时间:2022-09-10 02:18:36
序论:在您撰写纳米科技论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。
1、各国竞相出台纳米科技发展战略和计划
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。
(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。
纳米技术可能引起的主要伦理问题
1.健康和安全问题。纳米技术对健康和安全的影响,是纳米伦理面对的首要问题。由于纳米粒子极其微小,可以说无孔不入,所以也很容易进入人体,有可能成为许多重大疾病如肺部疾病和心血管疾病的诱因,给人类健康和安全带来严重的损害。研究表明,吸入的纳米颗粒可能避开免疫系统的吞噬作用,蓄积在某些靶器官,也可跨越不同生物屏障,重新转运分布到身体的其他组织器官,产生系统的健康效应[10]。而且,环境中的纳米颗粒由于具有较大的表面积而极易吸附大气中的有毒污染物,如多环芳烃等,被纳米颗粒吸附的有毒污染物可进一步对人和其他生物体产生毒性效应,还可能波及整个生物圈。纳米粒子对健康和环境的潜在风险涉及安全伦理和环境伦理的问题。安全不仅是一个科学的概念,安全更是伦理学必须考量的最基本的要素,因为安全既是人的基本需求也是人的基本权利。离开了安全,人的其他权利和自由、尊严等也将无从谈起;而且,保障研究人员和工人在工作场所的生命和健康安全,也是国家和企业的基本责任。
2.平等与公正问题。首先,纳米技术的潜在利益和风险使得其风险与利益的分配,也面临着社会公平与公正的伦理问题。纳米技术可能为技术发明家、企业家带来丰厚的利益,但也可能为研究者、受试者、生产者甚至消费者带来直接的和间接的健康风险,为公众带来环境风险。面对个体利益与公众利益、企业利益与社会利益、眼前利益与长远利益的冲突,应该优先考虑谁的利益?承担高风险的人是否应得到较高的回报?“如何分配科学技术的发展带来的好处、风险和代价,就成为了我们时代所必须面对的一个重要问题”[11]。其次,纳米技术的应用也可能加剧原有的社会不平等、不公正现象。众所周知,“信息高速公路”的出现导致了迅速扩大的信息资源和知识资源分布严重不均的“数字鸿沟”问题,并且加剧了原有的经济不平等、机会不平等和社会不平等问题,成为当今社会问题的一个重要根源。纳米技术的发展也可能产生类似数字鸿沟的“纳米鸿沟”问题。比如,纳米技术在医学上的应用,使得疾病的预防、早期诊断和治疗成为可能。研究表明,在不久的将来,用基因芯片、蛋白质芯片组装成的纳米机器人,有可能通过血管进入人体以诊断疾病、携带DNA去更换或修复有缺陷的基因片段,也可以将携带纳米药物的芯片送入人体内,在外部加以导向,使药物集中到患处,更理想地提高药物疗效[12]。但是,这些技术在其发展的初期阶段,往往比较昂贵,大部分人可能只好望而却步,仅能被少数人使用。如何使社会中的大多数成员公正地享受到纳米技术的成果并避免可能受到的损害,是纳米技术发展过程中必须面对的重要伦理问题。第三,纳米技术还有可能带来代内与代际、穷国与富国之间的平等与公正问题,尤其是可能使发达国家与发展中国家之间的差距加大。能够支付纳米技术研究与发展巨额费用的国家,可能优先发现和利用纳米技术的研究成果,在国际舞台上便优先掌握了“话语权”。当然,也不能排除发达国家将有污染的、甚至有毒的纳米研究项目转移到发展中国家的可能。诸如此类的问题会使国际间的不平等恶化。此外,还存在为了当代利益发展纳米技术而提前利用了过多的自然资源或给后代造成众多污染等代际不公正现象。
3.自主与尊严问题。人是有理性的存在物。理性之人的尊严来自于它的自主性,能够按照自己的意志作出决定。“大自然中的无理性者,它们不依靠人的意志而独立存在,所以它们至多具有作为工具或手段的价值,因此我们称之为‘物’。反之,有理性者,被称为‘人’,这是因为人在本性上就是目的自身而存在,不能把他只当做‘物’看待。人是一个可尊敬的对象,这就表明我们不能随便对待他。”[13]联合国教科文组织在《世界生物伦理与人权宣言》中强调,科学技术的研究和发展需要遵循本宣言所阐述的伦理原则,要尊重人的尊严。这包括自尊、享受别人尊重和尊重他人三个方面。在纳米技术的研究与应用中,许多方面涉及人的自主与尊严问题。例如,纳米技术与认知科学相互渗透与融合,可以揭示人脑的工作机制,利用纳米药物可以增强人的认知能力或治疗某些脑神经与认知方面的缺陷。但是,如果利用这些研究成果控制人的思维、干扰人的决定,则侵犯了人的自、漠视人的尊严。再者,如果将能够随时获取他人信息的纳米电子芯片等极微小的纳米器件,毫不被人察觉地嵌入他人衣服或皮肤里,则不仅窃取了他人的隐私,更贬损了他人的尊严。又如,纳米基因工程不仅能够治疗遗传病,而且能够改变生殖细胞基因以达到治疗或增强后代的目的。但是,不论父母的主观意愿是否善良,这种行为确实忽视了子女的自主与尊严。而诸如赛博格(Cyborg)、生命产品(Biofact)等技术的进一步发展将模糊人与机器、生命体与人工产品之间的界限,使得我们关于人与自然的基本概念发生动摇,什么是人、什么是自然等问题将变得不再是不言而喻的了。
纳米伦理的特征与评估
纳米技术的中介性和不确定性特征不仅使纳米技术可能引起一系列的伦理问题,而且也使得这些伦理问题展现出共同的伦理特征:可能性、整合性和前瞻性。这使得即时性、跨学科性、预警性评估成为应对纳米伦理的关键。
1.可能性特征与即时评估。纳米技术可能引起的伦理问题包括两个部分,其中有些是现实的,比如纳米粒子对安全和健康造成的影响;有些还是潜在的、未来的甚至含有推测性特征,比如有关纳米机器人的自我复制问题,但这绝不等于说这种推测完全是无中生有。纳米伦理不仅关注现实的纳米伦理问题,也关注未来的和潜在的伦理问题,目的是在纳米技术研究和开发的初期就参与到纳米技术的构建中。事实上,技术的发展并不是由技术本身或者技术专家们所能决定的。如果有怎样的技术就会有怎样的未来,那么,我们就有权利选择技术、选择和构建未来。因此,纳米伦理必须关注可能性。在这个意义上,可能性成为纳米伦理的一个重要特征。鉴于纳米技术发展的可能性、阶段性和动态性特征,对纳米技术应该采取即时评估的研究方法,以适时地、动态地评估纳米技术研究发展与应用各个阶段可能出现的伦理问题。在目前纳米技术的开发时期,首先应该关注的是实验室和工作场所的安全伦理问题,包括工人对所从事的纳米技术风险的知情权问题,建立健全工人的健康保险制度的问题,以及工作场所的通风、检测和预警机制等制度问题。其次,在纳米药物和利用纳米技术进行的检测中,即时评估纳米粒子在人体的生物学效应和对人体整体的影响,以确保纳米用药和检测的安全。
载药纳米微粒的靶向性及控释作用
所谓纳米药物指的是纳米级别的用来防治或者辅助治疗的药物,纳米药物具有轻松通过体内生理屏障的显著优点,纳米级别药物与传统的宏观药物在其分布、吸收以及代谢和排泄等角度与传统的宏观药物截然不同。
1纳米级别的药物能够跨越体内各种屏障
如果我们选择合适的纳米材料来制备纳米药物,可以有效的穿透生物膜的并透过血脑屏障,可以将药物直接输送到大脑内部对疾病进行治疗。采用纳米技术制备的药物载体和抗体能够大幅度提高穿透人造膜和天然膜的能力,并蓄积在小肠,使药物的生物利用率显著改善。
2纳米药物的控释作用
所谓纳米药物的控释作用指的是载有药物的纳米微粒在其控释的过程中能够显现出特有的规律性,囊壁的溶解及酶和微生物的作用,均可使囊心物质向外扩散。鉴于上面所述,我们可以根据控释的目的选择合适的囊材使载药纳米微粒在局部滞留并达到有效浓度,这样做不仅仅大幅度提高了用药的疗效,还不会给全身带来不良毒性。对于需要长期进行治疗和监控的疾病,起作用和功效是十分显著的。因此,纳米控释给兽药系统带来了极大的方便。
3纳米药物的靶向性
目前,抗球虫药物以及抗菌药物在畜牧业的养殖中被普遍使用,泛滥和不合理使用的现象也尤为明显,从而直接导致目前很多禽畜的主流病原体大肠杆菌、金黄色葡萄球菌、沙门氏菌等等早已经对大多数的抗菌药物产生了耐受性,甚至有些病菌已经产生了多重的耐受性,这些问题都是可以通过纳米载药技术来进行有效解决的。一方面,我们可以先将兽药进行纳米处理,可以显著提高其溶解率、靶向作用同时得到控制其释放的效果。这样可以大幅度提高药物的治疗效果,减少对药物的使用剂量,能够在不换药的前提下就解决了药物残留问题;另一方面,采用纳米技术,可以研制出具有广谱、高效、无毒、无副作用的新型兽药,从根本上解决目前因大量使用兽药而带来的种种不良后果。
纳米技术在家畜遗传育种中的应用
人们对于健康家畜的定义,无外乎生长快、瘦肉率、耗料低、胴体品质好等要求,但是传统的育种方法需要少则几年,多则几十年的育种时间。如果我们在分子水平上进行相关的改变,即对DNA链上的碱基序列做相应改变,就可以大大缩短育种时间,而且可以获得我们需要新品种。DNA上的核苷酸序列是纳米级的,所以要用到纳米技术。例如我国科学家已经用STM以及AFM等纳米技术,对DNA分子进行分离,并写出了“DNA”三个字母,标志着人类在纳米技术对生物分子操作方面取得了巨大成就。通过这一事实我们可以发现,人类可以通过纳米技术,对分子级别的事物进行操作,以探寻生命的奥秘,定向地对遗传物质进行改造,以获得所需性状的生物体。这在生物育种上是有极大的作用的,可以很好的对动物的品种进行改良,同时,通过分子探针,还可以在遗传物质上对生物的病情进行探测,以从根本上解决问题。所以,在遗传育种上,纳米技术的应用是至关重要的。
纳米技术与畜禽产品质量
药效的提高和用药量的减少,是添加纳米材料的药物的巨大作用,这样可以解决药物残留的问题.浙大饲料研究所研究出的一种纳米微粒,采用天然的硅酸盐材料,可以吸附黄曲霉素、重金属以及农药等有害物质,降低畜禽产品中有害物质的含量,大大提高了产品的安全性。
鉴于以上缺陷,当前对于牙科复合树脂的改良主要是将纳米材料作为无机填料,或用纳米级材料修饰微米级填料,再加入复合树脂中,以改良树脂或使其具备新的性能或兼而有之。
纳米填料的种类
牙科复合树脂的填料绝非单一种类、单一粒径的材料,而是具有一定分布梯度,且不同种类粒子相互配合的系统。牙科复合树脂所含的填料能增加机械强度,降低热膨胀系数和聚合热,其粒度、粒度分布、折光指数、所占体积百分比、X线阻射性及硬度、强度等都会对材料的性能及临床表现产生影响。目前,颗粒型陶瓷粉或玻璃粉是主要的填料类型,纤维(晶须)填料的研究和应用也有报道,但相比前者较少。应用理化性能更加优良的填料来增强机械性能是发展的方向。已用于增强牙科复合树脂的纳米颗粒包括纳米二氧化硅[1]、纳米金刚石[2~4]、纳米氧化锆[5]、纳米氮化硅[6]、纳米羟基磷灰石[7],纳米氧化钛[8]、纳米三氧化二铝[9]等。这类纳米填料的研究较多,且大多数牙科产品厂家都有自己品牌的纳米树脂问世。纳米纤维增强如纳米碳管、短纤维和晶须是目前许多学者所提出的复合树脂填料的新成员,都被用于牙科复合树脂的增强和性能改善,但基本都处于基础研究之中,而尚未应用于临床阶段。这里所讲的纳米纤维增强复合树脂,是指以纳米纤维为另一类填料与颗粒填料共同增强的口腔充填用复合树脂材料,所以这类材料中含颗粒与纤维两种填料。口腔临床中使用的还有一类单纯使用的纤维增强树脂基(多为环氧树脂基)材料,典型的产品为牙体加强用的纤维桩。文章主要讨论前者目前在口腔中的研究现状。有学者为了更加明确研究目的和可能机理,也会以环氧树脂为基体或只加入纤维填料进行研究。碳化硅晶须和氮化硅晶须是近年来研究较多的用于牙科复合树脂的晶须种类。其他增强牙科复合树脂表面硬度和断裂强度的纤维(晶须)包括氧化锌晶须、钛酸钾晶须、硅酸盐晶须、硼酸铝晶须、尼龙纤维、碳纳米管等。
纳米技术降低牙科复合树脂的聚合收缩
Condon等用不含甲基丙烯酸功能化的硅烷代替含有甲基丙烯酸功能化的硅烷对二氧化硅纳米颗粒表面进行处理,获得无粘接性的纳米颗粒将其添加到复合树脂中,发现其具有与气孔相似的效果,分布于树脂基质中的纳米填料通过局部塑性形成应力释放点,可以有效地降低聚合收缩[10]。Condon在另外的研究中用非粘接性的纳米填料、粘接性的纳米填料和无被膜填料来降低聚合应力。研究表明,纳米填料添加到杂化型复合树脂可以有效降低聚合应力(降低31%),在一定的体积含量水平(10%),非粘接性纳米填料具有更好的降低应力作用,在只含有纳米填料的复合树脂,亦具有相同的效果[11]。八面的倍半硅氧烷,是具有直径0.53nm的纳米笼结构,是一个轻量级、高性能的混合材料,其结构通式为(RSiO1.5)8。SSQ聚合物显示出优良的介电和光学性质,并已广泛应用,如在应用程序中的光致抗蚀剂、耐磨涂层、液晶显示元件、电子电路板的绝缘涂层和光纤涂料等。SohMS等将SSQ加入复合树脂中制成符合材料,SSQ可以显著降低树脂的聚合收缩量,并同时增加树脂的硬度和弹性模量[12]。Garoushi等将半互穿聚合物网络加入由玻璃纤维增强的复合树脂,发现复合物的聚合收缩率下降[13]。此后,又将纳米SiO2颗粒加入上述复合物中,除了发现加入纳米粒子后可使聚合收缩降低外,他们还发现聚合收缩的降低与纳米粒子的添加量和聚合温度相关[14]。
添加纳米材料增强复合树脂的抗菌性能
体内外实验表明,复合树脂比其他充填材料更易引起菌斑沉积,因而更易引起继发龋。继发龋也是临床中复合树脂充填失败的重要原因之一。因此,如果能将抗菌剂加入复合树脂中,使其具有缓和持久的抗菌性能,将非常有利于其性能的提高。BeythN等将季铵盐聚乙烯纳米粒子以低浓度(1%)添加到复合树脂中,发现在不影响其机械性能的基础上可以保持1月以上的抗菌性能[15]。Jia等将Ag+、Ag+/Zn2+吸附到纳米SiO2表面,添加到复合树脂中,发现对大肠杆菌和S.粪菌都具有良好的抗菌性能,而且后者的效果更好,抗菌效果随接触时间延长和添加剂量增加而增强[16]。Xu等将熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐加入牙科复合树脂中已达到自修复的目的[17,18]。四针状氧化锌晶须具有抗菌的作用。宋欣等将四针状氧化锌晶须加入复合树脂中,发现其在提高树脂机械性能的同时也能赋予复合树脂材料较强的抗菌作用,是制备抗菌性复合树脂的较优选择[19]。Niu等也将其加入复合树脂中,以使复合树脂获得抗菌性能和增强的机械性能[20]。Chae等将纳米银颗粒加入聚丙烯腈中并用电纺技术制成纳米纤维,以使所制备的纤维具有抗菌性能[21]。
纳米技术对牙科复合树脂机械性能的改善
1纳米颗粒增强牙科复合树脂
钟玉修、倪龙兴等将纳米金刚石作为填料加入复合树脂中,并对其性能进行了一系列的研究,认为适当比例的金刚石填料可以提高复合树脂的机械性能[2,3]。胡晓刚等将纳米金刚石用硅烷偶联剂进行表面改性后添加到复合树脂中,发现改性金刚石的增强作用明显优于未经改性的金刚石,同时金刚石的加入也改善了树脂的韧性[4]。王君等将纳米氮化硅加入复合树脂并用紫外光照进行固化处理,发现纳米氮化硅含量为1%时,体积收缩率仅为4.92%,而拉伸强度增加了近100%[6]。王云等将经过硅烷偶联剂KH-570进行表面处理后的纳米羟基磷灰石加入树脂基质中,研制出能够达到临床要求的修复性纳米羟基磷灰石复合材料,并检测其机械物理强度[7]。笔者研究组曾将纳米TiO2粒子在表面处理后加入复合树脂中,制备纳米复合树脂,并根据国际标准化组织标准测试其力学性能,发现表面处理增强了纳米TiO2与复合树脂基质的相容性,添加表面处理后的纳米TiO2粒子对树脂起到增强增韧作用[8]。目前各大牙科产品厂商几乎都研制出自己品牌的纳米树脂,所加入的纳米级填料以纳米二氧化硅为主,如3MFiltekSupreme系列、Dentsply的ceramX、Heraeus的VenusDiamond系列、Kerr的HerculitePrécis、Bisco的Reflexion、Pentron的ArtisterNanoComposite。但也有例外的,如IvoclarVivadent的IPSEmpressDirect用的是纳米氟化镱。这些经过纳米技术改良的复合树脂,厂家都宣称具有更好的强度、耐磨性、可抛光性、更低的聚合收缩率以及更好的美学性能。
2纳米纤维(晶须)增强牙科复合树脂
氮化硅和碳化硅被选中是因为和大多数纤维相比,其体积小,长径比大,可以更均匀地与树脂混合,而且其抗拉强度极高。Xu等自1999年起对晶须增韧牙科复合树脂进行了一系列的研究。该研究组曾将硅石纳米粒子熔附到碳化硅陶瓷晶须上,以增强口腔复合树脂的强度,硅石纳米粒子通过增加晶须表面积和粗糙度来加强晶须与树脂基质的结合[22]。他们还发现晶须与硅石粒子质量比为2︰1,树脂的强度明显高于单纯添加硅石的纳米粒子,且树脂的弹性模量和硬度随晶须与硅石粒子比例的增高而增高,同时树脂的脆性降低,还发现少量添加晶须就能够大幅度提高断裂强度[23]。相比于较为昂贵的氮化硅和碳化硅等高品质晶须,钛酸钾晶须虽然在强度上有一定的差异,但其价格低廉,在工业上研究也较多[24],因此也有学者将钛酸钾晶须用于牙科复合树脂的增强[25]。硼酸铝晶须性价比高,颜色为白色,适于用做复合树脂的增强材料,较颜色深的碳化硅和氮化硅晶须更易于光照固化,适用于临床[26]。王蓉等比较了不同晶须熔附纳米粒子对环氧树脂力学性能的影响,结果表明:硼酸铝晶须熔附纳米Si02增强作用最佳。但是由于硼酸铝晶须与纳米Si02化学相似性差,因此仅通过高温烧结,两者熔附效果不理想[27]。Zhang等将羟基磷灰石(hydroxyapatite,HA)晶须添加到牙科复合树脂,发现硅烷处理后HA晶须能够提高树脂的弹性模量和折裂韧性值[28]。使用更好的纤维制备方法以得到质量更好的纤维,也是提高纤维增韧树脂效果的方法之一。目前,使用静电纺丝技术制备纳米纤维材料已成为近十几年来世界材料科学技术领域最重要的学术与技术活动之一。静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。静电纺丝技术已经制备了种类丰富的纳米纤维,包括有机、有机/无机复合和无机纳米纤维。应用静电纺丝技术已经成功地制备出了结构多样的纳米纤维材料。通过不同的制备方法,如改变喷头结构、控制实验条件等,可以获得实心、空心、核-壳结构的超细纤维或是蜘蛛网状结构的二维纤维膜;通过设计不同的收集装置,可以获得单根纤维、纤维束、高度取向纤维或无规取向纤维膜等。电纺纤维是连续的长纤维,可以发挥桥联增韧的作用。尼龙纤维韧性远远超过无机填料,并具有规律的圆柱形状。已有关于用电纺方法制备尼龙纤维并用其增强树脂的报道。Fong等将电纺尼龙纤维加入BisGMA/TEGDMA基牙科树脂中,并检测其机械性能,发现复合材料的弯曲强度、弹性模量和断裂强度都有所增强[29]。但是,为了更加增强尼龙晶须,Tian等将纳米级硅酸盐晶须加入尼龙纤维并使其沿纤维长径排列,将得到的纤维填料用树脂单体处理后再研磨后以不同比例加入树脂中,发现少量添加纤维就可以大幅度提高树脂的机械性能[30]。此后,同一研究组还将纳米硅酸盐晶须以不同比例直接加入复合树脂中[31],也发现少量添加未经过表面处理的晶须时可以提高树脂的机械性能。也有一些由静电纺织得到核壳纳米聚合物纤维的报道,如聚甲基丙烯酸酯-聚丙烯晴,聚甲基丙烯酸酯-聚苯乙烯,聚丁二烯-聚苯乙烯,尼龙-聚甲基丙烯酸酯(nylon-PMMA)纤维[32~36]。纤维核壳结构的设计目的是让纤维具有一个高强度核心,而其外壳则是可以与树脂通过形成化学键或形成互穿网络结构提供良好的粘结性,使最终形成的纳米复合材料具备更优良的机械性能。其中PMMA-PAN被用于增加牙科复合树脂的机械性能[37,38]。笔者研究组曾将单壁碳纳米管经过短切和表面处理后包裹上纳米二氧化硅颗粒,再添加到复合树脂中,制成纳米复合树脂,并检测其机械强度,发现经过处理的SWCNTs在树脂基质中呈良好的单分散状,且制成的纳米复合树脂的强度与对照组相比,其增高的幅度具有统计学意义[39]。但从这个研究中也发现了碳纳米管用于牙科美学修复所存在的问题,那就是碳管的颜色问题。尽管被纳米二氧化硅包裹后才加入树脂中,且添加量不高,但添加碳管后的树脂仍表现为灰黑色,与牙齿颜色相差较大。这说明,至少在目前这种处理方式下,虽然碳管机械性能很好,但不太适合用于牙科复合树脂的改良。这也促使我们寻找其他性能好、颜色也更接近齿色的纳米管用于复合树脂的改良。添加新型填料后的复合材料可能会更强更硬,但同时也降低了它们的透光性和光固化的效能,因而要求其具备自固化或热固化的能力。有学者将纳米Al2O3晶须加入牙科树脂基托中以增强其热传导性[40],不过,热传导性的增强对于充填性树脂来说不适宜,因为会导致对牙髓神经的刺激。纳米结构的钛管也是很有前景一种晶须填料。Khaleda等已将其用于PMMA、骨水门汀和流体树脂的增强[41]。有学者对两种玻璃纤维增韧的复合树脂(NuliteF和Alert,增强体为微米级玻璃纤维)充填体做了为期6年的临床随访[42],发现充填失败的主要原因是继发龋和充填体(即复合树脂)或牙体的断裂。根据他们得到的结果判断,Alert达到了美国牙科协会的标准,而NuliteF没有达到。纤维增强树脂复合材料与其他混合树脂复合材料相比,其体外研究显示了极高的电子模量和断裂韧性比,但是其表面粗糙度也增加了。添加到树脂基质中的纤维需要控制方向、大小和其他特征,以及其排列位置和方向定位的可重复性。然而,目前这些仍是该领域的重大挑战。也有一些学者尝试用了一些方法,如原位聚合或预聚合,使纤维能在树脂基质中定向分布。Koziol等使用原位聚合的方法实现了在聚苯乙烯中碳纳米管的定向排列[43]。
纳米耐磨符合图层的运用
纳米材料颗粒之间都存在着范德华力、库仑力等,甚至有些颗粒还会和化学键结合,结果导致了陶瓷颗粒很容易出现团聚,而且颗粒愈小,团聚就越紧,在这种情况下,纳米材料应有的良好性能就比较难以充分发挥出来。就解决方式而言,一般通过施加机械能,或者引发化学作用这两种途径进行解决,不过硬团聚由于颗粒之间结合的比较紧密,单纯的通过化学作用是远不能够实现目标的,所以还需要另外施加一个比较大的机械力,例如剪切力、撞击力等。通过这些里对材料的结合力进行破坏。
纳米磁性液体在旋转轴中的应用
一般而言,对于静态的密封比较容易解决,通常可以采用塑料、金属、橡胶等材料制作的O型环当做密封的元件,将其密封。但对于动态的密封,特别是旋转条件下的密封则一直没有好的解决方式。在高速、高真空条件下一般不能进行动态密封,而纳米磁性液体则带来了一种新的解决方式。纳米技术对磁性液体在旋转轴中的应用取得了很大的促进作用。我国南京大学已经成功进行了多种磁性液体的制成,比如硅油、水基、烷基、二脂基等。而在磁性液体的应用方面,电子计算机的硬盘在防尘密封方面就普遍采用了磁性液体。而在剂的制造方面,对新型剂的制造也起到了较大的促进作用。
(1)纳米磁性液体在旋转轴中应用的尺寸效应在纳米技术领域,其显著成果之一就是在旋转轴中,对传统的尺寸单位进行了缩小,以前的计量单位级为毫米,而今则是纳米级,而1纳米仅相当于1毫米的百万分之一,如果运用在机械工程之中,那么机械的体积会因为纳米技术的应用而极大的降低,在此基础上就有了微型机械为代表的新型机械的诞生和生产。实际上,这种微型化并不仅仅是单纯意义上的尺度上发生了重大变化,而更多的是指可以成批进行制作生产微传感器、集合微结构、微驱动器、微电路等处置装置于一体的微型机电系统。系统中的大部分都运用了纳米技术成果,因此,从某种意义上说,其已经远远超出了传统机械的概念和范畴。可以说微型机械是以现代科学技术为基础,在整个纳米科技中具有重要地位,采用崭新技术路线和思维方式的具有划时代意义的产物。
在S系统的SIPOABS数据库中进行检索,得到1449件申请人国别为中国(CN)的纳米技术领域专利申请,转库到DWPI中后,得到673个专利族。以下分别对这些申请的年代分布、细分领域(技术主题)分布、主要申请人分布和主要申请国别进行统计和分析。
专利申请量的年度分布
笔者对上述673个专利族的最早公开年和最早优先权年分别进行统计分析,得到1991~2012年纳米技术领域中,我国申请人的国外专利申请量的年度分布状况,见图1所示。从图1可以看出,在纳米技术领域,中国申请人在国外的专利申请最早可以追溯到1991年(优先权日在1991年),但是中国申请人的相关专利申请较少,直至2000年才达到10件。2000年以后,中国申请人在国外的相关专利申请量有所增加,并在2007年前后达到一个峰值,接近100件,这一阶段为快速发展阶段。2007年至今,中国申请人在国外的相关专利申请量出现下降趋势,笔者分析,其原因可能有两点:首先,2010年以后的申请还没有全部公开,因此无法统计在内;其次,一般而言,前沿科技领域较传统领域受国际经济环境影响大,2008年爆发国际金融危机、近期的欧债危机以及目前国际经济环境低迷等是导致2008年至今中国申请人在国外的相关专利申请量减少的因素。
技术主题的分布情况
笔者分析了在纳米技术领域,中日韩三国申请人向国外申请专利的情况,统计了在八个细分领域中中日韩三国申请人的国外专利申请量,见图2所示。从图2可知,在纳米技术领域,中国申请人在国外的专利申请主要集中在“用于信息加工、存储或传输的纳米技术”和“用于材料和表面科学的纳米技术”两个细分领域中,这与韩国和日本申请人在国外的专利申请趋势相同,可见这两个细分领域是现在的热点。而在“纳米光学”领域,中国申请人在国外的专利申请量明显偏低,这与韩国和日本的情况不同。结合图1、图2可知,我国纳米技术的发展经过了初始阶段(2000年之前)、快速发展阶段(2000~2007年),现在已经逐步稳定。在纳米技术领域,我国向国外申请专利的绝对量还很少,与一些先进国家相比还存在较大差距。
主要申请人分布情况
笔者对在纳米技术领域在国外申请专利的主要中国申请人及其申请量进行了统计,在统计过程中不考虑公司之间的隶属关系,共同申请人也分别进行统计,见图3所示。的申请量占据了该领域中国申请人国外专利申请量的半壁江山,且排在前三位的申请人经常是一件专利申请的共同申请人。进一步检索可发现,清华大学的发明人主要来自一个研究机构——清华富士康纳米技术研究中心。在纳米技术领域,向国外申请专利的中国申请人很多是台湾和香港申请人,或者由台湾公司资助的研究机构,大陆地区的申请人主要是大学和科研机构,包括北京化工大学、中国科学院物理研究所、北京大学、中国科学院长春应用化学研究所等。名列前四位的申请人分别是鸿海精密工业股份有限公司、清华大学、鸿富锦精密工业(深圳)有限公司和新科实业(香港)有限公司,它们的专利申请均集中在“用于信息加工、存储或传输的纳米技术”领域,而北京化工大学则以“用于材料和表面科学的纳米技术”领域为主要申请领域。可见在纳米技术领域,中国申请人在国外申请的专利主要集中在信息加工、存储或传输,以及材料和表面科学领域。