欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

解码技术论文范文

时间:2022-04-22 00:10:20

序论:在您撰写解码技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

解码技术论文

第1篇

关键词马铃薯;贮藏;问题;对策;陕西汉中

马铃薯是汉中地区继玉米、水稻之后的重要粮饲作物,曾在为该区广大人民解决温饱问题和脱贫致富作出了巨大的贡献。近年来,随着农村经济的发展,政府已经将马铃薯定位为支柱产业进行发展[1],每年栽种马铃薯2万hm2左右,年产量约40万t。随着马铃薯播种面积和产量的不断增加,马铃薯贮藏过程中的存在的问题不断显现,如何科学有效地进行贮藏[2-3],减少损失,是目前亟需解决的问题。

1马铃薯贮藏对环境条件的要求

1.1温度

在马铃薯贮藏初期,有约10d愈伤期,应将温度保持在15~20℃范围内,湿度90%。马铃薯的机械伤口形成具有保护作用的皮层,阻止氧气进入,也可控制水分的散失及各种微生物的侵入,有利于贮藏,以后应将温度控制在0~3℃。

1.2湿度

相对湿度85%~90%最为适宜。湿度太小块茎的重量会出现很大损耗,而且会变软和萎缩;湿度太大,则使块茎过早萌发和形成须根,以及引起上层块茎出汗,形成大量水滴,附着在块茎表面,导致块茎病害蔓延和腐烂。

1.3通风

通风可以调节马铃薯贮藏环境的温、湿度,供给氧气,排除CO2,防止块茎出汗和抑止微生物的活动和繁殖。

1.4光照

光照能促使马铃薯发芽,能促使叶绿素以及茄碱苷的形成,薯块照光或发芽后,茄碱苷含量急剧增高,对人畜均有强烈毒性。因此,马铃薯应避光保存。

2贮藏中存在的问题

2.1入窖质量差

汉中地区由于马铃薯收获期比较集中,时间紧迫,劳动力不足,多数农户图省事,不经晾晒、挑选,直接将带土的块茎包括病、烂、伤薯一起入窖,泥土多造成通气不畅,窖温升高致使块茎呼吸作用加强,促进了各种生理生化进程,使块茎提早发芽,降低了品质。尤其是病烂块茎,将各种病菌直接接种到薯堆内,成为发病的菌源[4-5]。

2.2不分品种、用途混合贮藏

汉中地区多数农户家只有1个贮藏窖(室),食用薯、种薯、商品薯和加工薯混合贮藏在一起,不仅造成品种的退化、混杂和病害相互传播,影响品种特性;同时对保证食用品质和保持加工价值极为不利,直接影响农户的经济效益。

2.3贮藏期间缺乏管理

该区许多农户采用“自然管理”的方法,在贮藏期间,不检查、不调整温度和湿度,不通风换气,任其自然发展,很容易造成病伤、发芽等损失。另外,造成CO2气体的大量积累,使薯块的正常呼吸受到阻碍,薯芽窒息,以致影响出苗率,且易造成人入窖窒息,出现人身事故。

2.4贮藏窖建造不科学

该区地下水位较高,造成窖内湿度过大,甚至出水。有些贮藏窖没有通风孔道,或通风孔道设置不合理,因而无法调节贮藏窖内温湿度,更无法通进新鲜空气,导致贮薯块受损害。

3对策

3.1做好田间病虫害防治,适时收获

入窖块茎的病斑和烂薯是贮藏的最大隐患,而病薯和烂薯都来自田间,因此,搞好田间病害的防治,是减少块茎病斑和烂薯的最根本的办法。及时有效地进行田间马铃薯病害的药剂防治,就可以大大降低病害感染率,入窖时就比较容易挑除病、烂薯,从而保证入窖马铃薯的质量。适时收获可以促进薯皮老化,薯皮老化程度是决定薯块是否耐贮的重要指标。因此,必须采取措施,使收获的块茎表皮老化,以增强它的保护和抗伤害能力。

3.2严把质量关,确保入库质量

入窖时严格控制入窖质量,挑去伤、烂、病、虫蛀等薯块,认真搞好入窖前薯块处理,做到薯皮干燥、无病块、无烂薯、无伤口、无泥土及其他杂质。为使薯皮干燥,在块茎收获出土时,短时间风干,再运回窖旁晾晒。对于食用和加工用薯则不能曝晒,晾干即可,对于种薯要挑出畸形和非本品种块茎。入窖前可给薯块喷洒杀菌防腐剂,杀死附着在块茎表面的病菌,切断菌源,挑选出烂薯,并清除薯块上附带的泥土,防止病害的扩大和蔓延。

3.3分类贮藏

要做到分品种、分级别、分用途单窖(室)贮藏,便于按用途进行相应的管理,一般每户应建2个以上贮藏窖或一窖多室,保证贮藏薯的种性和商品性。对于以种薯生产为主的农户,单窖(室)贮藏可以保证用种的纯度,没有机械混杂,同时保持最适宜的温湿度,适宜温度应保持在3~4℃,适宜湿度应保持在90%左右;对于食用薯及商品薯而言,要黑暗贮藏,温、湿度按照种薯标准进行调节;对于加工马铃薯而言,温度应保持在8~10℃,以降低薯块中还原糖含量。

3.4加强贮藏期间的管理

贮藏管理工作的重点就是通过调控温、湿度及通气状况,创造最佳的贮藏环境和条件,防止薯块过多的失水、伤热、发芽等现象及病害的发生,降低损耗,保证其优良品质。窖内要悬挂温度计和湿度计,定期检查,了解温度、湿度的变化情况,一旦发现不适宜状况,及时调控,同时应根据贮藏的不同时期和天气状况,及时调控温湿度。为防止茎块发芽,可以施用马铃薯抑芽剂,以达到保质保鲜的目的。

3.5改进贮藏窖,增加调控能力

借鉴发达国家的经验,采用现代化保温材料,建造容量大,机械化程度高,调控能力强的现代化贮藏窖,实行集中管理和贮藏,这样不仅可以提高贮藏品质,减少损耗,而且还可以大大降低成本。也可以在现有基础上改进贮藏窖的结构和设施,增强调控能力,主要是增加自然通风换气设施,利用强制通风换气设备,根据经济实力,可建造有风机、主风道、分风道的水泥、砖石结构的大中型现代化贮藏窖。

4参考文献

[1]柯斧.秦巴山区马铃薯规范化高产栽培技术[J].现代农业科技,2009(19):103.

[2]宋吉轩,张敏,邓宽平.贵州马铃薯贮藏现状、存在问题及解决措施[J].安徽农业科学,2007(30):9488-9489.

[3]韩秀蓉.马铃薯的贮藏[J].贮藏加工,2002(12):29.

第2篇

0 引言

中文MARC是中国机读目录(China Machine-Readable Catalogue)的简称,中文MARC的主要作用是将各类书目信息编目成统一的标准计算机可读形式,便于读者检索以及各图书情报部门之间交流书目。学位论文是高校大学生为获取相应级别学位而撰写的关于在校期间所学知识的应用或所完成的科研成果。

目前,我国各高校的学位论文大部分都是用中文撰写的,也有一小部分是用外文撰写的。高校图书馆将学位论文收藏至自建特色数据库,就需要对学位论文进行编目,对学位论文编目时要保证编目产生的关于学位论文的数据的质量,以方便读者检索并利用学位论文。

1 中文MARC编目学位论文存在的问题

高校图书馆对文献资源进行有效的分类标引和主题标引,并用相应的著录、编目格式使文献资源的主要检索项及特点形成书目的形式就是高校图书馆的编目工作[1]。学位论文编目的工作流程一般为:回溯编目―审校―典藏―贴书标―入库上架。学位论文作为一种特殊的文献资源,其编目具有自己的特点:1)编目难度高。高校大学生研究的学术领域及学术方向繁多,其具体研究方向小而专,对非专业编目人员来说,分类编目比较困难;2)编目工作量巨大。教育事业飞速发展,各高校每年都在扩大招生,进而各高校每年产出的学位论文数量激增,而高校图书馆编目人员有限,而且图书馆每年还要有其他书目入馆需要编目,因此编目人员总的工作量非常大。3)学位论文撰写语种不统一。部分高校设有外国语学院,这些学院的部分学生所撰写的学位论文所使用的语种一般为外文。

中文MARC是以UNIMARC为基本依据,根据我国出版物的具体情况制定的[2]。中文MARC机读记录字段区有如下10个功能块:0―标识块;1―编码信息块;2―著录信息块;3―附注块;4―款目连接块;5―相关题名块;6―主题分析块;7―责任者块;8―国际使用块;9―国内使用块[3]。中文MARC通过对每个功能块增设功能不同的多种字段及子字段、对每个字段又增设不同要求的标识符的方式更为详细的记录文献信息。

高校图书馆编目学位论文最终要达到的目标是:1)精准、全面、直观的反映出学位论文所表达的科研成果,包括科研成果的领域,关键词等信息。2)准确标引学位论文,形成规范数据,方便读者进行检索。编目学位论文是读者可以使用学位论文的前提和基础,学位论文编目工作的质量直接关系到读者对学位论文的使用情

况[1]。因此,学位论文编目工作是高校图书馆工作中的一个重要分支,各高校对学位论文编目工作都很重视。但是由于学位论文本身具有的特殊性和中文MARC编目具有的高技术性,导致中文MARC在对学位论文进行编目的时候会出现一些问题,而这些问题的出现直接影响了学位论文编目的质量,进而影响到学位论文在高校图书馆乃至整个学术界的正常流通。中文MARC在高校图书馆学位论文编目中存在如下问题。

1)标准不统一。当前我国使用比较普遍的中文MARC编目标准有两种:一种是国家图书馆编写制定的全国图书馆联合编目中心系统标准;一种是北京大学图书馆编写制定的中国高等教育文献资源保障系统,即CALIS系统标准[3]。虽然采用这两种中文MARC编目标准编目的数据覆盖面都很广,共享性也比较强,但还是应该将这两种标准结合,制定一套唯一的编目标准。有了唯一的标准,各高校图书馆在选择编目系统时也不需要进行比较,既方便了高校图书馆编目工作,也能使图书信息流通更顺畅。

2)标引不规范。《中国图书分类法》是高校图书馆编目分类的主要依据。由于部分高校图书馆还有自己编写的《图书馆编目分类细则》,并结合这两个规范来进行编目,因此在很多编目细则上出现了不一致现象。

3)著录字段不完整。中文MARC编目虽然具有详细的编目规则,但是不同的编目员对规则的理解会有所不同。在中文MARC著录中,字段和指示符都有详细的规定,如果出现指示符的漏著、错著都会直接影响到学位论文的检索。

4)外文语种撰写的学位论文编目格式不统一。当前我国图书馆使用USMARC对外文图书进行著录,而有些图书馆认为只有原版外文书籍才应该用USMARC进行编目,其余外文图书应该按中文MARC格式来著录。因此,使用外文撰写的学位论文编目格式就出现了两种,即USMARC格式和中文MARC格式。这种不一致的编目格式会严重影响到学位论文的网上共享,对数字图书馆的建设也有不利影响。

高校图书馆每年进书量都很大,新进图书只有经过编目才能入库上架,读者才能在馆藏书目检索系统中检索到图书,而高校图书馆专业的编目人员非常有限,因此就会出现非专业人员对图书进行编目,比如燕山大学图书馆学位论文的编目工作就是由勤工助学的学生来完成的。编目工作对人员专业要求比较高,编目细则又非常繁杂,虽然专业的编目人员已经设定号学位论文编目格式,但是非专业人员在对学位论文进行编目的时候很容易就会出现漏著、错著的现象,而在对学位论文编目中出现的错误只有非常专业的编目人员才能及时发现,这样就会导致很多编目过程中出现的错误到最后都没有被发现,从而影响到读者对学位论文的检索。

2 改进与展望

第3篇

关键词:高速公路,视频传输联网,压缩编码,关键技术

 

在科技迅猛发展的今天,代表交通行业先进生产力的高速公路监控系统采用将传统视频模拟信号经过抽样、量化和编码成二进制数字信号,然后进行各种功能的处理、传输、存贮和记录的数字视频技术的方式处理信息相对于传统的模拟方式来说具有较大的优势及较高的性价比。也就是实现了高速公路省域数字联网监控系统,但与此相关的如何在较窄的带宽上进行视频的可靠传输,又成为必须解决的问题。数字化的视频不经过压缩则占用的带宽太宽。

一、压缩编码技术的发展

视频压缩编码的理论基础是信息论。科技论文。压缩就是从时域、空域两方面去除冗余信息。压缩编码的目的就是要以尽量少的比特数表征图像,同时保持复原图像的质量,使它符合特定应用场合的要求。不同的图像编码技术的研究一直遵循着两条主线索不断的展开,一是对图像信源特性的不断认识:二是对人类视觉系统的不断认识。对两方面的不断深入研究,都推动着图像编码技术的进步。经过十多年的发展,图像编码技术经历了两代历程,即考虑图像信源统计特性的第一代图像编码技术和考虑人眼视觉特性及图像传递景物特征的第二代图像编码技术。

第一代图像编码技术以信息论和数字信号处理为理论基础,以Shannon的编码理论为指导的,充分利用了图像空域时域的相关性进行压缩编码,目的是去除图像信源数据中的相关性(数据冗余)。常见的有嫡编码、预测编码、变换编码和矢量编码等技术等已成为这类图像编码技术中的较成熟的经典技术。它们已被现行图像压缩编码标准所广泛采用。

第二代图像编码技术在利用人眼视觉特性及图像传递景物特征的基础上,结合了模式识别和计算机图像学的方法。它突破了信息论的框架,充分利用人的视觉心理特性和图像的各种特征对图像进行编码,可以获得很高的压缩比。近几年出现的小波变换和神经网络等新的编码方法已受到人们的高度关注。它们的最大特点就是引入了新的数学工具和理论,如小波理论、分形几何理论、神经网络理论和计算机视觉理论等。科技论文。新一代的图像编码技术主要有分形图像编码、基于神经网络(NN)的图像编码、模型编码和小波图像编码。

二、压缩编码的标准

国际上有很多图像压缩标准,目前比较流行的三类视频编码标准,主要用于会议电视的H.261/263标准,用于运动图像的M-JPEG标准和MPEG系列标准。其中MPEG是国际标准化组织ISO/IEC下的一个制定动态视频压缩编码标准,它为视频压缩编码技术的实用化作出了巨大贡献。MPEG又包括MPEG-1、MPEG-2、MPEG-4三个正式国际标准。我们知道,衡量一种压缩技术的好坏的三个重要的指标如下:

1、压缩比要大。即压缩前后所需的信息存储量之比要大;

2、实现压缩的算法要简单,压缩、解压缩速度要快,尽可能做到实时压缩解:

3、恢复效果要好,要尽可能地恢复原始数据。

所以根据实际需求和应用才能准确衡量一个压缩技术的好坏。通过比较可以得出,适于高速公路远程图像监控的主要是MPEG系列。MPEG1主要应用于码率为1.2~2Mb/s的图像压缩,根据一些实践经验,其图像传输清晰度不能很好地满足高速公路图像传输的要求。而MPEG-2完全吸收了MPEG1所采用的压缩编码技术,同时性能加以扩展,涵盖了从常规图像到HDTV等非常宽范围内的视频压缩业务。主要应用于码率为4~20Mb/s的高清晰度图像编码,MPEG-2标准由于采用了帧内和帧间压缩方法,简单地讲是对每一幅图像,称之为帧,进行即用一定的算法对帧自身、以及相邻两帧之间的冗余部分进行去除。从而避免了将已有的信息再次传递给接收端,从而提高了压缩效率,降低了传输所需的网络带宽。另外采用MPEG-4压缩算法其实也是一个不错的选择,但是当前基于这种算法的都是软件的解决方案,没有适合的硬件压缩芯片,市场上暂时没有单机的图像传输编解码器,还有待进一步的发展完善。所以尽管对运动图像不断有新的压缩标准出现,但MPEG-2标准的优势在实用化方面己远远走在前面。综上可知目前MPEG-2图像压缩标准在图像质量和图像应用领域具有很大的优势。

三、视频编解码器

(一)视频编解码器结构

视频编解码器主要完成视频图像的编解码工作,用于实现为远端监控现场的视频图像的远程传输,并通过现有通信系统接口及通道对视频的编解码参数进行控制的设备。视频编码器为远端监控现场使用的视频压缩传输设备,视频解码器为监控中心使用的视频解压缩设备。科技论文。根据视频数字输出接口形式的不同,视频编解码器大致可以分为:NXEI接口和IP接口2种。

1、NXE1接口视频编解码器

这种视频编码器结构主要包括A/D转换模块、视频压缩模块、复用电路及多El反向复用电路。外部输入的模拟视频信号通过BNC接口接入A/D转换模块,将模拟视频信号转换成非压缩的视频数据。视频压缩模块将这些非压缩的视频数据,以M-JPEG或MPEG-2方式进行编码压缩,同时对语音信号进行编码。编码压缩后的数字图像信号、语音信号以及通过数据口接入的RS485控制信号和其他异步数据通过复用电路复用,然后再通过多E1反向复用电路复接到l-8个2M的E1接口上进行传输。

视频解码器结构主要包括D/A转换模块、视频解压缩模块和分接电路及多E1反向复用电路。对数据的处理过程为视频编码器的逆向处理。多E1反向复用电路从多个2M的E1接口上接收数据并进行分解,复原出数字图像信号、语音信号和数据,并以M-JPEG或MPEG-2的相应方式对数字图像信号进行解压缩,还原出模拟图像并输出。

采用多El传输方式可以充分利用己有SDH通信网的资源,灵活分配带宽,用户可根据网络资源和对图像的要求任意分配N个E1。一般情况下每路图像使用3-4个El即可,最多使用4个E1也就够了。由于El是SDH的标准接口,所以,在SDH通信体制下,使用简单、方便。

2、IP接口视频编解码器

IP接口视频编解码器在编码方式和内部结构上和NXEI接口视频编解码器基本相同,其差异主要是视频数据输入、输出接口。IP接口视频编解码器视频数据输入、输出接口采用10M以太网接口,满足TCP/IP协议。其最大视频带宽为8M,另外2M用于传输语音和数据。

(二)编、解码器之间互联

编、解码器之间互联既可通过E1接口,也可以通过10/100M以太网接口。这取决于通信系统所能提供的接口和所选用的编解码器的数字接口。互连方式一般采用编解码器一一对应的方式。在实际的应用过程中,数字图像所占用的带宽取决于对图像质量的要求。由于高速公路的图像主要是高速运行的汽车,为保证图像的连续性,防止拖尾和“马塞克”现象。数字图像所占用的带宽一般为6-8M.对采用NXEI接口编解码器,需要3-4个E1接口互连。对采用10M带宽的IP接口编解码器来说,1个IP接口只能传输一幅图像。

参考文献:

[1] 路林吉,吕新荣. 数字图像监控技术讲座 第一讲 概述[J]电子技术, 2001,(07) .

[2] 宋成柏. 港口视频监控系统解决方案探讨[J]中国港口, 2002,(07) .

第4篇

关键词:NiosII,嵌入式,高清,视觉,单片机

 

总体结构

系统硬件分为:高清图像采集板、NiosII核心板、单片机接口板三部分。软件由NiosII和单片机软件组成。考虑到程序的标准化、可移植性,NiosII程序和单片机程序都使用标准C编写。

高清图像采集

方案一用工业用高清镜头采集影像,再对模拟视频解码,得到高清视频数据。解码芯片可选AD的ADV7181C,10位集成多格式标清高清视频解码器,四个10位ADC采样速率最高110MHz,支持720p/1080i高清分量,最高对1024x768、70Hz(XGA)RGB图形进行数字化处理。科技论文。或TI TVP5150AM1,超低功耗优化架构,工作状态下功耗仅为113mW,只需一个晶振就能支持所有标准,可通过I2C对亮度、对比度、饱和度、色调、锐度等控制,功能强大使用方便。或飞利浦SAA7114H,该芯片最多允许6个复合视频输入,显示比例调整分辨率调整,解码精度高支持视频窗口缩放。科技论文。此方案成本高体积大。

方案二用高清图像传感器采集,直接输出高清图像数据。从芯片的性能指标、价格供货、技术支持、开发难易程度等方面考虑,Omni公司的OV9712芯片较为合适。该传感器为1/4”标清高清CMOS图像传感器,像素尺寸3.0um,内置OmniPixel3-HS技术,可提供WXGA(1280X800)分辨率、640x480、HD720p三种格式图像,10bit彩色rawRGB并行图像数据输出,PLL锁相环,高信噪比图像质量,镜头校正,画面缺陷补偿。该方案成本百元左右,硬件简单性能稳定,符合实际要求。

设计OV9712采集电路时,要使用独立电源,电路板上尽量减小信号线长度及避免上下层平行布线,电源芯片放在板子外侧。外围器件尽量以OV9712要求参数一致,电路中模拟地与数字地分开走线最后汇集一点。OV9712有效图像传感区域不在芯片中间位置,而是偏右偏上,为了使目标图像能处于画面中心,绘制电路板时要注意调整芯片位置,具体尺寸参见OV9712器件手册。

Nios核心板

FPGA芯片选型比较如下:

 

 

第5篇

论文关键词:直读式电子压力计;单芯远距离传输;曼彻斯特码;编码;解码

论文摘要:本文从现有存储式电子压力计的技术现状出发,分析了在井下高温、高压、远距离条件下,实现压力、温度数据实时可靠采集、传输、分析的压力计——直读式电子压力计的数据传输方案和实施,并从技术需求分析、通讯方案选择、单芯远距离传输、曼彻斯特码编解码的软硬件设计等方面,对直读式电子压力计数据传输方案进行了深入研究。试验数据分析结果表明,本文研究结果解决了直读式电子压力计的关键技术,增强了电子压力计在油田测井领域的市场竞争力。

一、引言

目前存储式电子压力计已广泛应用于国内各大油田高温井下压力和温度的测量。存储式电子压力计在工作过程中,仪器内的单片机系统和各种传感器共同完成井下压力和温度的采集,并以数字量形式存储于电可改写型存储器中,待测试过程完成后,再将压力计返回地面,用专门配套研制的数据回放仪与压力计连接,通过软件和硬件接口通讯进行数据的接收、回放和处理,使用很不方便,影响生产。

因此,为克服存储式电子压力计的上述缺点,提高油田生产效率,提升电子压力计在油田测井领域的市场竞争力,必须研制在井下高温、高压、远距离条件下,实现压力、温度数据实时可靠采集、传输、分析的压力计——直读式电子压力计。

二、直读式电子压力计技术需求分析

(一)功能及主要技术指标要求

直读式电子压力计实现井下压力和温度参数的测量,并将测量结果通过单芯铠装电缆实时传送至地面解码控制仪,主要技术指标要求如下所示。

a) 压力测量范围:(0~30、45、60、80)MPa;压力测量误差: 0.04%F.S;

b) 温度测量范围:(-20~+150)℃, 测量误差:±1℃;

c) 传输距离不小于6000m;通讯误码率1.0×10-7。

(二)基本方案及工作原理

直读式电子压力计由井下电子压力计和地面解码控制仪两部分组成,其中井下电子压力计由压力传感器、温度传感器、信号放大电路、模数转换电路、单片机系统、编码电路、数字通讯接口电路和装载于单片机系统中的相关工作软件组成,解码控制仪由解码电路、通讯接口电路、通用计算机(油田配置)和相关工作软件组成。

工作过程中,井下电子压力计由地面解码控制仪通过单芯铠装电缆提供能源,温度和压力传感器分别将环境压力和温度转换为电信号输出,该电信号经放大和模数转换后由单片机系统进行数据实时采集和处理,然后按一定周期经数字通讯口输出。井下电子压力计和井上解码控制仪之间通过单芯铠装电缆连接,解码控制仪中通讯接口电路接收井下电子压力计输出的压力和温度数据,并经解码后输入计算机中进行实时分析和处理。

三、数据传输方案选择

设备之间数据通讯通常有并行通讯和串行通讯两种方案,并行通讯的缺点是传输距离短,通讯信道所占点号多,而串行通讯与之相反。根据井下电子压力计与井上解码控制仪的数据传输特点,需选择串行数据传输方式。

在曼彻斯特编码中,用电压跳变的相位不同来区分逻辑1和逻辑0,即用正的电压跳变表示逻辑0,用负的电压跳变表示逻辑1。

在油田测井中,井下电子压力计在井下采集大量信息,并传送给地面解码控制仪;但井下电子压力计到地面解码控制仪这段信道的传输距离较长且环境恶劣,常用的NRZ码不适合在这样的信道里传输,而且NRZ码含有丰富的直流分量,容易引起滚筒的磁化。曼彻斯特编码方式使得信号以串行脉冲码的调制方式在数据线上传输,和最常用的NRZ码相比,消除了NRZ码的直流成分,具有时钟恢复和更好的抗干扰性能,这使它更适合于从井下到井上的信道传输,因而在井下电子压力计和地面解码控制仪之间选用曼彻斯特编码使数据传输可靠性更高、传输距离更远。

四、曼彻斯特码编码软硬件设计

每一周期井下电子压力计需将采集到的压力和温度两个参数分别进行曼彻斯特编码方式输出,井下电子压力计与地面解码控制仪之间按如下通讯协议进行。

a) 压力与温度均以字为单位进行传送,先发送压力字,后发送温度字,一个压力字和一个温度字的组合称为一个消息;

b) 每一个字由20位组成,第1~3位为3个起始位,第4~19位为16个数据位,第20位为奇偶校验位;

c) 压力字3个起始位电平为先高后低,温度字起始位为先低后高,高低电平均各占一位半,压力字与温度字校验位均采用奇校验;

d) 传输的波特率:5.7292 kbps(175μs/位),传输一个消息共耗时3.5ms。为保证数据传输可靠性,井下电子压力计同一消息在一个采样周期内重复发送两次,地面解码控制仪根据校验位判断每个字的正确性。

由单片机编程输出两路I/O控制信号,经过滤波电路、运放电路、整型电路后,产生曼彻斯特编码双相电平信号,并经单芯铠装电缆送至地面解码控制仪。为满足曼彻斯特编码格式及井下电子压力计与地面解码控制仪之间的通讯协议,井下电子压力计软件采用如下的编程方式输出波形。

a)压力字同步头为262.5μs高电平后跟随262.5μs低电平,温度字同步头为262.5μs低电平后跟随262.5μs高电平;

b)若数据位为逻辑0,则在87.5μs低电平后跟随87.5μs高电平;

c)若数据位为逻辑1,则在87.5μs高电平后跟随87.5μs低电平;

d)校验位的波形产生方式与数据位相同。

五、曼彻斯特码解码软硬件设计

地面解码控制仪需将井下电子压力计输出的曼彻斯特码进行解码,并按通讯协议用软件将接收到的曼彻斯特码数据转换为井下电子压力计测得的压力和温度数据,即地面解码控制仪中的解码过程为井下电子压力计编码过程的逆过程。曼彻斯特码解码过程可分为如下三部分:

a) 同步字头检测,并辨别其为温度数据还是压力数据。

b) 对曼码形式的数据进行解码,从曼彻斯特码波形中分离出同步时钟,并将时钟和数据进行处理使曼码数据转化为非归零二进制数据。

c) 将串行数据转化为并行数据,并进行奇偶校验,以检验数据传输的正确性。

经过几千米铠装电缆传输上来的数据,幅度衰减到毫伏级,因此井上需要精密的解码电路,才能保证数据传输无误码率。井下传输上来的数据经过滤波电路、精密运算放大器、双D触发器输出曼码波形给单片机,经过单片机的程序转化为井下的压力与温度数字量。

六、试验结果

直读式电子压力计首台产品完成厂内试验后,到油田用8000m的铠装电缆连接井下电子压力计和地面解码控制仪,将电子压力计下放到井下6500m的深度,在温度高达150℃、压力为30~60 MPa的油井中测试压力和温度。在三次连续5个小时的测试过程中,数据传输准确可靠,没有出现丢点现象,误码率为零。

七、结束语

试验数据统计分析结果表明,本文研究结果解决了直读式电子压力计通讯方案、通讯协议、单芯远距离传输、曼彻斯特码编解码软硬件设计等关键技术,增强了电子压力计在油田测井领域的市场竞争力。

参考文献

第6篇

关键词:RGB YCbCr FPGA 色彩空间转换

中图分类号:TN911 文献标识码:A 文章编号:1672-3791(2014)09(a)-0023-01

1 常见色彩空间

我们主要介绍RGB和YCbCr色彩空间。RGB色彩空间是一种常用的色彩空间。它可以实现不同平台的映射而不严重损失颜色信息。任何一种颜色都可以由三基色红、绿、蓝混合叠加而成。RGB三个分量彼此相互独立,三个分量的值越小所代表的亮度越低。RGB色彩空间它所占用的带宽和存储量是很大的,如果使用该色彩空间进行图像传输,非常不利于图像的处理。所以引入另一种色彩空间YCbCr。该格式的色彩空间是演播室编码方案中使用的颜色模型。Y,Cb,Cr分别代表亮度、蓝度分量和红度分量。YCbCr色彩空间有以下优势。首先它的构成原理符合人类的视觉感知过程,再次它可以实现亮度和色度的分离,由于人眼对亮度的变化更敏感,所以我们在传输图像时减小带宽的同时引起的颜色损失小,人眼几乎无法察觉。

2 总体设计方案

系统的总体设计框图如图1所示。

基于FPGA的色彩空间的转换过程可以描述为:首先通过CCD摄像头进行视频图像采集,采集来的RGB图像为NTSC或PAL制式的,接着我们会把视频数据送到解码芯片TVP5150,它会将信号变为ITU-R BT.656格式的数据流。我们选取的TVP5150芯片是和FPGA主控芯片集成在一个开发板上,它的功耗非常低,芯片小巧利于便携。视频解码芯片在对视频信号处理之前总线会对其进行配置。从解码芯片出来的信号便进入FPGA芯片,进行串并转换、解交织等操作最终实现色彩空间的转换。最后信号送到ADV7123芯片进行编码,并通过D/A转换芯片在VGA显示器上显示出来。

3 仿真与硬件验证

硬件部分我们采用了Alera公司的FPGA芯片EP2C8Q208C8N作为核心处理芯片,该芯片内部含有丰富的可编程逻辑资源,可以非常方便的完成相关乘法器的例化。在使用乘法器IPCore时,我们需要进行优化设置。硬件部分包括CCD摄像头、FPGA主控芯片、视频解码芯片TVP5150、视频编码芯片ADV7123等。最终将VGA线和显示器的VGA口相连接,便可以通过显示屏观察结果。

硬件实物图如图2所示。

软件部分采用Quartusii 9.1进行Verilog语言的编写,并进行时序仿真。进行时序仿真的结果图3所示。

4 结语

生活中存在多种色彩空间,它们各自具有不同的特点。但是在很多情况下我们又得在它们之间进行转换,这无论对于科研研究还是消费市场都是很有必要的。本篇论文是通过硬件实现的RGB色彩空间到YCbCr色彩空间的转换,采用的Alera公司的FPGA芯片EP2C8Q208C8N作为核心处理芯片,利用其内部丰富的可编程逻辑资源实现空间的转换,并采用Quartusii 9.1进行软件编程与仿真,验证了模块的功能。

参考文献

[1] 唐晓燕,贾锋,韩磊.基于FPGA的视频颜色空间转换电路设计[J].电子与电脑,2006(8):47-49.

[2] 吴康,刘耀元,胡民山.用FPGA实现色彩空间RGB到YCbCr的转换[J].南昌高专学报,2007,22(6):140-142.

第7篇

【关键词】MP3;SOPC;Nios II;硬件实现

1.引言

MP3(MPEG Audio Layer3)是高品质的音频压缩标准,因其在音质,复杂度与压缩比的完美折中,占据着广阔的市场,目前在便携式设备领域深受人们喜爱。而随着消费电子的快速发展,MP3在各种场合的需求越来越多,同时针对MP3解码器的设计也越来越多。其中主要有以下三种方式:①以专用MP3编解码芯片为核心加上必要电路的VLSI实现;②DSP处理器加外部存储器,数模转换等器件实现;③以低速核心处理器(CPU/RISC)与其他硬件加速模块的SOPC设计加上器件实现。而第三种实现方式相对于前两种方式在功耗和性价比方面有着明显的优势,本文是基于SOPC技术来实现MP3解码器的设计,其中MP3文件数据用SD卡来存放[1]。

2.MP3解码流程分析

MP3解码流程如图1所示,解码的主要过程包括同步提取码流(以帧为单位)哈夫曼解码,比例因子解码,反量化,重排列,立体声处理,混叠重建,IMDCT变换,子带综合滤波合成,最后输出原始的PCM数据。

在解码过程中,耗时比较多的主要是IMDCT和子带综合滤波这两部分。在编译后它们占据着相当多的硬件资源,功耗特高,所以在设计时针对这两个计算量大的算法IMDCT,子带综合滤波器做了硬件加速处理,来提高整个系统的性能。在IMDCT算法中有长块和短块,计算时长块输入是18点而短块输入是6点,长短块输入的值都是非2的n次方,所以可以采用Szu Wei Lee快速算法,此算法对输入点数越大的运算,其速度提升就越明显。传统的IMDCT算法,在计算长块时需要的是36*18次乘法和36*17的加法,采用Szu Wei Lee算法后,长块的计算只需要43次乘法和115次加法,程序的运算速度显著提高了。在设计子带综合滤波时,直接计算则需要执行32*64次乘法和31*64次加法,两声道采样率为44.1KHz,乘法运算量为(44100/32)*(64*32+512)*2=7056000次/秒,而系统时钟一般都采用的是50MHz,单个周期内占着整个解码时间的58.2%,严重影响了整个系统解码的速率。所以可以根据余弦函数的对称性,并结合Byeong Gi Lee快速DCT算法来进行改进,改进后子带综合滤波则只需要进行384次乘法和376次加法,大大提升了运算速度[2]。

3.系统的硬件设计

基于Nios II的嵌入式系统主要是由三部分组成:IP库(NiosII软核处理器,Avalon总线,设备接口等),GNUPro软件编译器,SOPC Builder开发工具。本文在硬件设计时使用Altera公司的Cyclone II FPGA芯片,型号为EP2C70F896C6,主要设备包括片外SDRAM存储器、SD卡、音频芯片WM8731、LCD等,其中FPGA芯片完成对各个硬件模块和数据流的控制,片外存储器存放程序数据和执行代码,SD卡存放MP3文件,音频芯片将PCM数据流转换输出,LCD显示系统状态,IP核的复用是SOPC设计的关键[3]。其硬件系统结构如图2所示。

而FPGA内部逻辑设计是以Quartus II为开发环境,以Verilog语言编程实现音频控制,SD卡的读写,液晶显示驱动等功能模块的设计。用SOPC Builder配置并产生NiosII软核处理器以及必要的外设,然后在再通过编译,下载到FPGA的配置芯片中,形成硬件逻辑电路的连接,最后验证系统,从而实现MP3音频文件的输出。除了音频模块、SD卡控制模块、LCD显示驱动模块外其他模块都可以通过SOPC Builder来添加IP核构建。

至于MP3解码算法中的子带综合滤波,IMDCT变换两部分处理起来特耗时,针对这类耗时问题,可以采用软硬件协同处理(软件中耗时较多的部分进行硬件加速后,往往会比原先软件处理时的速度快上好几倍。)来提高整个系统运行的时间。通过这种设计方法,在综合时可以确定系统软件和硬件之间的相互制约关系,从而保证系统的确定性,高效性。

4.SOPC片上系统的实现

在FPGA中搭建SOPC系统时,需要用到如下图3所示的软核处理器和Avalon总线结构和外设接口等,其中,系统时钟c0由外部晶振50MHz倍频后得到的,c1为100MHz外设SDRAM时钟,c2为音频芯片提供的18.51MHz工作时钟。timer用于系统内部时间的产生,time_stamp用于记录指令的运行时间。片外SDRAM存储芯片是作为程序存储器及数据存储器。本系统自定义了AUDIO模块,该模块主要用于与WM8731音频芯片数字接口进行数据传输。

5.实现结果

本文是基于SOPC技术实现MP3解码器的设计,其优势在于系统功能改进的灵活性,即不改变硬件平台的情况下,可以随便的对系统进行增删和优化,降低系统的成本,这是其他方案很难比拟的地方。而本设计是在在DE2-70开发板上实现的,硬件解码系统采用Verilog HDL语言进行描述,经过RTL级仿真和验证后,在Cyclone II EP2C70F896C6器件内资源占用率为8%,总的寄存器为3335个,系统频率可达到72MHz,经过实际测试,本设计达到了预期的效果。但还存在着一些地方不够完善和有待改进,这同时也是以后MP3播放器设计需要改进和研究的重点:

(1)本设计功能比较简单,编译后FPGA芯片资源占用的比较少,可进一步增加其它功能,如图像显示。

(2)如何改进更有效的算法,提高系统运行时间,降低功耗,以达到便携式高性能、低功耗的要求,这是未来MP3设计研究的重点。

参考文献

[1]毛丽萍.MP3音频编解码运算中IMDCT算法研究及其FPGA实现[D].[硕士学位论文].华东师范大学,2007.