时间:2022-07-28 07:27:13
序论:在您撰写分数乘法教案时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
教学目标:小学资源网xj5u.com
1.使学生理解分数乘法的意义,掌握分数乘法的意义,掌握分数乘法的计算法则,能够比较熟练地进行计算
2.使学生掌握分数乘法和加、减法的混合运算,理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3.使学生理解分数乘法应用题中的数量关系,回解答求一个数的几分之几是多少的应用题。
4.使学生理解倒数的意义,掌握求倒数的方法,能够熟练地求一个数的倒数。
教学重点:
1.分数和分数相乘的意义和计算法则。
2.求一个数的几分之几是多少的应用题。
教学难点:小学资源网xj5u.com
分数和分数相乘的意义和计算法则。
教具准备:卡片、小黑板、多媒体课件以及实物投影仪
第一课时
教学过程:小学资源网xj5u.com
一、
复习。
说出下面算式表示的意义。
9×3
4×6
12×10
问:整数乘法表示的意义。
计算:+++=?
提问计算结果,并板书。小学资源网xj5u.com
问:这道题每个加数有什么特点?你是怎样计算的?
引入新课:分数和整数相乘。
二、自主性学习,教师引导。
教学分数和整数相乘可以表示的意义。
投影示意图:学生读题。
引导学生分析问:从图上看,1个
占一张彩纸的,3
个
占几分之几,可以用不同的方法进行计算:
1.
用加法,应该怎么计算:
2.学生根据以前经验,及乘法的原理,想怎么用乘法计算?
3×表示什么意思?
这道加法算式每个加数有什么特点?
这是求3个相同分数的和,用乘法算比较简便。想想,可以怎样列式?
如何计算++?根据是什么?
根据上面分数和整数相乘的意义,×3表示什么?既然×3可以是表示3个连加,你能想办法算出它的得数吗?
(学生自己算,不会的可以讨论。)
这道算式还可以怎么列?
这是什么数和整数相乘?
你能联系图上的意思,把分数和整数相乘的算式和上面的加法算式比较一下,说出它表示什么意思吗?
和刚才复习的整数乘法的意义比较一下,分数和整数相乘可以表示与整数乘法相同的意义吗?
三、学生实践活动
涂一涂,算一算。并想一想,你觉得自己能从图中想出什么数学问题?
(1)
(2)
学生提问:从图中你能发现什么数学问题?根据学生的提问由教师引导其它学生进行针对性分析。
四、试一试:课堂板演,其余学生自行作业。
1.×3
2×
5×
板演后让学生尝试分析出现的问题。
2.拖拉机耕一块地,每小时耕这块地的,一天工作8小时,耕了这块地的几分之几?
学生列出乘法算式,并提出理由。然后让他们板演计算。
五、课堂讨论活动:
1.你认为这里分数与整数相乘的的计算过程里,哪些部分可以省略?
试举例说明。如例1中就哪些可以怎样直接相乘?为什么要把分子1和3相乘,而分母不变?
让学生探索发现,并总结法则。
简化算法。
×3
=(由学生补充)
学生观察过程并讨论。并做一做下题。
提问:为什么可以直接约分?你还能从中发现什么数学问题?
六、课堂作业:P3练一练部分。教师巡视辅导,对个别学困生重点解疑。
第2课时
一、回忆复习上堂课所学知识。
二、练一练
先让学生在作业纸上试涂颜色,然后指名说说理由。你还能从图中发现其它的数学问题吗?
三、课堂板演:
学生分析:5时滴水多少桶,表示让我们求的是什么?应该如何列算式?又如何解答?
学生质疑:你有其它的问题吗?
渗透节约意识教育。
四、课堂练习:
×2
3×
×12
10
×
×16
7×
4×
21×
然后指名让学生分析,并针对学生中出现的错误,互相提出预防方法。
五、实践性分析:
师:对这个数学问题,你有什么想法:
你觉得应该如何帮他们解决?试说明你的理由。
课堂板演,学生分析。
六、课堂作业:P4第5题:计算下面各题。
观察各组题目及结果,你能发现什么?
让学生针对规律进行分析,引导他们总结分数乘法中的一些规律性现象,并结合乘法计算法则,树立优化性的应用意识。
教学内容:分数乘法应用题
教学目标:
1.培养分析能力和计算能力。
2.理解意义并会运用意义解答有关应用题。
3.巩固分数乘法的计算法则,正确熟练计算。
教学重点:理解意义并会运用意义解答有关应用题。
教学难点:掌握“求一个数的几分之几是多少”的应用题思考方法
教学准备:投影片
教学过程:
活动一:准备练习:
说出下面分数的意义:
1.
一条路,已经修了全长的
2.
小明看了一本书的
3.
一袋大米,吃去了
小结:以上的句子都表示一个量是另一个量的几分之几。
活动二:新课:
出示:张家庄修一条1200米长的水渠,已经修了全长的。已经修了多少米?
1.
读题,找出条件和问题。
2.
分析句子的意义,画出线段图。
师:把谁看作单位‘‘1’’?
已经修了的是谁的?
要求已经修了多少米,就是求什么?用什么法?
“1”
修了
?米
1200米
3.
列式计算;
1200×=
=
1000(米)
根据分数意义列出算式。
1200÷6×5=1000(米)
师:1200÷6求的是什么?为什么再×5?
4.
答题。
5.
同桌互相说一说解答步骤。
活动三:师生合作完成。
活动四:独立解决问题。
活动五:学生质疑,归纳解题步骤。
活动六:巩固练习:
1.
判断哪一种分析是正确的,错误的要指出错在哪里。
一箱货物重吨,运走它的,运走了多少吨?
分析:1)把一箱货物看作单位“1”,运走的货物是;
2)把一箱货物看作单位“1”,运走的货物是这箱货物的;
3)把一箱货物看作单位“1”,把它平均分成5份,运走的占3份;
4)把看作单位“1”,运走的货物是它的,求运走了多少吨,也就是求的是多少,用乘法。
2.
选择正确的算式:
从甲地到已地小聪步行用小时,小明骑车比小聪快,小明比
小聪早几小时到达已地?
1)+
2)-
3)×
4)×
+
5)-
×
布置作业:书P9/
7(2)
P10/
1,2,5,6
板书设计:
分数乘法应用题
张家庄修一条1200米长的水渠,已经修了全长的。已经修了多少米?
“1”
修了
1200×=
1200×=
1000(米)
1200÷6×5=1000(米)
?米
答:已经修了1000米。
1200米
见幻灯片《分数乘法应用题》
反思:1、稍复杂的求一个数的几分之几是多少的应用题是在简单的求一个数的几分之几是多少的应用题的基础上进行教学的,这节课紧紧抓住新旧知识的联系,采用了变简单题的问题与已知条件相对应为不对应,变一步计算为两步计算。
教学目的
1、使学生正确掌握分式的乘除法的法则。
2、能熟练地运用分式的乘除法的法则进行计算。
教学分析
重点:分式的乘除法的法则是本节的教学重点。
难点:分子或分母为多项式的分式的乘除法是本节教学的难点。
教学过程
一、复习
1、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?(可叫一位学生回答.)
(2)用投影仪(或小黑板)出示以下题目:
下列各式是否正确?为什么?。
先让学生观察思考,最后老师作结论.
2、用类比的方法总结出分式的乘除法的法则。
由分数的基本性质类比地得到分式的基本性质,由分数的约分类比地得到分式的约分.由分数乘除法的法则同样可类比地得到分式的乘除法的法则.现在我们来学习分式的乘除法.(板书课题)
让学生回忆并回答什么是“分数的乘除法的法则”;用投影仪(或小黑板)出示分数的乘除法的法则,然后启发学生,用类比的方法叙述出分式的乘除法的法则.。
二、新授
用投影仪或小黑板出示分式的乘除法法则:
分式乘以分式,用分子的积做积的分子,分母的积做积的分母;
分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.
用式子表示即是:
例1计算
分析(1)题并引导学生解答:
①(1)题是几个分式进行什么运算?
②每个分式的分子和分母都是什么代数式?
③运用分式乘除法法则得到的积的分子、分母各是什么?
④积的符号是什么?
⑤怎样应用分式的约分法则使积化成最简分式或单项式?
随手板书解题过程:
分析(2)题并引导学生自解:
①(2)题两个分式进行什么运算?
②每个分式的分子、分母各是什么代数式?
③怎样应用分式的除法法则把分式的除法运算变成分式的乘法运算?
以下可由学生写出运算结果:
(用投影仪或小黑板出示以下小结内容)
小结:分子和分母都是单项式的分式乘除法的解题步骤是:
①含有分式除法运算时,先用分式除法法则把分式除法运算变成分式乘法运算;
②再用分式乘法法则得出积的分式;
③用分式符号法则确定积的符号;
④用分式约分法则使积化成最简分式或整式(一般为单项式).
三、练习
课堂练习1:
计算:
分析、引导学生
①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?(a2-4)=(a+2)(a-2),a2-4a+3=(a-1)(a-3),a2+3a+2=(a+1)(a+2).
④怎样应用分式乘法法则得到积的分式?
⑤怎样应用分式约分法则使积化成最简分式或整式(一般为多项式)?
随手板书解题过程.
课堂练习2:
计算:
小结:分子或分母是多项式的分式乘除法的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂)排列;在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式;
②把各分式中分子或分母里的多项式分解因式;
③应用分式乘除法法则进行运算得到积的分式;
④应用分式约分法则使积化成最简分式或整式.
先分析:本题是分子或分母为多项式的分式乘除法混合运算,运算过程从左至右依次进行;因此,分式乘除法法则也适用于两个以上的分式相乘除.然后让学生自己做,教师巡视,并找出得出正、反两个结果的学生上台板书,让大家判断正误.
四、小结
(1)让两个学生分别用语言叙述和式子表示分式乘除法法则.
(2)课堂验收题:在余下的时间内让学生独立完成以下题目,下课时全收上来,批阅打分,以便检查课堂效果.(题目可用小黑板出示).
计算:
五、作业
1.计算:
2.计算:
教学目的
1、使学生正确掌握分式的乘除法的法则。
2、能熟练地运用分式的乘除法的法则进行计算。
教学分析
重点:分式的乘除法的法则是本节的教学重点。
难点:分子或分母为多项式的分式的乘除法是本节教学的难点。
教学过程
一、复习
1、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?(可叫一位学生回答.)
(2)用投影仪(或小黑板)出示以下题目:
下列各式是否正确?为什么?。
先让学生观察思考,最后老师作结论.
2、用类比的方法总结出分式的乘除法的法则。
由分数的基本性质类比地得到分式的基本性质,由分数的约分类比地得到分式的约分.由分数乘除法的法则同样可类比地得到分式的乘除法的法则.现在我们来学习分式的乘除法.(板书课题)
让学生回忆并回答什么是“分数的乘除法的法则”;用投影仪(或小黑板)出示分数的乘除法的法则,然后启发学生,用类比的方法叙述出分式的乘除法的法则.。
二、新授
用投影仪或小黑板出示分式的乘除法法则:
分式乘以分式,用分子的积做积的分子,分母的积做积的分母;
分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.
用式子表示即是:
例1计算
分析(1)题并引导学生解答:
①(1)题是几个分式进行什么运算?
②每个分式的分子和分母都是什么代数式?
③运用分式乘除法法则得到的积的分子、分母各是什么?
④积的符号是什么?
⑤怎样应用分式的约分法则使积化成最简分式或单项式?
随手板书解题过程:
分析(2)题并引导学生自解:
①(2)题两个分式进行什么运算?
②每个分式的分子、分母各是什么代数式?
③怎样应用分式的除法法则把分式的除法运算变成分式的乘法运算?
以下可由学生写出运算结果:
(用投影仪或小黑板出示以下小结内容)
小结:分子和分母都是单项式的分式乘除法的解题步骤是:
①含有分式除法运算时,先用分式除法法则把分式除法运算变成分式乘法运算;
②再用分式乘法法则得出积的分式;
③用分式符号法则确定积的符号;
④用分式约分法则使积化成最简分式或整式(一般为单项式).
三、练习
课堂练习1:
计算:
分析、引导学生
①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?(a2-4)=(a+2)(a-2),a2-4a+3=(a-1)(a-3),a2+3a+2=(a+1)(a+2).
④怎样应用分式乘法法则得到积的分式?
⑤怎样应用分式约分法则使积化成最简分式或整式(一般为多项式)?
随手板书解题过程.
课堂练习2:
计算:
小结:分子或分母是多项式的分式乘除法的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂)排列;在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式;
②把各分式中分子或分母里的多项式分解因式;
③应用分式乘除法法则进行运算得到积的分式;
④应用分式约分法则使积化成最简分式或整式.
先分析:本题是分子或分母为多项式的分式乘除法混合运算,运算过程从左至右依次进行;因此,分式乘除法法则也适用于两个以上的分式相乘除.然后让学生自己做,教师巡视,并找出得出正、反两个结果的学生上台板书,让大家判断正误.
四、小结
(1)让两个学生分别用语言叙述和式子表示分式乘除法法则.
(2)课堂验收题:在余下的时间内让学生独立完成以下题目,下课时全收上来,批阅打分,以便检查课堂效果.(题目可用小黑板出示).
计算:
五、作业
1.计算:
2.计算:
教学内容:教科书第64页例6,第64页“做一做”中的题目和练习十四的第1、2题。
教学目的:使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:乘法分配律
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如*,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,计算每一题时,第一个学生回答“先算什么”,第二个学生回答“再算什么”,第三个学生回答“接下来算什么”。
二、新课
1.教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
“图中一共有多少个正方形?你是怎样想的?”先请一个学生回答,教师把学生所列的算式写在黑板上。
“还有别的算法吗?你是怎样想的?”再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)×45×4十3×4
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形;第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
“这两个算式的计算结果怎样?”
“这两个算式的计算结果相等,说明这两个算式有什么关系?”学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)×4=5×4十3×4
“等号左面的算式是什么意思?”(5与3的和乘以4。)
“等号右面的算式是什么意思?”(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)×618×6十7×6
“左面的算式是什么意思?”(18与7的和乘以6。)
“右面的算式是什么意思?”(18与7分别乘以6,再把两个积相加。)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
“这两个算式相等,说明18与7的和乘以6等于什么?”(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式20×(15十9)20×15十20×9
“先来计算一下这两个算式各等于多少?”
“两个算式都等于多少?”
“这两个算式相等,说明20乘以15与9的和等于什么?”
2.进行抽象概括。
教师指着上面的算式提问:
“仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?”多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
“再看等号右面的三个算式有什么相同的地方?”学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
“等号左面与等号右面相等是什么意思?”学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书“乘法分配律”。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用表示三个数,乘法分配律可以写成下面的形式:
(a+b)×c=a×c+b×c
“等号左面(a+b)×c表示什么意思?”(表示两个数的和同一个数相乘。)
“等号右面a×c+b×c表示什么意思?”(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)×27,提问:
1.“这个算式中是哪两个数的和乘以哪个数?”
“根据乘法分配律,这个算式等于哪两个乘积的和?”
教师在黑板上再写算式:185×27十15×27,提问:
“这个算式中是哪两个数分别乘以哪一个数?”
“根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?”
2.做第64页“做一做”中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
“在(32十25)×4中,两个数的和指的是什么?同一个数相乘指的是哪个数?”
“根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?”
“第一小题的方框里应该填什么数?”(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
“第二小题应该怎样填?根据什么运算定律?”(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
教学目标
1.使学生明确分式的约分概念和理论依据,掌握约分方法;
2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法.
教学重点和难点
重点:分式约分的方法.
难点:分式约分时分式的分子或分母中的因式的符号变化.
教学过程设计
一、导入新课
问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?
答:(1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0.(2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0.这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
本性质.
问:什么是分数的约分?约分的方法是什么?约分的目的是什么?
答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分.对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外).约分的目的是把一个分数化为既约分数.分式的约分和分数的约分类似,下面讨论分式的约分.
二、新课
我们观察:
(1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的分子与分母的公因式.
(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的.
像(1),(2)中分式的运算就是分式的约分.即把一个分式的分子与分母的公因式约去,叫做分式的约分.
一个分式的分子与分母没有公因式时,这个分式叫做最简分式.
把一个分式进行约分的目的,是使这个分式变为最简分式.
为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?
答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式.
指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边.这就同时改变了分式本身与分子或分母的符号,所以分式的值不变.
例2约分:
分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式.
请同学说出解题思路.
答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值.
当x=45时,
请同学概括分式约分的步骤.
答:
1.如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂.
2.如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式.
3.当分式的分子或分母的系数是负数时,应先把负号提到分式的前边.
请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?
答:因为所给的分式都是有意义的,也就是说,分母的值不等于零.而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变.
三、课堂练习
1.约分:
2.指出下列分式运算中的错误,并把它改正.
四、小结
把一个分式的分子与分母的公因式约去,叫做分式的约分.
分式进行约分的目的是要把这个分式化为最简分式.
如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
五、作业
1.约分:
2.约分:
3.先约分,再求值:
课堂教学设计说明
1.分式的约分和分数的约分有很多类似之处,在导入分式约分时,先充分复习分数约分的概念、方法、目的,引导学生用类比的方法学习分式的约分,从中促使学生发现新旧知识间的联系与发展,让学生在类比、概括中主动获取知识.通过讨论例题,引导学生概括分式约分的步骤.
1、经历发现并归纳乘法分配律的过程,理解和掌握乘法分配律(含用字母表示),并能正确地进行表述。
2、培养学生概括、分析、推理的能力,体验从特殊到一般,再由一般到特殊这种认识事物的方法。
3、初步感受运用乘法分配律能进行一些简便运算。
教学重点:
发现﹑理解并掌握乘法分配律。
教学难点:
归纳并正确表述乘法分配律。
教学过程:
一、新授教学
1、师生谈话,从学校购买校服引入。
学校购买校服,每件上衣30元,每条裤子19元,四年级段共买了200套校服,一共应付多少元?
你能用几种方法,学生试做。
反馈:预设:(1)(30+19)×200(2)30×200+19×200
说说这两个算式表示什么意思?
结果相等可以用"="连接(30+19)×200=30×200+19×200
2、小强摆木块,每行摆5个蓝木块,4个红木块,共摆3行,一共摆了多少个木块?
(5+4)×3=5×3+4×3
3、用两种方法算出下面长方形的周长。
6厘米
4厘米
4、每个学生在自己的纸上写这样的一个算式。
5、给出一分钟的时间,写出这样的算式,看谁写得多。
(写出来的算式,左边和右边是否相等)
6、黑板上的这些算式和你写的算式,你发现了什么?用你喜欢的方式与同桌交流一下。
7、反馈预设:说字母公式,用语言表达等
二、巩固练习。
1、根据乘法分配律,在横式上填上合适的数。
①(15+23)×4=__×4+__×4
②8×(125+9)=__×125+__×9
③16×(37+12)=__×__+__×__
④(25+7)×4=__×__+__×__
2、根据乘法分配律,在横式上填上合适的数。
①23×19+77×19=(__+__)×19
②276×38+276×62=276×(__+__)
③46×18+54×18=(__+__)×__
④36×5+36×5=(__+__)×__(两种填法)
3、把结果相等的式子用直线连起来。
①6×29+6×71A25×8+25×40
②25×(8+40)B125×8+125×4
③125×(8×4)C5×20+b
④5×(20+b)D6×(29+71)
⑤(10+2)×2E8×2+4×2
指出错误的地方
4、判断,把错误的改正过来。
8×23+8×27=8×(23+27)
(3+9)×a=3+9×a
25×7×4=25×4×7
9×6+4×6=(6+4)×9
5、怎样计算简便就怎样算?
(10+125)×813×68+13×3260×(35+425)
三、知识延伸