时间:2022-05-16 21:39:31
序论:在您撰写建筑采暖论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:华北地区建筑采暖热电联产电热锅炉热水炉直接电热电蓄热水源热泵
调整能源结构,减少燃煤造成的污染,同时满足电力供大于需的矛盾,是华北地区大中型城市环境治理面临的一个重大问题。建筑采暖能源约占此地区能源消耗的四分之一以上,重新研究建筑采暖策略是这些地区能源结构的调整重点,对目前飞速发展的住宅建设也有重要的指导意义。本文在分析采暖现状的基础上,列出面临的各种问题,介绍了可能的各种采暖方式,并从一次能源利用、运行成本、初投资、适用性等方面进行评价,最后提出不同现状下新旧建筑采暖方式的建议。
一.现状
1.热电联产、集中供热,目前华北各大中型城市均有一个或几个热电厂为热源的热网,北京市随着高碑店热电厂的并网和城区管网的进一步扩建和改造,供热面积可进一步发展到六千万平米。其它各城市热电联产为热源的集中供热系统也陆续建成和投入运行。
2.区域锅炉房为热源的集中供热,这是该地区最主要的供热方式,燃料主要为煤,目前部分改为天然气或燃油。
3.家庭燃煤炉,仍占较大比例,是冬季空气的主要污染源之一。
以上三种方式为此地区85%以上建筑的采暖方式,此外还有利用地热热水为热源的集中供热系统,新建小区利用电热膜方式的电采暖、一家一户燃气小锅炉采暖、空气热泵和水源热泵采暖等。
二.目前问题
1.集中供热系统末端无计量和调节手段。统一按照供热面积收费。当室内过热时,用户开窗散热而不是关暖气。由于无调节手段,办公室、教室夜间和假期照常供热,住宅有人无人照常供热。根据测算,末端增加调节手段并通过改变计量方式使此调节手段被真正利用,可使供热能耗降低35~40%,并可以实实在在地改善需要采暖的用户的采暖状况,满足不同水平的需求。然而采暖收费方式的改革涉及大量技术、资金和政策问题。将是一个长期的任务。
2.家庭小煤炉采暖和大量的小型燃煤锅炉区域采暖是冬季空气的主要污染源之一。应作为环保改造的重点。
3.华北电网峰谷差达到1:4.5,尽管总的用电负荷低于供电能力,但峰时供电仍紧张,削峰填谷和发展低负荷时段的电力负荷是能源结构调整所面临的重要课题。
三.几种可行的采暖方式及分析评价
1.热电联产方式热电联产是利用燃料的高品位热能发电后,将其低品位热能供热的综合利用能源的技术。目前我国大型火力电厂的平均发电效率为33%,而热电厂供热时发电效率可达20%,剩下的80%热量中的70%以上可用于供热。一万千焦热量的燃料,采用热电联产方式,可产生2000千焦电力和7000千焦热量。而采用普通火力发电厂发电,此2000千焦电力需消耗6000千焦燃料。因此,将热电联产方式产出的电力按照普通电厂的发电效率扣除其燃料消耗,剩余的4000千焦燃料可产生7000千焦热量。从这个意义上讲,则热电厂供热的效率为170%,约为中小型锅炉房供热效率的2倍。同时热电厂可采用先进的脱硫装置和消烟除尘设备,同样产热量造成的空气污染远小于中小型锅炉房。因此在条件允许时,应优先发展热电联产的采暖方式。热电联产的问题是:①长距离输送,管网初投资高,输送水泵电耗为所输送热量的2~4%,维护、管理费用也高,②由于末端无计量方式和调节手段,导致30~40%的热量浪费。按照前苏联的大规模实验结果,供热末端增加调节手段,并采用按热量计量收费后,可节省热量30%以上。[2]
2.中小型区域锅炉房集中供热其区域锅炉房可以是燃煤、燃气、燃油或电锅炉方式,但都需要通过区域管网经过热水循环向建筑物内供热。于是与热电联产方式一样,由于末端无计量和调节手段,导致30~40%的热量浪费。热量输送距离短,水泵电耗为输送热量的1~1.5%,但其热源效率却远低于热电联产方式。区域燃煤锅炉房的设置是以煤为主要燃料的解决分散到各户设燃煤炉导致的煤和煤渣的运输与污染,煤炉的管理等一系列问题。为此牺牲了末端调节能力,导致30~40%的末端热量浪费增加了1~1.5%的输送电耗,并降低了供热水平,但如果以电或天然气为燃料,它们的输送都比热量容易,输送成本也低,电热或天然气锅炉很容易实现自动管理。为什么还要搞燃气或电的区域锅炉房呢?按照目前的燃料价格,使用天然气为燃煤的4倍,电热为燃煤的11倍,使用这些清洁燃料除换来环境效益外,应尽量利用其便于输送,便于调节的特点,通过节能尽可能地减少运行费的增加。
3.家用小型燃气热水炉一家一户自成系统,同时解决采暖和热水供应问题。这一方式在欧、美已有几十年历史,目前为这些地区的主要采暖方式,我国之所以没有广泛应用,是由于燃煤为主的历史形成必须集中供热的传统观念,以往居住面积狭小也限制了这种方式的采用。长期依赖住房分配制,集中供热设备的投资,包含在市政和建筑中,而家庭燃气锅炉却要个人出资则为另一原因。目前随住房改革和燃料结构改变,这三个原因都不再存在,因此在新建住宅区当不存在热电联产集中供热的条件,准备使用天然气为采暖燃料时,家用燃气小锅炉应为首选方案。近几年曾出现过几起燃气小锅炉爆炸的事故,这属于初期试用中的问题。引进国外成熟技术,安全问题应较容易和可靠的解决。小区燃气锅炉房集中供热工程中,锅炉房、外网和建筑物内主管网的投资至少要30~50元/m2,与家庭燃气锅炉房投资相同。而使用家庭燃气锅炉时还可省去热水器投资。采暖是连续负荷,瞬态负荷不高于目前家用热水器负荷,因此不会给燃气管网带来问题。而末端的灵活调节却能与集中燃气锅炉相比,平均节省30~40%的燃气,从而降低运行成本。因此,与燃气集中锅炉房形式相比,这一方式优越性十分明显。
4.直接电热在室内采用各种电暖气、电热膜等方式,尽管末端装置热利用率为100%,并且调节灵活,但使用高品位电能直接转换为热,是很大的能源浪费。目前我国大型火力发电厂的平均热电转换效率为33%,在加上输送损失,电热采暖的效率仅为30%,远低于热电联产的170%,也低于燃煤或燃气采暖的85~90%。法国、瑞士等国采用部分电热采暖是由于它们丰富的水利资源,发电以水电和核电为主。我国还是以火电为主,采用电热方式,实际上要比锅炉房直接供热增加2倍的污染物排放量。仅从环境保护的角度看,电热直接采暖的方式也不可取。
5.电蓄热方式为了解决电力负荷的峰谷差,减缓大型火电与调峰的困难,设法利用夜间低谷期电力供热,从电力系统运行的综合平衡看,尚有一定的道理。目前有这样几种电蓄热方式:①大型常压热水箱。每一万平米采暖面积约需85立方米水箱,占地成本高,蓄热损失也较大②高压蓄热水箱,可使蓄热温度提高到19℃,从而可使蓄热水箱容积减少至三分之一。但所占空间仍大,并且在居住区增加这样的高压容器总有一些安全问题。这两种方式最终还是以集中供热方式向末端供热,因此保留了集中供热调节不灵活,供热效率低等一系列问题。③采用电热膜方式,利用建筑物本身热湿性蓄热。由于采暖最大负荷发生在晚间而电力负荷低谷发生在后半夜,因此这种蓄热方式效果很差,并且为了蓄热导致夜间室内温度过高,热损失增加。④相变蓄热电暖气[1]。采用硅铝合金作为相变材料,体积与通常的铸铁暖气相同却可在五小时内蓄存一天的供热量,真正实现削峰填谷,其放热量又可随时人为控制,不需要采暖时可随时关闭,应该是末端电蓄热采暖的最佳解决方案。目前的问题是设备投资高,约150元/m2,电力峰谷价格差别小。只有由电力部门对这种采暖设备适当补贴,并且使谷间电价降至0.20元/度以下,这种方式才能与个人燃气锅炉竞争。
6.电动空气热泵使用电采暖的最好方式是热泵方式。空气热泵是使空气侧温度降低,将其热量转送至另一侧的空气或水中,使其温度升至采暖所要求的温度。由于此时电用来实现热量从低温向高温的提升,因此当外温为0℃时,一度电可产生约3.5度的热量,效率为350%,考虑发电的热电效率为33%,空气热泵的总体效率约为110%,高于直接燃煤或燃气的效率。实际上现在的窗式和分体式空调器中相当一部分都已具有热泵功能,因此属很成熟的技术。具有热泵功能的房间空调器与单冷型房间空调器价格差异并不大,因此考虑到空调器的普及,采用热泵并不增加投资。这种方式的问题是:①热泵性能随室外温度降低而降低,当外温降至-5℃以下时,一般就需要辅助采暖设备。此时用电热作为辅助手段,也远比整个冬季全部电热效率高,模拟分析的结果表明使用辅助电采暖后,北京地区热泵采暖电耗约为直接电热方式的一半。②房间空调器的末端是热风而不是一般的采暖散热器,许多人感觉不舒适,这可以通过一些措施来改进。例如采用户式中央空调与地板采暖结合等,但初投资要增加。
7.电动水源热泵解决空气热泵外温低时效率下降的最好方案就是采用深井回灌方式的水源热泵。冬季将地下水从深井抽出,经换热器降温后,再回灌到另一口深井中。换热器得到的热量经热泵提升温度后成为采暖热源。夏季则将地下水从深井中取出经换热器升温后再回灌到另一口深井中,换热器另一侧则为空调冷却水。这种方式实际上是在夏天将建筑物中产生的热量存入地下,供冬季采暖使用。冬季将建筑物产生的冷量存于地下,供夏天空调用。华北地区民用建筑冬夏冷热负荷大致相当,因此采用此方式可保持地下的热平衡。由于地下水抽出后经过换热器后又回灌至地下,属全封闭方式,因此不使用任何水资源也不会污染地下水源。这一方式在西欧各国广泛使用,属环保方式。我国在70年代就有多处采用冬季深井回灌,以在夏季提供空调冷水的工程经验,因此属成熟技术;水??水热泵的投资及技术复杂性都低于风??水热泵或风??风热泵,应无技术难度。由于地下水温常年稳定,采用这种方式整个冬季气候条件都可实现一度电产生3.5度以上的热量,运行成本低于燃煤锅炉房供热,夏季还可使空调效率提高,降低30~40%的制冷电耗。同时此方式冬季可产生45℃热水,因此仍可使用目前的采暖散热器。采用这种方式需要的深井和泵房投资折合约60元/m2,可以每座建筑安装集中的热泵站,向各室提供冷水或热水,但更好的方式是在各户自行安装小型水冷热泵,解决冬季采暖和夏季空调的要求,增加的投资约为150元/m2,如果考虑空调设备投资的话,这种方式与小区燃煤锅炉房+各户房间空调器投资相同,但全部为电驱动,小区无污染。夏季空调热量全部排入地下,小区无热污染,一次能源效率还高于直接燃煤,因此应该是解决华北地区城市建筑采暖空调的最佳方案。
*电费按0.39元/度计算
**低谷电按0.20元/度计算
***已包括夏季空调初投资
****热电联产初投资仅为外网及换热站,不包括电厂,运行费按16元/GJ,燃煤从电厂购热价计算
注:1.运行能源包括输送管网水泵电耗,管理费为运行管理人工费
2.燃气价格按1.4元/m3,36MJ/m3燃值计算
从表中折合一次能源消耗量和燃料种类可看出各种方式COx排放量及对大气的污染程度。可以看出,如果电均为燃煤电厂供给的话,热电联产方式对大气污染最低而电热锅炉排放量最高。运行费也是热电联产方式最低,因此只要条件具备,就应大力发展热电联产集中供热方式,同时改革供热计量收费方式,增加末端调节手段,从而进一步降低集中供热单位能耗,增大现有的热电联产热源可能供热的面积。
四.结论
1.大力发展热电联产集中供热方式,这是写入我国二十一世纪白皮书中的基本国策,应从各方面支持和保证。只要有可能接入热电联产集中供热网的,就应要求接入,而不允许采用其它方式。
2.不同的燃料对应于不同的最佳供热方式。燃煤对应的最佳方式为热电联产和集中供热,燃气、直接用电时集中供热方式就不再适宜,而应发展与新的燃料对应的新方式。
3.对小区锅炉煤改天然气工程一定要慎重。有条件接入热电联产集中供热网的应尽可能接入。有条件取消集中供热,改为家庭独立的燃气锅炉的应尽可能争取。对于住户经济条件普遍较好,空调安装率较高的小区,甚至还可打深井,安装集中换热器利用原有供暖管网实现水的循环,在各家各户安装分散式水源热泵。
4.远离热电联产热网的新建小区不应该再建集中供热系统,而应采用家庭小型燃气锅炉或建深井回灌系统统一提供循环水,各家各户安装小型水源热泵。
5.应从政策上支持深井回灌式水源热泵系统。有条件地区的新建小区和商业建筑应尽可能优先考虑此种方式,这对保护大气环境,保护小区环境,扩大用电负荷都非常适宜。将空调设备投资一同考虑的话,这种方式初投资并不高,而运行费用最低。
6.对于城区燃煤炉采暖的用户,可以推广带有辅助热源的空气热泵方式和蓄热式电暖气方式。由于蓄热式电暖气方式具有最佳的对电力负荷削峰填谷效果。因此除电价上的优惠政策外,电力部门还应对蓄热式电暖气设备给予补贴。
7.严格禁止各种电热锅炉集中供热方式。对电热膜、电暖气等方式也应尽量控制使用。绝不能为了目前扩大用电负荷就推广直接电采暖。我国电力系统最大问题是峰谷差,直接电采暖不会为减缓峰谷差有何帮助。大力发展热泵技术,实现高效率供热或发展相变蓄热电暖气解决峰谷差问题,才应是扩大用电负荷的合理途径。各种热泵系统虽然初投资略高,但都已包括了空调设备。几种热泵系统的投资都低于单独的采暖系统加上单独的空调系统,近年来我国房间空调器的拥有量一直以20%的速度递增,目前北京市每百户拥有空调器超过60台。从这一背景出发全面考虑采暖和空调的要求,热泵系统反而成为更经济的了。
参考文献:
关键词采暖系统热计量既有建筑建筑节能改造
在计划经济时期,我国北方地区建设了大量的节能建筑,这些既有建筑内的采暖系统以单管顺流式为主。由于单管顺流式系统的用户,一户内有若干个产管,每根立管中的热水自上而下流过每一层的散热器后进入回水管,与大家设想的热量计量条件不同:即每一户只有一个给水入口和一个回水出口,具有测量流量和温差的条件。因此有人认为单管顺流式系统不可计量。实际上,不同的采暖系统形式,需采用不同的工作大批量制造的计量仪表。为解决既有建筑采暖系统的计量问题,我们在96年开始的中加合作项目--既有建筑节能改造中,对该问题进行了探讨。
一、单管顺充式系统供热量计量的基本原理及方法
采用单管顺流式系统的建筑物,在每一户内,是以相互独立的每一组散热器来进行供热的,户内各房间的散热器的相互独立特点,可采用按照公式(1)原理制造的计量仪表。
(1)
式中:A、b--由实验确定的散热器系数;
β1、β2、β3、β4--与散热器使用条件有关的系数;
F--散热器面积,m2;
tp--散热器平均温度,℃;
--计量仪表的采样周期,S。
由式(1)可见,只要测得室内温度及散热器平均温度,确定仪表的采样时间,即可得出散热设备放出的热量Q。测量tp的方法不同,热量计量的方式也不同。目前按照式(1)制造的仪表有两种,一种是蒸发式仪表,一种是电子式仪表。
二、既有建筑采暖系统热量的计量方法
在既有建筑改造试点项目中,采用的电子式计量仪表就是通过测量散热器的进出水温度和室内温度的方法,进行热量计量的。散热器的进出水温度传感器安装在每组散热器的进出水的支管上。这样对于一个具体房间来说,房间供热量QZ应是散热器的散热量与管道散热量之和。
即:QZ=Q+QL(2)
式中:Q--散热器散热量,J
QL--管道散热量,J。
理论分析表明,由于水温不同,每层房间的管道散热量不同。表1是一个具有6根立管、5层建筑物的管道散热量占房间供热量的百分比情况。采暖系统为异程式带跨越管的单管顺流式系统,两根立管的间距为3.3m,建筑物层高为3.0m,立管6是最远立管。由表1可知,不同楼层不同立管管道散热量是不一样的。靠近主立管处管道散热量占房间供热量的5.2%~10.1%,最远立管为4.3%~7.0%,系统平均为6.35%。如果仅计算散热器散热量,则房间的供热量将少计6.35%.
通过对欧美的采暖系统分析,我们发现,西方国家在计量中,不考虑管道散热量是由于他们使用的管道直径较小,或者有保温,或者保温后埋入地面内。这与我国的国情是不相符的。为此有必要探讨一种既能减少水温测点,又可提高计量精度的方法。
对于单管顺流式采暖系统来说,房间供热量应是散热器的散热量与管道散热量之和。由于每个房间内的管道规格不同,水温不同,因此每层房间的管道散热量不同。对于图1所示的立管来说,各层房间的供热量应为:
(2)
式中:Q3L、Q2L、Q1L--第3、2、1层管道散热量,W;
Q3、Q2、Q1--第3、2、1层散热器的散热量,W;
Q3L0、Q1L0--第3、1层编号为0的管道散热量,W;
Qg3、Qhl--第3、1层立管与供水(回水)管道相连接部分的散热量,W;
上述公式中,未知量太多,无法求解。需依据温度敏感元件的设置情况,在补充若干个方程后,即可利用计算机求出各个房间的供热量。
三、结果分析
1.无跨越管的单管顺流式采暖系统
对于一栋5层的建筑物来说,理论分析表明,无跨越管的单管顺流式采暖系统,进出水温敏感元件可减少40%。为了对各种计量方式比较,将考虑管道散热量以后,传感器不减少时的测得的房间供热量,计为方案1;将考虑管道散热量以后,传感器减少40%时测得的房间供热量,计为方案2;将不考虑管道散热量以后,传感器减少40%时的测得的房间供热量,计为方案3。经计算可知:
(1)计算管道散热量以后,方案1和方案2相比,水温敏感元件减少前后,测得的每个房间供热量基本相同。每根立管上各个房间供热量之和的最大误差为-0.33%。整栋楼各个房间供热量之和的平均误差为-0.25%。这表明采用此法,整栋楼各个房间供热量之和要多计算0.25%。
(2)如果不考虑管道散热量,方案1和方案2相比,水温敏感元件减少前后,得出的每个房间供热量相关较大。每根立管上各个房间供热量之和的最大误差为8%。整栋楼各个房间供热量这和的平均误差为7.3%。这表明采用此法,整栋楼各个房间供热量之和要少计算7.3%。
(3)方案2与方案4(水温敏感元件不减少,但不考虑管道散热量时)相比,得出每个房间供热量误差。经计算可知,如果不考虑管道散热量,每根立管上各个房间供热量之和的最大误差为10.8%。整栋楼各个房间供热量之和的平均误差为6.62%。
(4)方案3和方案1相比,得出的每个房间供热量误差。可知:靠近主立管的立管所在的顶层和底层房间,由于不考虑管道散热量,最大误差为12.2%。其余房间最大误差为10.4%。
由此可知在,利用较少的水温敏感元件,对无跨越管的单管顺流式采暖系统房间供热量计量,是完全可知地的。同时使水温敏感元件减少40%。这不但减少设备投资,而且减少安装工程量。
2.带跨越管的单侧连接的单管顺流式采暖系统
按照人们的习惯做法,带跨越管的单管顺流式采暖系统房间供热量计量方法与无跨越管的单管顺流式采暖系统一样,需在每组散热器的进出口设置温度敏感元件。理论分析表明,有跨越管的单管顺流式采暖系统,进出水温敏感元件可减少30%。为了对各种计量方式比较,将考虑管道散热量以后,传感器不减少时的测得的房间供热量,计为方案5;将考虑管道散热量以后,传感器减少30%时测得的房间供热量,计为方案6;将不考虑管道散热量以后,传感器减少30%时的测得的房间供热量,计为方案7。经比较可知:
(1)计算管道散热量以后,方案5和方案6相比,水温敏感元件减少前后,测得的每个房间供热量基本相同。整栋楼各个房间供热量之和的平均误差为0.32%。这表明采用此法,整栋楼各个房间供热量之和要少计算0.32%。
(2)如不考虑管道散热量,方案5和方案7相比,整栋楼各个房间供热量之和的平均误差为7.19%.这表明采用此法,整栋楼各个房间供热量之和要少计算7.19%。
(3)方案6和方案8(水温敏感元件不减少,但不考虑管道散热量)相比,得出的每个房间供热量误差。可知,如果不考虑管道散热量,整栋楼各个房间供热量之和平均误差为7.02%。
(4)方案7和方案5相比,得出的每个房间供热量误差。可知:靠近主立管的立管所在的顶层和底层房间,由于不考虑管道散热量,最大误差为11.4%。其余房间最大误差为10.9%。
由此可知,利用较少的水温敏感元件,对有跨越管的单管顺流式采暖系统房间供热量计量,是完全可行的。同时使水温敏感元件减少30%。这不但减少设备投资,而且减少安装工程量。
关键词:外窗传热系数遮阳系数建筑能耗建筑节能
我国行业标准《夏热冬冷地区居住建筑节能设计标准》(JGJ134-2001)第四章”建筑和建筑热工节能设计”中,对外窗热工性能作了如下规定:
4.0.4:外窗(包括阳台门的透明部份)的面积不应过大。不同朝向、不同窗墙面积比的外窗其传热系数应符合表4.0.4的规定。(表4.0.4略)
4.0.6外窗宜设置活动外遮阳。
该标准对外窗保温性能(传热系数K)作了具体规定,并建议外窗设置活动外遮阳,但标准对外窗隔热性能(遮阳系数SC或太阳传热因子SHGC)没有作出具体规定,不能不说是该标准的一个不足。实际上,我国夏热冬冷地区居住建筑的节能不仅与外窗的保温性能,而且与外窗的隔热性能紧密相关的。
本文首先确定了夏热冬冷地区基准性住宅和住宅节能方案,并选取上海、南京、武汉和重庆4个代表性城市作为分析对象,使用美国劳伦斯.伯克力国家实验室开发的DOE-2软件,对基准性住宅和3000多个节能方案进行摸拟计算,分析外窗传热系数(K)和遮阳系数(SC)对居住建筑能耗影响,并提出相应的看法和建议.
一、基准住宅的确定
(一)基准住宅模型是一座六层楼住宅,建筑平面如图1所示。
基准住宅热工参数和计算条件如下:
1、室内温度设定:冬季16℃,夏季26℃;
2、外墙:24cm粘土实心砖K=1.833W/(m2·K);
3、屋顶:砼板+保温板K=1.872W/(m2·K);
4、外墙面太阳辐射吸收系数ρ=0.7;
5、外窗:普通单玻铝合金窗,K=6.0W/(m2·K),SC=0.9;
6、建筑平均窗墙面积比:CM=0.3009;
7、换气次数:n=1.5;
8、设备能效比:冬季EER=1.0,夏季EER=2.2;
9、内热源:照明0.5875W/m2,其它251W(其中显热180W,潜热71W)。
(二)4个城市基准住宅全年能耗值计算结果
从表1可看出,4个地区住宅夏季空调能耗均占全年采暖与空调总能耗20%或以上,而夏季空调能耗中外窗太阳辐射传热占了相当大的比例,因此夏热冬冷地区居住建筑节能中,外窗隔热性能是不可忽视的重要因素。
表1城市上海南京武汉重庆
年采暖空调总能耗P总(kWh/m2)146.67164.27157.60116.67
年采暖能耗P暖(kWh/m2)116.98131.88117.6079.38
年空调能耗P空(kWh/m2)29.6932.4040.0037.29
空调能耗占总能耗比例%20.2419.7225.3831.96
二、节能方案的选择
1.室内温度设定:冬季16℃,夏季26℃;
2.外墙:24cm粘土实心砖+保温K=1.0W/(m2·K)和K=1.5W/(m2·K);
3.外墙面太阳辐射吸收系数ρ=0.7;
4.屋顶:砼板+保温板K=1.0W/(m2·K);
5.换气次数:n=1.0;
6.设备能效比:冬季EER=1.9,夏季EER=2.3;
7.内热源:照明0.5875W/m2,其它251W(其中显热180W,潜热71W);
8.建筑窗墙面积比CM变化范围:0.2498,0.3009、0.3535,0.3895,0.4256,0.4718;
9.外窗K和SC变化范围:
K—6.0,5.5,5.0,4.5,4.0,3.5,3.0,2.5,2.0;
SC—0.9,0.8,0.7,0.6,0.5,0.4,0.3。
三、外窗保温隔热性能(K、SC)对住宅能耗的影响
本文通过3000多个节能方案的摸拟计算,选取代表性数据,绘制了外窗K值分别为3.0、4.5、6.0时的P-SC曲线图。图中,P总为全年采暖与空调总能耗,P空为夏季空调能耗,建筑平均窗墙面积比CM=0.3009。
从以上各地的P—SC曲线图可看出:
1.当建筑平均窗墙比CM不变,外窗K值增大(保温性能减弱),住宅年总能耗也随之增大;当外窗K值从0.3增大到0.6时,全地区各地住宅年总能耗平均增大15%左右.但K值变化对住宅夏季空调能耗影响不大。
2.当建筑平均窗墙比CM不变,外窗SC值增大(隔热性能减弱),住宅年总能耗也随之增大;当外窗SC值从0.3增大到0.9时,全地区各地住宅年总能耗平均增大9%左右,但东部上海、南京等地增大值小于中西部武汉、重庆等地增大值;SC值变化对住宅夏季空调能耗影响甚大,如在重庆,SC从0.3值增大到0.9时,空调能耗增大约20%。总之,SC值的变化,不仅对住宅夏季空调能耗,而且对全年总能耗均有影响,因此夏热冬冷地区居住建筑节能应考虑外窗遮阳隔热性能的影响。
表2列出了外窗K、SC值变化对住宅全年采暖与空调总能耗影响的部分数据。
四、夏热冬冷地区外窗热工性能节能设计
通过分析,在保证住宅节能50%的目标下,本文提出夏热冬冷地区外窗传热系数K和遮阳系数SC(太阳得热因子SHGC)的限值表3,供设计人员和今后对该标准修改时参考。
夏热冬冷地区居住建筑外窗的传热系数和遮阳系数限值表3外墙外窗遮阳系数SC(SHGC)外窗的传热系数K[W/(m2·K)]
平均窗墙面积比CM≤0.25平均窗墙面积比0.25<CM≤0.30平均窗墙面积比0.30<CM≤0.35平均窗墙面积比0.35<CM≤0.40平均窗墙面积比0.40<CM≤0.45
K≤1.0D≥2.5ρ=0.70.9(0.80)≤6.0≤6.0≤5.0≤4.0≤3.0
0.8(0.71)≤6.0≤6.0≤5.5≤4.5≤3.0
0.7(0.62)≤6.0≤6.0≤5.5≤5.0≤4.0
0.6(0.53)≤6.0≤6.0≤6.0≤5.0≤4.0
0.5(0.44)≤6.0≤6.0≤6.0≤5.0≤4.0
0.4(0.36)≤6.0≤6.0≤6.0≤5.5≤4.5
0.3(0.27)≤6.0≤6.0≤6.0≤5.5≤4.5
K≤1.5D≥3.0ρ=0.70.9(0.80)≤5.5≤4.0≤3.5≤2.5---
0.8(0.71)≤5.5≤4.0≤4.0≤3.0≤2.0
0.7(0.62)≤5.5≤4.5≤4.0≤3.0≤2.5
0.6(0.53)≤6.0≤5.0≤4.5≤3.5≤3.0
0.5(0.44)≤6.0≤5.0≤4.5≤4.0≤3.5
0.4(0.36)≤6.0≤5.0≤4.5≤4.0≤3.5
0.3(0.27)≤6.0≤5.5≤4.5≤4.0≤3.5
参考文献:
关键词:高层建筑给排水采暖工程质量控制
引言
给排水、采暖系统质量缺陷一直困扰着高层建筑管理人员,各专业之间缺乏必要配合是主要原因。我们必须对给排水、采暖工程施工管理予以高度重视,与业主、设计方一起,采取切实可靠的措施,保证给排水、采暖工程施工质量。
一、高层建筑给排水、采暖工程施工质量的事前控制
1.1检查施工前期资料,熟悉工程相关文件我们必须认真熟悉和掌握施工合同,认真审核前期建设手续、审图意见、小区综合管网图,检查设计单位是否提供了室外给排水、采暖施工图,仔细阅读设计图,熟悉有关规范、标准、图集,及时将施工图中的有关问题及业主,承包商提交的图纸会审意见,整理成文,为图纸会审作好充分准备。
1.2审核承包商提交的施工组织设计强调施工组织设计是施工企业施工的重要依据,具有法律效力必须具有很强的针对性和可操作性,我们在施工准备阶段应认真审核其施工方法、施工人员和施工机具设备、质量保证措施和安全文明条款,了解施工单位的管理水平和技术水平,以便有针对性地完善监理细则,有的放矢,加强事前控制,及时向项目管理者提交施工组织设计审查意见,作为施工管理的一项重要依据。
1.3审核安装单位的企业资质和人员资质强调企业资质必须与工种类别一致,强调专业技术人员及特殊工程的岗位证书及人员到位情况审查,机械加工设备、焊接设备及特殊工程的特种机械的进场到位情况审查,我们要审查这些设备的产品合格证,检修记录并亲自到施工现场查看这些设备的运转情况,确保设备运转正常,以此来保证给排水工程的质量。
1.4拟定给排水、采暖工程专业管理细则在项目监理规划和施工图基础上,根据工程的具体特点,拟定有针对性并确实可行的技术措施、组织措施、管理方法,在项目实施过程中能切实按此管理细则实施管理。
1.5组织行之有效的施工图设计交底和图纸会审图纸会审和设计交底是工程建设的一个重要环节,通过设计交底我们可以了解设计意图,了解工程的重点和难点,通过图纸会审解决设计中的缺陷、错误,作出相关专业的位置、尺寸、标高协调,解决各专业问题的矛盾冲突,同时也应理解业主的建设意图,如卫生间、厨房给排水支管是否统一安装,散热器、设备、管材选用的档次等,统一各方意见,为工程顺利实施创造必要条件。
1.6给排水、采暖材料质量的事前控制主动与业主方、承包商联系,按设计和规范要求,配合业主方、承包商审查供货方、分供方的资质、质量保证体系、技术装备情况、人员情况、企业信誉、生产和供货能力、财务情况等,通过招标等手段合理选择厂家、品牌、价格,为工程的顺利进行作好准备。
1.7做好组织协调及监督管理工作我们应主动与质监人员联系,请他们来现场指导,规范各方行为,取得主管部门的支持,明确质量目标和要求,落实总承包商与各专业分包商责任,明确验收标准、安全文明施工规定、现场管理制度,并主动与业主方沟通,取得业主方有力的支持。
二、质量的事中控制
工程质量的事中控制是施工阶段质量控制的重点,是工程质量保证的关键阶段。
2.1严格执行给排水、采暖材料报验制度材料、设备进场时,我们必须对施工方提供的质保资料、备案证、业主方或施工方确定的样品、检验合格证、清单等进行验收,按规定见证送检,审核试验结果,并报业主方审核认可,重大复杂设备还须进行设备监造工作。待审核合格后,同意该材料或设备使用安装,同时形成专项表格登记备案。
2.2严格执行隐蔽检查制度在施工过程中严格执行隐蔽验收制度。高层施工中给排水、采暖管道及设备安装相对较复杂,施工方必须按设计和规范要求通过监理工程师隐蔽验收。为便于监督管理,建议检验批按系统及建筑单元楼层每六层划分为一检验批,作好隐检记录,形成专项统计表格,以备复查。
2.3狠抓重点、难点、落实监督措施高层建筑给排水、采暖施工一般有以下重点,难点:①高层建筑土建施工阶段。②地下室。③高层建筑的转换层及标准首层。④标准二层。⑤室外综合管网。
2.4加强测量监理工作,严格控制放线定位。
2.5通过组织协调,监控工程质量①定期召开工地例会。针对存在的质量问题,提出改进措施,以督促施工单位提高施工质量水平。②注意与业主、施工单位、设计人员、质监人员的交流,协调处理工程中出现的具体问题和矛盾。③合理利用工程款的签认权,使施工单位提高质量意识。
2.6针对工程的具体情况,合理设置质量控制点、停止点、分清主次,重点控制,重点部位和重要工序实施旁站监理。:
2.7全数旁站监督各项功能测试,保证房屋使用功能在检测前,我们应制作完善的统计表格,张贴上墙,按单元或楼层划分,以保证复检准确。
三、质量的事后控制
关键词:采暖地区;居住建筑;节能改造;设计
采暖地区既有居住建筑节能改造,是符合我国经济发展的趋势。改革开放以来,我国为了快速发展经济,建立了许多高耗能高污染行业,虽然带来了巨大的经济效益,但同时也带来了能源消耗严重、环境污染等一系列问题的出现,需要我国改变原有的经济发展方式,逐渐向环境友好型和资源节约型社会转变。这就需要我们抓住一切可以利用的机会,采暖地区既有居住建筑的改造,可以极大地提高对资源的利用效率,也符合我国新型的经济发展方式。
1采暖地区既有居住建筑节能的改造要求
首先,采暖地区既有建筑节能改造的要求主要是在建筑的硬件设施上,主要表现在垂直单管系统,应该被逐渐淘汰。应该都使用垂直或水平双管系统。恒温阀在使用时也有一定的要求:应该使用三通型恒温阀;以保证控制的有效性。恒温阀的装配应该按照装配要求进行安装,还应该做到它的调节特性、温包、阀头曲线都应该达到合格标准。能够正常感应建筑内的湿度,并能做出相应的调控。其次,应该使用具有说明书、许可证明等一系列达标的装置。改造工程完工之后,还要对这些装置进行反复调整、实验,已证实其装置的性能和使用方式是正确的运用。还应该具有专业的监控设备和专门的监控机构,以方便随时对装置进行定期的抽检和排查。对于不符合使用标准的应该及时予以更换。对于出现不能正常运转或数据监控不正常的装置应及时对其进行检修。最后,室内系统也有一定的要求,具体表现为:应定期热力复核审计,提供系统改造散热器的热量提供数据,然后此基础上分析热提供质量是否达到先前计算标准;还应对水压和出水量进行分析,计算出整个室内热提供与热能耗的投入与产出比率,以为更好地分析室内系统供热的情况,并可以针对出现的问题作出及时的应对[2]。
2采暖地区既有居住建筑节能改造设计的具体实施措施
据有关统计数据称,中国既有房屋采暖的建筑占总数的29.0%。例如房屋采暖能耗每平方米25.3公斤煤,可以大约计算出东北、西北、华北地区每年就要耗费1670万吨煤,这些高耗能的采暖方式,会大量的消耗能源。同时由于我国既有居住建筑维护结构多数存在保温标准低,隔热效果差等问题,因此对我国既有居住建筑围护结构进行节能改造成为当前建筑设计中的重点内容。
2.1墙体节能改造设计分析
对墙体的保温有两种方式,一种是外墙保温,一种是内墙保温。由于墙内外的温度不同,会使墙面发生裂缝,这就提醒在进行既有居住建筑节能改造的时候要对外墙增加保温层,通过对外墙的漏点进行保护层的安装,尽量降低室内外温度差异,还可以通过增加对室内温度的监控,防止室内温度过高,进而导致室内外温度差异扩大。利用安装室内热量检测仪器,对室内温度进行及时的监测,调控室内温度,使其保持在一个稳定的范围内,并根据室外温度对室内温度进行调整。防止室内外温度差异过大。比如对于外墙节能改造中,可在主体结构外墙的基础上通过采用挂或粘贴的方式通过铺设保温材料,同时在保温材料的外侧涂抹一层保护砂浆或保护装饰达到保温的效果,其中图1为外墙节能改造中常见的构造形式之一。由于我国多数采暖地区既有居住建筑多数为7层以下的砖混结构建筑,并呈现为排式布局,且体型规整,多数建筑的体形系数大约在0.3,而墙体厚度大约为240和370mm,因此在墙体外保温节能改造设计中,根据节能50%和65%标准规定墙体的传热系数0.75W/(m2•K)和0.60W/(m2•K),则建筑外墙的保温层厚度、外墙构造方式以及导热系数的确定应根据表1进行判定。
2.2外窗的节能改造
外窗能耗能够达到建筑总能耗的50%左右,所以对门窗的改造对建筑节能有很重要的作用。当前常用的既有居住建筑节能改造中对于外窗的节能改造主要从增加门窗的密闭性,改变窗户的材料等措施,以防止建筑热能的流失与损耗,例如使用一些节能门窗。从房屋的修建着手。在原有窗户的基础上再加上一层窗户,并适当的对两个玻璃进行调整。还有设计研究认为,既有居住建筑中外窗节能改造中对窗洞口四周墙体的节能改造尤为重要。基于此本研究提出了以下几种窗洞和窗口周围墙体节能改造方案。通过对上图进行分析可以得知,图2中的方案(a)和图3中的方案(a)属于墙体和窗洞同时进行改造,而这种改造方案相对于方案(b)而言,其不仅保温效果好,同时对节约改造材料和改造成本也具有显著的作用。但是在实际改造工程中还应根据具体的情况进行具体的分析,以设计出最佳的改造方案,达到节能保温的效果。
2.3热源及管网热平衡改造
首先,我国北方的热管网较长,而大部分管网的建造时间又比较长,旧管网的使用效率较低。保温层受到破坏,致使部分建筑的水循环量过大,水供应出现不平衡的局面。应该通过对供热管线进行直埋,建立健全网络监控配合人力检查的热网监控系统。其次,进行对热能源提供装置进行改造,通过对集体供热总的装置的改造,和单个居住用户的分散处理,来得到提高供暖的能源使用效率。最后,通过对室内温度的监控,利用现代化热计量仪器,对热计量的使用和温度的调控进行合理的安排[1]。对改造成本进行运算,优化改造成本,还有室内、室外供热系统的成本优化,减少热量来源的基础设施改造成本等。具体又可以分为,供暖的能源使用可以细分为天然气、电费、管理人员的工资以及供热成本的相关内容。采暖地区既有居住建筑节能改造是一个对人力、物力、财力耗费的工程,但其成果远比成本要高出很多,然而也不能因为成果显著,就忽略采暖地区既有居住建筑节能改造的成本,不能顾此失彼,应该合理的控制采暖地区既有居住建筑节能的成本,让使用者看到采暖地区既有居住建筑节能的成本构成。
3采暖地区既有居住建筑节能改造的益处
3.1采暖地区既有居住建筑节能的成本降低
采暖地区既有居住建筑节能的改造,会在很大程度上减少采暖地区既有居住建筑节能的成本,会减少建筑内外部围护结构的维护成本,还会降低热提供系统及维护的成本,降低热能来源的提供成本。这就可以简单地用一个公式来表示:供热成本降低=建筑内外部结构的建设与维护成本降低+室内及小区热系统改造成本降低+热源改造成本降低。上述公式主要是根据采暖地区既有居住建筑节能成本降低的具体内容来分的,此外还可以通过供热成本降低的构成来分,也可用公式来表示:供热成本降低=水费成本降低+电费成本降低+燃料费降低。由此可见,采暖地区既有居住建筑节能改造的益处,其直接益处就是减少了采暖地区既有居住建筑节能的成本,为用户节省采暖地区既有居住建筑使用的费用,直接给节能采暖带来成本上的有效降低[3]。
3.2采暖地区既有居住建筑节能的增益效益
采暖地区既有居住建筑节能的增益效益可以从几个方面分析:首先是居民采暖费用的降低。采暖地区既有居住建筑的供暖费用是由能源生产价格,运送的费用,销售的费用相加。采暖地区既有居住建筑节能改造能降低供暖能源运输当中的能量损失,从而减少运输过程中的运输成本[4]。通过对采暖地区既有居住建筑节能的改造,还能增加能源的利用效率,从而在一定程度上减少建筑节能改造能源的成本费用。其次具体的效益有以下两方面,一方面会减少建筑设施的建设费用。进行采暖地区既有居住建筑供暖费用,在某些方面是和建筑的建设是有联系的,例如门窗的改造,地板、屋顶的设计,这些两者都是有交叉的,采暖地区既有居住建筑节能成本的降低,也会减少建筑的费用。会减少对家用电器的使用,空调、电热扇等家用电器使用的减少,会减少用户电费的使用[5]。
3.3采暖地区既有居住建筑节能改造的成效
采暖地区既有居住建筑节能的总成本投入。首先,不同采暖的方法会需要不同的投入这而使用热电联集中供暖则会使成本增加,这几种集中供暖都是常见的采暖地区既有居住建筑的供暖方式。每平方米的差额可以达到20元。
4结语
综上所述,通过对采暖地区既有居住建筑节能改造可以有效地避免供热能源的浪费,还可以提高采暖地区既有居住建筑节能的供暖效率。另外通过对一些基础设施进行改造设计,还能提高供暖系统的安全性,从而在很大程度上提高供暖系统的利用率,减少建筑节能的使用成本,增加采暖地区既有居住建筑节能的使用周期。
作者:掌轩 王丽颖 单位:长春工程学院建筑学院
参考文献:
[1]费良旭,孟庆伟,崔再禹.海南地区既有居住建筑节能诊断与改造研究[J].新型建筑材料,2013,(11):68-71.
[2]沈婷婷.夏热冬冷地区既有居住建筑节能改造策略研究[D].杭州:浙江大学,2010.
[3]李倩林.北方采暖地区既有居住建筑节能改造管理模式研究[D].西安:西安建筑科技大学,2011.
1)有关政府部门对建筑采暖及给排水工程监管不足。现在相关政府部门在对建筑工程进行监管时,经常忽略建筑采暖及给排水工程内部的细节与技术,往往重视主体建筑的结构和质量与建筑的外观形态。加之,与建筑采暖及给排水工程相关的技术性人才在相关政府部门里面比较缺乏,这必然导致对建筑采暖及给排水工程的监管缺少力度,甚至于有时候无法进行。这样一来,建筑施工单位就会更加忽视对建筑采暖及给排水工程内部的细节与构造质量,最终导致建筑工程在整体上出现质量问题,无法保证其安全问题。
2)施工单位对建筑采暖及给排水工程施工缺乏目标性和计划性。因为建筑采暖及给排水工程缺乏相关政府部门和施工单位的足够重视,没有具体的完善的施工计划和目标指导相关人员施工,导致施工过程中经常会出现为建筑采暖及给排水工程预留的孔洞位置不适合或者是根本没有预留。使施工过程出现反复重改的局面,或者是在后期进行补救时,会对完成的建筑主体造成新的破坏,影响后期的施工,使施工工程的质量出现问题,存在安全隐患。
3)建设单位对建筑采暖及给排水工程的重视不足。建筑采暖及给排水工程是整个建筑施工中的重要组成部分,因为相对于主体建筑物而言,建筑采暖及给排水工程所占的分量比较轻,因此,建设单位经常会忽视,甚至会有建设单位安排非采暖及给排水的人员进行现场监管控制,在施工过程中对出现采暖及给排水的管道预留位置不当甚至于未留等情况不能及时发现,这会给后期的施工带来很大的不便,也给住户造成居住隐患。
4)建筑采暖及给排水工程施工人员的技术和素质不高。目前,我国大多数的建筑采暖及给排水施工人员没有经过系统地培训,缺乏专业全面的施工知识,他们的学习就只有通过在施工的实践过程中得到,从而获得知识的积累和完善,但是这样获得的知识是片面的,会致使他们在具体施工时,出现与施工图纸不符的情况,造成建筑的质量出现问题。
2建筑采暖及给排水工程施工中应注意的问题
1)做好建筑采暖及给排水工程施工的前期准备工作。
a.结合施工的实际情况。对建筑采暖及给排水工程制定详细可行的方案和计划。在施工时,详细可行的计划很重要,在施工过程出现细节问题时,可以根据计划及时地做出调整,避免造成损失。施工计划主要有工程的整体结构、采暖及给排水工程计划提出的依据、施工前的所需材料的准备、对施工方案的审查、施工计划不足进行补充和提供保障。
b.仔细准备和检查建筑采暖及给排水工程的施工材料。准备施工材料时,需要进行以下工作:审查建筑采暖及给排水工程的施工图纸,管道直径、工程标高、大小尺寸以及建成主体的尺寸复核等相关工作,使之与相关的建筑规范、标准相符。还要对工程的施工设备机具进行检查和维修,不能有丝毫的马虎,严格按照相关的规范来检测,最后一定要取得设备的检验合格证书。
c.给建筑采暖及给排水工程的施工人员做好培训工作。建筑施工人员的技术是否精湛,是否具备很强的专业性,与建筑的施工质量息息相关。建筑施工单位可以定期配送一些员工去进行专业技术的学习,也可以聘请专业技术人员进行专项培训,丰富其专业知识,提高其施工技术水平,保证建筑工程的质量。
2)保证建筑采暖及给排水工程施工过程中的监管、沟通和质量。
a.建筑采暖及给排水工程施工工程中的质量要保证。在进行建筑施工时,专业技术人员和施工人员要做到密切配合、协调沟通,使施工过程得以顺利进行。要做到统一的计划,把调试采暖及给排水、确定排水口位置还有水表的安装位置,以及暖气的安装工作做好。
b.施工时做到分类分区。在施工过程中,使用分类分区施工的方法,可以在进行高层建筑的建造时,减低因为建筑面积大、垂直高度跨度大而造成的施工难度,能够使得工程的施工工期缩短,成本降低。
c.预留埋设。在施工过程中,使用预留埋设的方法,精确地按照原来的施工图纸给预留位置进行布局,要仔细地观察套管和孔洞能否相吻合。
3)控制和保证建筑采暖及给排水工程后期的质量。在建筑采暖及给排水工程进行到收尾阶段时,施工人员也不能放松警惕,要仔细审查施工的质量是否符合相关的标准规范,主要检查管道漏水、管道位置、暖气通道等。对建筑采暖及给排水工程的试用是不能够被忽视的一个重要环节,对工程进行试用时,如果发现存在问题,要及时地更正解决,保证施工质量。
3建筑采暖及给排水工程施工中经常采用的措施
1)加强相关政府部门的监管力度。在建筑采暖及给排水工程施工中,相关政府部门要切实履行好自己的职责,不能够把监管工作只停留在表面,做形象工程,要坚持为人民服务的原则,全面做好对建筑工程的监管工作。如果在监管中,发现问题,要及时地督促施工单位和施工人员进行纠正和补救,最后做好负责验收的工作,严把质量关。与此同时,相关政府部门也要重视自身人员专业素养的提升,提高其对建筑施工的整体质量的监管水平。同时也有必要做好施工人员技术培训的引导工作。
2)强化建筑采暖及给排水工程施工人员的专业素养。在进行建筑采暖及给排水工程施工时,不仅要求施工人员有专业的技术水平,还要有很高的道德素养。因此,施工单位要组织专门的技术培训课程,对施工人员进行系统全面地培训,告知施工人员在施工过程中要掌握和注意的施工要点,以确保施工质量。
3)要加强建设单位对建筑施工的重视。在建筑工程中,建筑采暖及给排水是非常重要的组成部分,建设单位必须要强化对其的重视度,根据不同的施工地点、施工条件,安排专业的技术人员定期在施工现场进行监管。合理选定监理单位及其专业监理人员进行旁站监理。
4结语
1.1采暖
按照GB50176-93《民用建筑热工设规范》及JGJ26-2010《严寒和寒冷地区居住建筑节能设计标准》主厂房所处的位置隶属严寒地区,必须设置集中采暖系统。因冬季室外计算温度低,采暖期长,主厂房空间大,各层互相连通,采用常规散热器采暖难以达到预期效果,且布置散热器比较困难,故本设计采用低温热水地面辐射采暖为主,辅以暖风机采暖的方式。其中地面辐射采暖热媒为60/50℃热水,由场地锅炉房换热机组供给;暖风机采暖热媒为110/70℃热水,由场地锅炉房直接供给。同时,连接厂房外皮带接口处设置热空气幕,采暖热媒为110/70℃热水。
1.1.1热负荷计算
根据主厂房围护结构的具体做法,结合UHG选煤厂的实际情况,进行了详细的热负荷计算。
1.1.2采暖设施和设备
根据主厂房热负荷计算结果,结合UHG选煤厂业主要求,地面辐射采暖加热管采用De20PE-RT耐热聚乙烯管,等级4,S=6.3,壁厚2.3mm,总长度6010m。选用11套T400分集水器以及1套T600分集水器;暖风机选用14台RH-165热水型暖风机。由此来满足主厂房内部采暖需求;同时可以根据冬季室外温度变化灵活调节开启暖风机台数,实现节能控制。蒙古UHG选煤厂外部皮带采用不封闭的方式,皮带211、711、801及802与主厂房连接处洞口冷风侵入量太大。由此,提出尽量减小连接处洞口尺寸,在皮带与主厂房连接处采用悬挂橡胶皮帘的方式,同时设置垂直式热空气幕进行冷风隔断,以此来保证主厂房内部采暖温度。
1.2通风
根据规范要求,为满足夏季通风降温需求,在主厂房屋顶设置10台DWT型屋顶风机。
1.3矿粉池及门口坡道防冻
主厂房地处严寒地区,冬季室外采暖温度很低,同时风雪天气较多,采暖期太长,导致主厂房内部矿粉池以及门口坡道容易结冰,给生产带来很大的弊端,由此考虑采用伴热电缆融冰化雪的方式。根据场地实际情况,采用2根单位长度发热量为17W/m的电缆以及18根单位长度发热量为18.5W/m的电缆。
2本项目设计特点
2.1采暖
主厂房采暖一改传统的散热器采暖方式,采用低温热水地面辐射采暖辅以暖风机采暖。同时考虑主厂房与皮带连接处的冷风侵入过大,采用垂直式热空气幕隔断冷风,保证室内采暖效果。暖风机采暖方式灵活,可适用于多种类型的车间厂房,当空气中不含易燃或易爆性的气体时,可以作为循环空气供暖用。暖风机不仅可以独立作为供暖设备用,也可以作为补充地面辐射采暖散热的不足部分。本设计中,暖风机悬挂安装于主厂房内部钢柱上,不占用生产空间。另外,暖风机开启方式灵活,可以根据室外温度的变化灵活调节实现节能控制。
2.2通风
根据主厂房生产情况,夏季厂房内部散热量大,需设置机械通风。本设计中在屋顶均匀布置10台轴流风机,新鲜冷空气从下部外窗进入,热空气上浮经风机排出,室内空气组织流动合理。不仅改善了室内空气质量,而且带走了厂房内部积聚的热量,可谓一举两得。
2.3矿粉池及外门坡道防冻
针对主厂房内部矿粉池及外门坡道的结冰现象,采用伴热电缆加热的方式,利用电能转化为热能且主要通过热辐射方式向结冰部分输送热量,以此达到融冰化雪的目的。这种加热方式,启动迅速、温度均匀、安装维护方便、节能环保、安全可靠。同地面辐射热水系统相比,没有试漏、清洗、维护等麻烦。同时,电缆布置方式灵活,控制方便,表面温度一目了然,是一种快捷、有效、安全的加热方式。它为选煤厂主厂房的安全生产提供了有效的保障措施。
2.4节能评估
本工程中的采暖及通风设备均选用符合国家能效标准的节能型产品。同时注意改进热力管道的调节方式,采用平衡阀、自力式流量调节阀,实现管道调度、运行、调节的自动监控。采暖和供热管道保温采用导热系数低的玻璃棉管壳保温,外包铝箔保护层。对采暖管道、法兰、阀门及附件按国家有关标准采取保温措施。系统运行后加强热力阀门及附件等维护管理,降低供热管道热损失,使管道热损失降至5%以下,系统总泄漏率控制在2‰以下。
3结语