时间:2022-06-14 13:29:58
序论:在您撰写线路设计法论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1悬臂梯法
当工作人员无法从塔身内部进入外部进行工作时,可以从外侧向内进入电场,这种方式类此于将工作人员使用吊臂从安全路径进入电场这种作业方式分成上、中相进行,中相的横担较长于上相,在进行上部工作时一般将增长平梯和摆梯。在进行作业时将绝缘横梯作为作业人员进入电场的绝缘悬臂梯,在其端部及中部要设置固定性较好的拉绳并将其固定在架空地线支架上,并且在绝缘悬臂梯的两端进行悬臂的设置。在进行设置时要考虑等电位的安全距离,进行等电位电工时要从上往下进行,当作业人员确定好所站的位置时就应该将牵引摆梯的绳子拉近至带电导线,从而有助于作业人员进入等电位。当工作人员无法进入下相横担时,一般是因为导线位置无法形成安全距离,当采用悬臂横杆时可使用其导线将工作人员的位置适当移动,从而保证安全距离;另外在进行下相工作时要尽量保证其余上、中相之间的距离,尽量保证相邻的两层横担之间具有3.5米的安全距离,从而保证作业人员的安全。
2多回路线
多回的耐张塔上的工作会因为上一相线的引流线具有一定的柔性和驰度从而会对作业人员的安全距离形成威胁。使用杠杆原理可以使用工具将引流线向外旋转从而保证作业人员可以进行安全行动。可以在工作中使用限距支撑绝缘杆,其杆上刻有刻度另外端上有金属钩可以在引流线上固定,除此之外其防滑套可以保证固定在横担上的稳定性。该工具的存在是为了能在进行挑移引流线工作时能帮助作业人员进行安全距离的及时控制。在进行耐张引流线跳移时,可以借助于绝缘杆,使用绝缘杆将引流线推至适宜位置,将会存在一个较大的水平分力。这将会导致引流线变形,从而会影响引流线与瓷瓶串之间的距离,会导致在作业工程中存在一定的安全隐患。可以使用相关的措施来改变情况的产生。在可选装的杠杆上安装特制的旋转钩杆,并安装与横担的端部同时在绝缘杠杆的导线端设置加工索指套,在进行操作过程中,可以使用引流线弧垂值进行数值调整。在进行工作时可以通过杠杆的转动完成引流线位移的调整。但值得注意的是位移值的设置要满足一定要求,即其杠杆在固定与横担的上、下横担,从而有助于作业人员的横担工作。除此之外,在正常工作中一般耐张杆不会有太大的尺寸变化,但由于实际中会存在线路的曲折系数,会使用角度较大的转角杆塔,从而可能导致引流线塔旋转尺寸较大。在进行转角杆塔内角侧进行工作时,可以使用引流旋转来加大安全距离。外角侧引流的选装会造成横担的头部尺寸进行缩小,从而会导致安全距离不足。由此可见其转角度数会对带电作业的影响是重大的。
3总结
线路导线的选择与校验
导线截面的大小直接影响到线路的经济运行,所以线路设计导线截面的选择和效验很关键。导线截面的选择,要求年运行费用最低,符合总的经济利益。关于这点是考虑电网各方面因素,进行技术比较和经济比较后合理选择的。导线截面的校验,架空线导线的选择一般选用钢芯铝绞线,原规程中线路的温升按40℃设计按70℃校验,导线截面按经济电流密度选择,按长时允许电流及电压损失校验。但对于供电可靠性与经济性的平衡点考虑时,关于校核时采用的温度问题,原规程中线路的温升按40℃设计按70℃校验,如负荷达到一定值后,我国规程规定,钢芯铝绞线的最高允许温度一般采用70℃上限。现今我们大多数情况是要考虑线路增容改造问题、全线路换线改造或重建线路工程,成本是很高的;根据式(2)我们可知,如果现实中这种超过70℃上限的情况时间较短,负荷增长趋势又较缓,这时不妨将线路的温升按40℃设计,按80℃上限校验。这样的好处是,正常情况下将线路的温升由70℃升高到80℃,线路的输送能力可提高20%左右,这时的线损在1%-1.4%之间,也是可以接受的;(当温度达到100℃时,线损在2%-3%之间),而且导线受热后股与股之间被拉长结合会更紧密,导线的强度会增加一些。所以,在今后遇到这方面问题时,我们可以按80℃上限考虑,这种做法可以加以应用和推广;但是这种情况下温度升高后,线夹、连接点的发热要考虑进去,交叉跨越点导线间距离也要注意校核。
OPGW复合架空地线的选择
设计规范5.0.8关于OPGW复合架空地线的选择,这是新规范增加的内容。一般来讲,线路设计要抓住最重要的两点:(1)最大短路电流;(2)最高温度。在抓住这两点的同时,还要兼顾各方面的因素,考虑各方面充分必要条件。鉴于多年来的经验,线路导线的舞动和抗疲劳应在今后的设计中给于充分的措施考虑;在风口、线路高差大等地区,绝缘棒的装设可谓是一种有效措施;另外导线在选型上也应给予充分兼顾。
绝缘子
多年来瓷质绝缘子盐密度不断在增加,线路的绝缘一直在加大和提高电弧爬距,这一点与我国的环境在不断的恶劣不无关系。目前在较准确的核对线路环境后,采用正常的瓷质绝缘子串仍为首选;如考虑环境变化较快,可再增加一片绝缘子,但这时的线路造价将升高。对复合绝缘子我们是一面应用一面观察和摸索,复合绝缘子的最大问题出现在结合面,即复合材料与金属(球头)结合面、复合材料与绝缘子芯材的结合面,目前国内线路大多数复合绝缘子出现问题均在这两者之间;这两个位置结合不好是影响其耐用性的关键。以复合材料与金属(球头)结合面出现问题为多。因此,绝缘子的选用上我们要精确慎重的加以分析和选择考虑。
基础
不同地区的地质情况不同,铁塔基础应按塔基所处地的具体情况进行处理,对一些地下情况较复杂(如旧河道、采空塌陷、地下积虚、流沙、地震带等)地区,设计上应考虑充分的防护措施。例如110kV申月线在施工焦庄地段就遇到了沙土地质情况,经过与基础的设计单位商榷,采取加深加宽基础,并采用毛石砂浆铺一定厚度等措施,在今后的运行中要提醒外线车间注意观察。目前,供电线路多为城乡建设让道,线路通道设计规划成为线路设计的合理性、可用性、实效性的关键;输电线路的设计应紧密的与当地城乡规划部门联系沟通,以多功能为优选。同塔多回路是今后供电线路的发展方向;简单的讲:如果不考虑土地问题,多回路线路设计并不省钱,但若考虑土地征用费用,单回线路设计仅征用土地一项造价就大的惊人,在土地占用越来越紧迫的情况下,电力线路设计上要解放思想,尽量按多回路设计供电线路。
本工程是为了新建广州至珠海城际轻轨的建设而进行的升高改造,本工程新建铁塔两基:N11A、N12A;基础全部采用灌注桩基础。但是由于现场青苗赔偿等问题无法施工,使得N12A铁塔需要沿大号方向移位102m,移位后基础位于山脚下方。4基础设计:基础位于山脚下,现场初步勘测,由于桩机等大型施工机械无法进场施工,暂定基础采用大板基础或人工掏挖基础(需根据地质勘测报告确定)。5地质勘测:Ⅰ腿淤泥:4.3m、强风化2.0m、中风化5.0m;Ⅱ腿淤泥:5.0m、强风化1.4m、中风化5.0m;Ⅲ腿淤泥:5.1m、强风化1.2m、中风化5.0m;Ⅳ腿淤泥:4.2m、强风化2.3m、中风化5.0m;
2基础设计存在问题
N21A铁塔基础作用力为T=90t、N=120t、HX=25t、HY=10t。根据原设计的初步假想,采用大板基础或人工掏挖基础;但根据地质报告情况,此处铁塔基础位于山脚下,地质按一定坡度进行分布,如果采用大板基础,基础底板需置于持力层,此处选择在强风化层,但是考虑到地质按照一定坡度分布,如果仅置于强风化层的表面,则基础抗侧滑强度不足,但如果基础底板置于强风化层下方,则基础埋深在5m以上,由于无法进大型施工机械,且需进行钢板桩护基,无形中增加了施工危险及施工成本;即便是修通道路进入大型施工机械,则成本比原设计所用灌注桩基础要大很多。根据地质情况也无法采用采用人工掏挖基础,因为上半部分为淤积地质。采用人工掏挖基础危险系数相应增大很多,淤泥下方为强风化、中风化采用人工掏挖基础也不现实。
3基础设计处理方法
由于电力工程《架空送电线路基础设计技术规定》仍然采用安全系数法,故此处设计仅需满足设计中所要求的下压、上拔、倾覆演算的要求即可,经过现场多次勘查,结合地质报告,最后征得施工部门意见确定此基础设计的条件如下:基础埋深要小大于2.5m(基础维护可以采用松桩处理);如果需采用灌注桩基础,则灌注桩基础深度不能深于中风化(不能采用冲钻,因为此合同为总包合同,如果超出原合同部分则由施工部门自行承担)。基础材料用量、地基处理措施等费用不能超出原设计范围。根据以上条件,结合本基础所处地基情况,以及原设计所用费用经综合考虑,采用斜柱基础与灌注桩基础相结合的方式,基础侧向位移采用松桩挡土墙处理方法。根据斜柱基础与大板基础的对比知道,基础作用力相同的情况下斜柱基础受力形式更加好,且节约材料用量。数学模型的建立,本工程所用基础由于没有具体的数学模型,所以参考承台灌注桩基础,基础下压由斜柱基础底板承担,基础上拔由斜柱基础和基础下灌注桩部分(仅考虑自重部分)承担,基础水平作用力由斜柱基础和基础下灌注桩部分共同承担;考虑到基础所处地质情况结合钻探资料,基础侧位移需做挡土墙,而此条线路改造根据火炬开发区的规划及供电局的规划,此段线路需要近期改造拆除(施工图已出),所以此次改造为临时改造方案,故挡土墙处理采用松桩挡土墙。斜柱基础下方仍采用松桩地基处理。最终设计的基础形式如图2所示。上部斜柱基础埋深1.5m,下部灌注桩基础在基础底部以下4.7m,入中风化岩层0.5m以上。
4设计中需思考的问题
本工程是为了解决复杂地质情况下施工工艺问题而进行的基础变更,基础采用的是斜柱基础与灌注桩基础相结合的处理方式,在上拔演算中由于数学模型建立方面缺乏经验,此次上拔演算中未考虑到灌注桩基础摩擦力。虽然本工程已经竣工运行将近两年多时间,但是却给我们设计人员一个提示,就是我们在新型设计方面还存在一定的不足,还需要继续学习实践,搜集更多的同行所做的优秀设计作品,为我们以后的设计打下良好的基础。
5以后设计的展望
在线路运行过程中,雷击是常见的一种电力故障,它不仅影响了正常的供电,而且给电力企业造成了经济损失,严重时还威胁到人身安全。因此,在对110kV送电线路进行设计的时候,我们要做好防雷设计工作。具体来讲,我们可以采取以下措施发挥防雷功能。第一,在线路选择和杆塔架设方面。一方面在对110kV送电线路进行选择的时候,我们要尽量避开一些雷电发生几率比较高的区域;另一方面在杆塔施工的时候,我们要合理把送电线路杆塔的高度控制在一定范围之内,避免由于杆塔过高而遭受雷击。第二,在送电线路方面。在送电线路施工的过程中,我们也可以选用双避雷线增强送电线路的自身的防雷效果。第三,在绝缘水平方面。我们还可以通过提高送电线路的绝缘水平来增强防雷能力。因此,在具体的施工过程中,在经济允许的条件下,我们尽量选择一些强度较高的绝缘子。第四,在接地电阻方面。在送电线路运行中,线路的防雷能力与接地电阻是成反比关系。鉴于此,在满足线路施工要求的前提下,我们要尽量降低接地电阻,以此来提高送电线路的防雷能力。
二、110kV送电线路的施工管理
1加强施工人员培训管理
在送电线路施工中,施工人员的综合素质与施工水平有着密切关系。目前,很多施工人员都是农民工,综合素质水平较低,严重影响了施工质量。因此,我们必须加强对他们的教育培训工作。具体来讲,一方面我们要通过教育培训等方式不断增强施工人员的安全意识和质量意识,把安全和质量意识贯彻到具体的施工中去。另一方面,我们还要提高他们的专业技能,使他们熟练掌握各项施工工艺和技术,保证施工的顺利进行。
2做好送电线路施工组织工作
110kV送电线路施工是一项复杂的系统工程,比如,送电线路的施工距离比较长,施工中涉及到的施工人员和施工材料比较多,施工作业点比较繁琐等。因此,在110kV送电线路施工之前,管理人员要做好施工组织工作,具体分为以下方面:第一,对施工现场进行勘察。在施工之前,相关工作人员要对施工现场进行勘察,熟悉施工环境,从而为施工管理工作的顺利开展做好准备。第二,对施工图纸进行研究。在送电线路施工开始之前,管理人员要组织一些相关人员对施工图纸进行研究,从而熟悉施工流程,以便从整体上把握施工全局。第三,对施工设备和材料进行管理。施工设备和材料是110kV送电线路施工中必不可少的内容。因此,在送电线路施工之前,管理人员要合理分配施工机械设备,做好设备的检查工作,保证机械设备在施工中的正常运转。同时,还要对施工材料进行严格把关,避免一些劣质材料进入到施工现场。
3强化送电线路施工安全管理工作
安全是各项工程施工管理中的必不可少的一部分,110kV送电线路施工也不例外。在送电线路施工中,我们需要做好两个方面的工作以提高安全管理水平。第一,实行安全责任制。在送电线路施工中,管理人员要推行安全责任制,把施工中各个部分的安全责任落实到小组和个人,从而确保安全管理工作得到贯彻落实。第二,加强安全监督检查。在送电线路施工中,相关管理人员还要加强对施工过程中的安全监督检查工作,以便及时发现施工中存在的各种安全隐患,把各种安全问题消灭在萌芽状态,降低安全事故发生的几率。
三、结语
1纵梁受力分析
与分析横梁方法类似,如图2所示,取最不利位置,两组道岔处区域,纵梁平行于线路作用在挖孔桩上,假设两列列车同时过桥,纵梁以上荷载有:两列车所产生的中-活载(乘以相应的折减系数)、横梁恒载、小纵梁恒载、3-5-3型吊轨恒载、枕木以及钢轨恒载。拟选取H428×407×20×35型钢纵梁,纵梁与桩之间采用连续梁结构进行模拟。经计算,输出结果为:纵梁变形形状,最大位移1mm,纵梁梁最大弯曲应力57033.6kN/m2=57.0MPa,纵梁最大剪切应力52447kN/m2=52.4MPa,均满足规范。纵梁采用H428×407×20×35型钢。
2线路防护及顶进施工步骤
2.1线路防护施工步骤
新建下穿铁路框架桥位于车站咽喉区,框架桥采用宽翼缘大刚度的H型钢纵横抬梁加固铁路线路。线路防护施工可大体分以下几个步骤[4-6]:第一步:抽换枕木(砼枕换木枕),木枕尺寸为280cm×16cm×24cm,道岔影响范围内岔枕尺寸应根据实际调整,确保符合轨道施工要求。第二步:对各股线分别设“3-5-3”P43吊轨,道岔区设“3-3”P43吊轨;并在轨底枕木下设置小纵梁,并将一股线路下小纵梁通过横向连接成整体。第三步:施工线间及线路两侧挖孔桩及端部钻孔桩及盖梁。第四步:安装H428×407×20×35型纵梁。第五步:横穿H428×407×20×35横梁及H498×432×45×70横梁。
2.2顶进施工步骤
第一步:箱体浇筑完毕,中继间顶进至箱体前端距第一排桩边缘1.0m处,将横梁稳定支撑于箱体上。第二步:箱体顶进至第一排桩边缘最小距离0.3m处,横梁稳定支承于箱体后,拆除箱体范围内第一排排桩及H428×407×20×35型纵梁,继续顶进。第三步:箱体陆续顶进离第二至八排桩边缘最小距离0.3m处,横梁稳定支承于箱体后,拆除箱体范围内第二至八排桩及H428×407×20×35型纵梁,继续顶进至设计位置。第四步:箱体两侧路桥过渡段回填级配碎石并注浆,确保铁路刚度平稳过度,最后拆除箱体范围外纵横梁及线路加固设施,恢复线路。
3结语
机床在检修前首先进行试机是非常重要的,同时也是修理人员检查机床最为重要的环节。在开始修理前首先要向修理人员询问整个修理流程,并要了解故障的表现;在对机床内部的各种元件都检修完成以后就可以针对具体的问题进行修理。如果操作人员不能对故障产生的过程进行说明,修理人员也要首先对机床进行调试。值得注意的是,仅是小部件出现故障,机床就会出现报警的提示,操作人员需要做好安全措施。在对机床实施了调试以后,就要充分观察,以此能够对机床的故障做出正确的判断,能够区分出故障的性质,并要将故障产生的原因和类型及时记录下来,以便修理时可以参考。
2按照检修的流程分析故障
在明确了故障产生的原因以后,就可以参考故障修理的流程图(见图1)进行分析和操作,下面的修理流程图能够为排除故障提供帮助和参考。在参考流程图进行修理时也要及时做好故障的检修记录。机床在购买回来以后,都有相应的维修指南,在维修指南上还配有电路图,这些参考指南能够为维修提供有效的帮助。在维修的手册上都标注了警报标识和警报术语。但是机床系统的报警设备一般都比较完备,因此修理人员可以在发生一次警报提示以后,根据警报信息进行修理。
3机床线路以及元件安装及设计
按照机床元件的控制和安装的要求和标准,对元件合理布局,并要保证布局的美观和完整,保证机床操作起来更加方便[2]。一般,机床线路的安装必须应用柔软的电线安装,并且在安装时要严格按照电工工艺操作,设备套线、电源按钮以及指示灯可以通过各个电力的接触点引出。机床设备上的其他接触点如果不能直接进行测量,则可以将其引到接线端子上检测。这样设计可以将机床上的每一个接触点都能够直接进行检测,省去了拆除元件的时间,并减少了电能的损耗。可以在安装底板上安装80个单向底盒,并将所有机床上的故障点连接到这些底盒里,在连接完成以后,做好记录。排查故障应用的导线可以应用夹子将导线的两端夹紧,不需使用螺丝刀处理导线,这样在检查故障时能够更加精准,并能有效节约能源。可以在测量时应用万用测量表进行检测,这样可以确保机床上的每一个接触点都能够被测量到。万用测量表可以测量设备上所有端点,并能使鳄鱼导线加紧的两个端点在排查故障时更加的便利。
4结束语
一方面可以通过减少用电设备无功损耗来实现,以提高用电设备的功率因数。在管理中,应尽可能采用功率因数高的用电设备,比如同步电动机。另外,也可以使用静电电容器进行无功补偿。电容器可产生超前无功电流对用电设备的滞后无功电流进行抵消,从而提高用电设备的功率参数。加强输电线路杆塔的建设。输电线路的杆塔基础建设是输电线路建设过程中的一个重要部分,对于杆塔基础而言,最重要的一个环节就是要加强地基施工。在电网配电线路设计过程中,对于输电的杆塔、线路的设计,应该要根据具体的地质情况而定,比如在施工过程中遇到淤泥土质,应该要对地基进行加固处理,确保输电杆塔的稳固性。
2电网配电线路无功补偿
2.1无功补偿应该注意的问题
2.1.1无功补偿的方式配电运行节能管理是电力企业发展过程中的一项重要工作,指的是电力企业对电力运行过程中的各项工作进行调度管理,从而使得电能的损耗可以相应减少,提高电能的利用效率,防止出现过多的电能浪费的过程。在电网的无功补偿方面,不仅要重视如何提高电力用户的功率因数,还应该要重视如何降低电网配电的损耗,以实现电网节能。在降低电网损耗的设计过程中,一般会采用增设不长箱的方式,以提高电力用户的功率参数,但是只靠这一种方式并不能完全实现降损,还应该要对武功潮流进行计算,对最佳补偿量以及补偿方式进行确定,不仅可以获得更好的降损效果,还可以获得更多的经济效益。2.1.2谐波问题。谐波问题一直都是电网无功补偿中备受关注的一个问题,在电网运行过程中,一旦出现了大量的谐波量,则会缩短电容器的寿命,严重时甚至会损坏电容器,对电网系统的正常运行产生干扰。因此,在电网运行过程中,对于存在大量谐波并且需要无功补偿的地方,可以加装滤波装置,有效地解决各种无功补偿相关的问题。
2.2无功补偿量的计算
对于无功补偿量的计算,则是一个重要的过程,一般是通过对变压器负载率、容量及配电线路、线路的负荷情况等进行计算之后对无功补偿量进行确定的,无功补偿容量计算要根据主变压器容量的30%左右对变电所集中装设的补偿容量进行确定,而且要根据配电线路的负荷在均匀分布时,对电容器的最佳补偿容量作为线路的负荷,来确定配电线路的分散补偿容量。第三,电动机的补偿容量不能超过电动机空载时的无功消耗。
2.3无功补偿装置安置地点和方式
在无功补偿的装置的安装过程中,对安装地点以及方式的选择也会影响到无功补偿效果,无功补偿装置一般可以安装在变电所旁边,安装的方式主要有几种补偿、分组补偿、配电补偿、随机补偿等,一般说来,集中补偿的装置主要是安装于变电所的高压电容器组上,分组补偿的装置则主要是安装于配电线路以及配电线路的低压线路旁边。
3结语