边际贡献,i表示每年的贴现率,t表示顾客保留时间长度。

从公式可以看出,这里定义的顾客终身价值仅仅是顾客的边际贡献在时间上的累积。对于影响顾客终身价值的三个变量,由于顾客的单位边际贡献取决于:企业在一定时期内的成本控制能力,营销策略难以对其发生作用;而贴现率与政府的宏观政策密切相关,是企业无法控制的外部因素;因此,企业要力求使顾客终身价值达到最大,只有寄托于将各种营销策略落实到如何与每一个顾客建立尽可能长久的关系,使顾客流失率降到最低。

然而,将重心转向极力延长顾客保留时间的企业在实践中渐渐发现,延长顾客保留时间或许能使该顾客在本企业的终身价值得以提高,但是企业却无法感受到切实的利润增长以及竞争优势,事实往往是,自己花费了大量成本得到的长期顾客在数年内为企业提供的利润还不及他某一次的购买为竞争对手创造的利润。

造成这种事实的根源是,企业将长期顾客等同于赢利顾客,因而只重视了与顾客建立长期的关系,却并没重视与顾客这种长期关系的质量,换言之,一个顾客可以同时与多家企业保持长期关系,然而其购买力却总是有限的,顾客总是在其有限的消费计划中不断选择对不同品牌的支出份额。为此,Griffin(1995)提出企业应用顾客份额来代替市场份额,即考虑尽量提高本企业所提供的产品或服务占某个顾客总消费支出的百分比,而并非简单地追求其所吸引和保留的顾客数量及时间。由此,顾客终身价值的计算公式也得以扩展,如下所示:

LTV=∑Rt×St×Mt×(1+i)-t

其中,M表示顾客购买所带来的单位边际贡献,S表示顾客对本企业产品的支出占其总消费支出的百分比,R表示顾客总消费支出能力。

可见,在扩展后的影响顾客终身价值的因素中,引入了顾客份额,它引导企业在制定营销策略时至少去认真思考这样几个问题:一是着力选择和悉心培养那些顾客份额较高的客户群体,把他们而不是全部顾客作为发展长期关系的对象;二是从顾客的角度而非企业的角度去调整和发展产品品类,以使企业的所有产品在满足顾客不同的需要时能产生协同作用而非相互冲突,最终以确保顾客份额得到提高为目的。

顾客份额的提出,使企业的认识逐渐走出了过去一味地把所有顾客的保留率作为首要任务的误区,然而他们对顾客终身价值的认识却大多局限于顾客购买价值上,即强调顾客持续购买为企业所带来的显性的现金流,而忽视了顾客为企业创造的其他隐性价值。

于是,也有学者(胡左浩等,2001)将顾客终身价值继续进行扩展,加上了顾客的间接贡献,数学公式表示为:

LTV=∫k×∫n×∫t(P×S×M×A)(1+i)-tdtdndk其中P代表单个顾客市场规模,S代表单个顾客份额,M代表单位边际利润,A代表间接贡献,t代表顾客维持时间,n代表商品范围,k代表顾客范围。在该公式中,顾客终身价值是顾客在一定时期内所创造的直接价值(购买价值)与间接价值的总和的现值,其中顾客直接价值受顾客消费能力、顾客份额和单位边际利润影响,反映单个顾客直接购买为企业创造的价值;与之相对,顾客间接价值是顾客通过影响他人而为企业间接创造的价值,主要来自顾客的口碑效应。此外,除了受顾客保留时间长短的影响,商品范围(代表企业提供适应顾客需要的关联商品的能力)及顾客范围(代表企业吸引顾客并与之建立关系的能力)的大小也会影响顾客终身价值。

二、顾客终身价值的再认识

顾客终身价值是顾客资产的重要组成部分,这是由于顾客资产是企业在某一时点所拥有的所有顾客的总价值,用顾客终身价值衡量顾客资产无可厚非,但基于前述对顾客终身价值的认识对顾客资产进行测量仍有缺陷,原因在于:其一,如果把顾客终身价值理解为某一顾客在其一生中为企业提供的价值总和的现值,则在计算顾客终身价值时需充分考虑顾客的所有价值。而前述的顾客间接价值中只考虑到了顾客的口碑价值,并未考虑到顾客的其他价值,如信息价值、知识价值等。其二,过去对顾客终身价值的理解都是从累积的角度来思考顾客对企业的价值,而从来没有从交易的角度去思考。实际上,顾客价值不仅体现在随保留时间的延长而持续增加企业的产品销售收入,同时,由于顾客的多方位的需求往往构成其他企业的目标市场,企业合理引导顾客的这部分需求,并转让其开发权所可能获取的价值,也成为顾客终身价值的一部分。

因此,对顾客终身价值的认识还需对顾客为企业提供的价值类型进行全面分析,综上所述,顾客价值应该包括以下几种(汪涛等,2002):

1.顾客购买价值(customerpurchasingvalue,PV)。顾客购买价值是顾客由于直接购买为企业提供的贡献总和。前面已经分析过,顾客购买价值受顾客消费能力、顾客份额、单位边际利润影响,其计算公式为:

PV=顾客消费能力×顾客份额×单位边际利润

2.顾客口碑价值(publicpraisevalue,PPV)。顾客口碑价值是顾客由于向他人宣传本企业产品品牌而导致企业销售增长、收益增加时所创造的价值。顾客口碑价值的大小与顾客自身的影响力相关。顾客影响力越大,在信息传达过程中的“可信性”越强,信息收受者学习与采取行动的倾向性越强。同时需要明确的是,顾客影响力有正有负,正的顾客影响力有利于企业树立良好形象,为企业发展新顾客,对企业有利。而负的顾客影响力来自于顾客对企业的抱怨,它将企业的潜在顾客甚至是企业的现有顾客推向企业的竞争对手,企业若不及时处理,后患无穷。此外,顾客口碑价值还与影响范围相关,即顾客口碑传播的范围越广,可能受到影响的人群越多。当然,顾客口碑的价值最终仍需体现在受影响人群为企业带来直接收入的大小上,因此受影响人群的购买价值的高低与顾客口碑价值成正相关。顾客口碑价值的计算公式为:

PPV=影响力×影响范围×影响人群的平均购买价值

3.顾客信息价值(customerinformationvalue,IV)。顾客信息价值是顾客为企业提供的基本信息的价值,这些基本信息包括两类,一是企业在建立客户档案时由顾客无偿提供的那部分信息,二是在企业与顾客进行双向互动的沟通过程中,由顾客以各种方式(抱怨、建议、要求等)向企业提供各类信息,包括顾客需求信息、竞争对手信息、顾客满意程度信息等。这些信息不仅为企业节省了信息收集费用,而且对企业制定营销策略提供了较为真实准确的一手资料。顾客信息价值基本上可视为一个常量,因为在企业的既有规范和处理流程下,每一个顾客都可能为企业提供这样的信息,企业对这些信息的处理没有选择性,即这些信息为企业提供的价值基本上没有差异性,每个顾客提供的信息价值可视为相同。4.顾客知识价值(customerknowledgevalue,KV)。顾客知识价值可以说是顾客信息价值的特殊化。这是因为不是每一个顾客都具有顾客知识价值,而且不同顾客的知识价值也有高低。企业对顾客知识的处理是有选择的,它取决于顾客知识的可转化程度、转化成本、知识贡献率以及企业对顾客知识的发掘能力。对顾客知识价值的计量可通过对顾客知识进行专项管理,对每一项顾客知识转化后的收益由相关部门综合评估核定。

5.顾客交易价值(customertransactionvalue,TV)。顾客的交易价值是企业在获得顾客品牌信赖与忠诚的基础上,通过联合销售、提供市场准入、转卖等方式与其他市场合作获取的直接或间接收益。顾客交易价值受产品关联度、品牌联想度、顾客忠诚度、顾客购买力以及交易双方讨价还价能力等因素的影响。对交易价值的计算,可依据会计的当期发生原则,将企业通过交易获取的收益平均分摊到有交易价值的顾客上。

因此,顾客终身价值应该是上述五种价值的总和,反映到计算公式上,应为:

LTV=∑(PVt+PPVt+CVt+KVt+TVt)(1+i)-t+Iv。三、顾客资产的构成

然而,仅仅探讨顾客终身价值还无法对顾客资产进行测量,这是因为在现实中我们经常看到不同的顾客给企业带来的价值不同,也就是说,顾客资产不是均质的,顾客资产中不同的顾客结构所产生的价值是有着显著差异的,因此对顾客资产中存在的顾客类型进行研究,了解它们对顾客资产价值的影响,深度剖析顾客资产的构成,成为测量和研究顾客资产的必经之路。

关于顾客资产中的顾客类型的划分,常见的有两种思路,一种是将顾客划分为忠诚顾客和一般顾客,这种思路试图以顾客与企业建立关系的忠诚程度作为划分标准,然而在现实中却不易操作,因为忠诚难以度量,而且总是在不断变化。这种思路也容易走入一种误区,即认为忠诚顾客就是最能赢利的那部分顾客,而实际上不是所有的忠诚顾客都能为企业提供所有的五种价值。在前述四种不同类型的顾客中都可能会存在忠诚顾客,任何一个顾客的忠诚度提高都会使其所能提供的那几种价值得以增加,但并不改变其提供价值的种类。比如采取天天低价可能会赢得逐利顾客的忠诚,但他们仍然不会给你交易价值,一旦你变换花样,选择一个新产品进行捆绑销售,他们便马上弃你而去。所以,追求顾客忠诚度的提高,只是一个普遍性的指导原则,而企业也要考虑究竟是什么样的顾客更适合你花费重金去培养忠诚。

另一种思路是根据顾客终身价值的大小,将顾客划分为高价值顾客、一般价值顾客和无价值顾客,如RolandT.Rust(2000)将顾客分为铂金层级、黄金层级、钢铁层级、重铅层级。此种思路虽然在划分上易于操作,但也存在不足,最显著的莫过于你虽然知道顾客的价值高,但你却不知道它为什么高,高在哪里,也不知道如何去保留甚至是更多地开发和利用这些高价值。

上述两种思路的缺陷让我们可以清楚地认识到,对于顾客类型的划分至少应遵循两个原则:第一,顾客类型的划分标准应该以顾客价值为导向,并具备可操作性:第二,区分顾客差异的目的是为了有选择地去采取不同的营销策略,在细分过程中应尽量结合顾客的行为特征和心理特征,如此才会使企业的营销策略有较强的针对性和准确性。

根据这两个原则,我们可以结合前述的顾客价值的不同形式,探讨不同的顾客类型与不同的顾客价值形式之间的关系。如此,我们可根据顾客所能提供价值的能力,将顾客类型大致分为四类:

1.灯塔顾客。灯塔顾客对新生事物和新技术非常敏感,喜欢新的尝试,对价格不敏感,是潮流的领先者。当然,这些行为特征背后一定还存在一些基本特征,比如他们往往收入颇丰,受教育程度较高,具有较强的探索与学习能力,对产品相关技术有一定了解,在所属群体中处于舆论领导者地位或者希望成为舆论领导者。灯塔顾客群不仅自己率先购买,而且积极鼓动他人,并为企业提供可借鉴的建议。正是灯塔顾客拥有的这些优秀品质,使其成为众商家愿意倾力投资的目标,这也提升了其交易价值。2.跟随顾客。跟随顾客最大的特点就是紧跟潮流。他们不一定真正了解和完全接受新产品和新技术,但他们以灯塔顾客作为自己的参照群体,他们是真正的感性消费者,在意产品带给自己的心理满足和情感特征,他们对价格不一定敏感,但十分注意品牌形象。跟随顾客为企业提供除顾客知识价值外的四种价值。

3.理性顾客。理性顾客在购买决策时小心谨慎,他们最在意产品的效用价格比,对产品(服务)质量、承诺以及价格都比较敏感。理性顾客对他人的建议听取而不盲从,他们一般只相信自己的判断,而且每一次购买决策都需精密计算,不依赖于某一品牌。因此他们基本不具备交易价值,只能为企业提供顾客购买价值、信息价值与口碑价值。

4.逐利顾客。逐利顾客对价格十分敏感,他们只有在企业与竞争对手相比有价格上的明显优势时才可能选择购买本企业产品。逐利顾客的形成原因可能与他们的收入水平密切相关,这导致其可能处在社会的较底层,对他人的影响力较低,而且其传达的信息也集中于价格方面,因此逐利顾客的口碑价值可以忽略不计。逐利顾客只为企业提供最基本的两种价值:购买价值与信息价值。

企业中以上四种不同类型的顾客的终身价值总和构成企业的顾客资产,从中可以清楚地解释为什么有些拥有庞大的市场份额的企业却在竞争中感到力不从心,为什么一些看似不起眼的小企业会迅速成为市场中的巨人。正由于不同的顾客类型的终身价值不同,同样数量的顾客群体、不同的顾客结构,可能会导致顾客资产的巨大差异。两家企业可能在市场规模上不相上下,但第一家企业顾客资产中灯塔顾客和跟随顾客的比例高,而另一家企业顾客资产中多数为逐利顾客,如此导致两个企业的收入、利润、未来销售增长率以及在市场中的竞争地位完全不一样。

图1顾客资产的构成模型

至此,我们可以建立一个顾客资产的构成模型,即顾客资产构成的二维模型,从顾客资产的价值构成和顾客资产的顾客构成两个维度来分析顾客资产的构成。如图1所示,顾客资产的价值构成描述了构成顾客资产的不同的顾客价值类型,它们是顾客资产的不同的价值表现形式,是造成不同企业顾客资产迥异的显性原因。顾客资产的顾客构成则描述了构成顾客资产的不同的顾客类型,它们是顾客资产价值的来源,如前所述,它是企业顾客资产产生迥异的隐性原因。在对顾客资产构成的研究中,一方面,可以清楚地看到顾客作为资产所可能为企业创造价值的不同途径和不同的实现方式,对顾客资产价值构成的研究要求企业更多地从差异化的业务手段出发,去开发最大化的顾客价值;另一方面,对顾客构成的研究,可以清楚地看到顾客中“质”的差异所在,它要求企业不是笼统地考虑顾客群的整体规模,而应更多地从差异化的服务手段出发,有选择地发掘和培养最有价值的顾客,并与之建立长期关系。

当然,单依靠顾客提供价值的能力对顾客资产进行划分,也存在缺陷。比如由于企业的行业不同、竞争地位不同、生产能力不同、经营策略不同,有的企业中即便是灯塔顾客还不能成为高利润的顾客,而有的企业即便是理性顾客也能提供高利润。因此,根据顾客提供价值的能力对顾客进行划分,有必要与企业的赢利点相结合,以确定哪些是企业最优质的顾客资产。而企业研究和测量顾客资产的目的,也正是为了充分利用不同顾客的价值,合理调整企业的顾客资产结构,并与竞争企业的顾客资产进行比较,明确竞争优势,通过差异性的经营,实现顾客资产的保值增值。

四、顾客资产的测量

在清楚地分析顾客资产的结构之后,对顾客资产的测量可依照如下步骤:

1.将现有顾客划分为灯塔顾客、跟随顾客、理性顾客和逐利顾客。根据顾客行为特征与心理特征划分顾客类型的指标很多,如顾客的收入、消费习惯、受教育程度、职业、生活型态、影响力等,企业可根据自身的需要对这些指标加上一定的权数作为划分的标准。此外,观察顾客在产品生命周期的何种阶段发生首次购买,也有助于划分不同的顾客类型,如灯塔顾客多在产品介绍期就会首次购买,而跟随顾客可能在产品成长期才首次购买,理性顾客首次购买则在产品成熟期,至于逐利顾客,往往在产品成熟后期或衰退期,价格下降到期望的最低点,才会首次购买。2.根据每一类顾客提供价值的能力不同分别计算出每一类顾客的顾客终身价值。根据顾客终身价值的计算公式以及各类型顾客不同的价值提供能力,可将每一类顾客的价值分别进行加总,公式如下。

灯塔顾客价值=∑(PVnt+PPVnt+CVnt+KVnt+TVnt)(1+i)-t+Iv

跟随顾客价值=∑(PVnt+PPVnt+CVnt+TVnt)(1+i)-t+Iv

理性顾客价值=∑(PVnt+PPVnt+CVnt)(1+i)-t+Iv

逐利顾客价值=∑PVnt(1+i)-t+Iv

其中PVnt指第n个顾客在时间t的购买价值。

3.将四类顾客的顾客终身价值加总得到企业顾客资产总值。

五、小结

在本文中,对顾客资产的构成与测量的研究,顺沿着两条线索,一是顾客价值的构成;二是顾客类型的构成。或者我们把它们与顾客资产联系起来,分别为顾客资产的价值构成与顾客构成。正如我们在顾客资产的构成模型中所描述的一样,顾客资产的质量不仅与顾客提供的每一类价值的大小相关,还与顾客资产的结构(即顾客群中不同类型顾客的比例)相关。而沿习着这样的思路,企业对顾客资产经营和管理的方向也应该有两条:一是着力于提高获得顾客提供的每一类价值的能力,二是着力于调整和改善顾客资产的结构,使其能充分适应企业当前的竞争地位、产品生命周期、产品结构的变化等。

参考文献:

汪涛、徐岚:“经营顾客资产”,《经济管理》,2001年第10期。

汪涛、徐岚:“顾客资产与竞争优势”,《中国软科学》,2002年第1期。

Reichheld,FrederickF.&ThomasTeal,TheLoyaltyEffect.HarvardBusinessSchoolPress,1996.

Griffin,Jill,CustomerLoyalty,Jossey—BassInc.,1995.

罗兰.T.拉斯特等:《驾驭顾客资产》,企业管理出版社,2001年版。

第6篇

在利用激光进行的三维测量中应用最广泛的测量方法主要有三种:干涉法、飞行时间法和三角法。1.1干涉法干涉法测量是利用激光的干涉原理来完成对物体测量的一种方法,其原理是将一束相干光通过分光系统分成测量光和参考光,通过测量光波与参考光波相干叠加产生的干涉条纹变化量来获得物体表面的深度信息。干涉法的测量精度高,在100m范围内可以获得0.1mm的分辨率。1.2飞行时间法飞行时间法是通过测量脉冲光束的飞行时间来测量距离的一种测量方法,其原理是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。飞行时间法以时间分辨率来换取距离测量精度,精度相对较低,一般在1mm左右,精度高的测量头可达亚毫米级,常用于大尺度远距离测量。1.3三角法三角法是光学测量中最常见的一种测量方法。它是将待测点的深度坐标,通过不同的检测元件,利用几何三角关系转换为相对于光学基准的偏移量进而计算出该点深度值。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和主动三角法。激光三角法测量是基于激光的主动三角法,是近年来研究较多、发展比较成熟的一种测距方法。其测量原理是:由光源发出的光照射到被测物体表面上,反射后在检测器(如:CCD)上成像,物体表面的位置改变,检测器上成的像也随之改变,由几何三角关系即可通过对像移的检测和计算出实际高度。激光三角法测量的精度取决于感光设备的敏感程度、与被测表面的距离、被测物表面的光学特性等,适合于近距测量,精度一般在丝米级。

2测量方法的选择

船板的形状尺寸测量是一个典型的外表面三维曲面测量。由于船板是一个连续而光滑的曲面,因此,可以将整个曲面离散成m×n个点,通过测量得到这些点的坐标值后,即可通过软件拟合出整个曲面。由于传统的接触式测量,存在探头易磨损,需要人工干预,价格昂贵,对使用环境有一定要求,测量速度慢,效率低等问题,因此,虽然其有较高的测量精度,但确并不适合应用在船板多点成形在线测量中。对比三种常用的激光测量方法,测量精度均能满足船板的测量要求。本着实用而不浪费的原则,由于干涉法测量所需的测量设备成本较另外两种方法高出很多,并且使用时需反射镜,现场在线使用不方便,速度慢效率低,因此,采用飞行时间法或三角法的激光测量传感器比较适合船板三维测量,其设备价格较低,对测量表面的要求不高,并且可直接测量,使用灵活方便。

3扫描装置

扫描装置是激光测量头的安装平台,其作用是带动激光测量头沿X轴和Y轴运动,完成对整个测量表面的扫描,并在测量的同时给出测量点的X方向和Y方向的坐标值。为了提高测量效率,最终确定扫描装置采用多点方式,这样可以大大提高船板多点成形的生产效率。由于多点测量方式使用的激光测量头数量较多,因此,在满足测量精度要求的前提下,选择了价格相对较低的飞行时间法激光测量头。扫描系统由电动滑台、联轴器、接轴、减速机、伺服电机、测量架、测头等部分组成(见图1)。电动滑台和减速机通过架子固定在上模座上,伺服电机与减速机相连,并通过接轴与电动滑台连接,测量架固定在电动滑台上。测量时,在伺服电机驱动下,电动滑台带动测量架沿X方向移动,每走一个步长测头测量当前X坐标下各点的Z坐标值,直到测量完整个板材表面点阵(见图2)。

4结束语

第7篇

在锅炉自身检验工作开展过程中,我们经常会发现如果炉墙温度过高时,会使得热量大量的散失和消耗,从而降低了锅炉的工作效率,同时对于整个锅炉系统的安全运行也带来了非常不利的影响。当前我国出台的锅炉节能标准中,对于锅炉的炉墙温度进行了一定的限制,对于检测壁面的传统设备等也发挥了很好的作用。因此采用新的热成像检测技术能够使得更好的完成检测过程,使得检测更加直观、具体,检测结果也更加容易方便记录。在利用热成像技术开展检测过程中,能够迅速的检测锅炉壁面的运行温度,通过对其相关的仪器设备显示情况进行显示,能够准确的了解锅炉内部的高温点分布情况,同时对于超过正常温度的范围可以提前做好控制,提高能源的利用效率,减少能源不必要的消耗,同时也可以为检测工作人员做好相应的准确工作,提前可以做好保温措施,避免出现工作中的一些遗漏。在利用热成像技术开展工作的过程中,利用壁面进行取像时,可以利用自然光进行取像操作,通过采用专门的软件设备,可以对不同的热成像图像进行对比,寻找不同之处,对其进行原因分析,从而能够有助于对锅炉运行过程中,热成像技术的运行精确度进行把控,对其影响因素不断进行分析和探讨,从而不断提高锅炉运行过程中的精确度,提高其检验效率,节约检验成本投资。热成像技术在应用于锅炉检测过程中,能够对存在温度异常的锅炉区域进行科学检测,从而有助于检测人员及时的发现保温层受到损害的情况,及时开展解决工作,降低其测量过程中的误差。采用这种新型的检验方式,能够更好的帮助工作人员制定一个检测计划,比如定期开展检测和养护工作,能够有助于能源的合理利用,提高能源利用效率。采用热成像技术对于锅炉的水垢方面也能够实现很好的识别管理,有效的做好水垢清除工作,节约成本,保证锅炉的良好运行。

2辅助设备的检验应用

在锅炉运行过程中,辅助设备的良好运行对于锅炉的安全运行有着重要作用,因此在锅炉检验工作开展过程中,还需要假期nag对辅助设备的检查和控制。在最近几年中,我国锅炉运行的自动化程度不断提升,因此采用辅助设备也会对锅炉的安全运行带来一定的影响,比如锅炉持续发热,就可能意味着锅炉的辅助设备出现了一定的磨损情况,或者是整个辅助设备出现了故障等,因此需要及时的展开检测工作,利用热成像测量技术就可以快速的展开检测工作,及时发现辅助设备中出现的电线脱落、连接过密等情况,从而能够及时的采取措施来达到有效解决的效果,从而保证其辅助设备的良好运行。

3结语