欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

硬件设计论文范文

时间:2022-07-11 17:44:13

序论:在您撰写硬件设计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

硬件设计论文

第1篇

工艺设计团队在进行工艺过程的设计时一般先需要如下原始资料:产品装配图和零件图,企业的制造相关信息。产品装配图有助于工艺设计师了解零件在产品上的位置,所起到的作用以及工作的条件情况;零件图则表明了该零件的尺寸和精度要求;了解企业的制造相关信息有利于工艺设计师根据生产厂的生产条件,生产厂现有的设备规格,型号及性能,物资供应状况等信息设计出更加符合本企业的产品工艺设计。这些原始资料是制定工艺设计的基础。根据工艺设计流程和工艺设计相关内容,可以把工艺设计活动分为四个阶段活动。第一阶段:工艺性分析阶段,工艺设计人员从产品详细设计人员处获得新产品的CAD图,对CAD图进行工艺性分析,审查图纸上的视图、尺寸和技术要求是否完整、统一、正确;找出重要的技术要求结合企业的加工能力分析是否能达到要求,分析零件的结构工艺性,是否存在不合理的结构或者可以改进的地方,与产品设计人员协商。只有对零件的结构工艺性进行充分分析,才能清楚零件的结构特点,加工表面与非加工表面、重要表面与非重要表面、技术要求的高低等直接影响零件加工性的因素,才能制定出最合理的工艺设计方案;第二阶段:确定毛坯及其制造方式,通过图纸的审查之后,设计人员开始确定毛坯及其制造方式,毛坯的确定是工艺设计过程中的重要内容,选择不同的毛坯就会有不同的加工工艺,采用的设备,工装也不同从,从而对生成率和成本有影响。因此必须正确的选择毛坯类型和制造方法,确定毛坯精度及余量,之后绘制毛坯图;第三阶段:拟定产品的工艺路线,工艺路线是指用各种方法将毛坯加工成零件的整个加工路线。在毛坯确定后,根据零件的技术要求、表面形状、已知的各种机床加工工艺范围、刀具的用途,就可以初步拟定零件表面的加工方法,工序的先后顺序,工序的集中还是分散。工艺路线的拟定不但影响加工质量和生产效率,而且影响工人的劳动强度,影响设备投资,车间面积,生产成本等,因此拟定工艺路线是工艺设计过程中的关键阶段;第四阶段:进行工序详细设计,工艺路线拟定之后确定各工序的具体内容。包括确定各工序加工余量、计算各工序尺寸及公差,选择各工序使用的机床与工艺设备,确定各工序的切削用量及时间定额。工序设计应该是在保证质量的前提下,提高生产效率,这个阶段最终形成加工工序卡片。当过程流程图,加工工序卡片都通过审核之后形成将文件,整理文件保存,整个产品开发设计过程中的工艺设计到此结束。之后将文件下发,指导一线工人进行生产。

2工艺设计过程的要素模型

质量管理体系国际标准将过程定义为:一组将输入转化为输出的相互关联或相互作用的活动[7]。过程方法是指组织内各过程的系统的应用,连同这些过程的识别和相互作用及其管理。过程构成要素模型,如图2所示。根据过程定义并结合图2过程构建要素模型可知:一个过程包括输入、输出、相关转换活动、所需资源、过程所处的环境以及检测评价等六要素。其中输入是实施过程的开始,而输出是完成过程的结果,通过使用合理的资源和科学的管理,来对处于一定的环境的过程进行增值转换活动。为了确保过程的结果质量,对输入过程的要素、环境要求和输出的结果(有形的或者无形的)以及在过程中的适当阶段应进行必要的监控和评价。工艺设计过程中的转化活动是由一系列按照时序要求展开的活动,首先是包括审查图纸、产品结构及技术分析、工艺性评价的工艺性分析活动,之后是选择毛坯精度确定余量、绘制毛坯图的确定毛坯及其制造方式活动,然后是划分加工阶段及确定工序顺序的拟定产品的工艺路线活动,最后是确定工序余量计算工序尺寸及公差,选择切削用量,计算时间额定,选择加工设备及工艺装备的详细的工序设计活动。

3工艺设计过程影响因素分析

工艺设计过程是指工艺设计相关的一切活动,信息,数据,资源的总和。它是由一系列子过程工艺设计活动组成。由于每个过程活动的任务和目标不一样,如表1所示。使得不同阶段的活动所需的资源,输入输出,环境等要素也不同。在产品结构性工艺审查,毛坯的选择,工艺方案设计与评价,工装设计,材料与工时定额等活动时要综合考虑企业自身条件,生产设备,生产能力,生产环境,工艺相关经验,工具相关信息,设备相关参数,加工人员技术水平信息等影响因素,还要结合所处的环境和资源等因素,如环保规则,加工生产条件,安全条件,经济性等方面。最后输出最经济,最可行,最合理的工艺设计方案等文件内容指导企业生产制造。

4工艺设计缺陷因素结构模型的构建

为了更好的表达缺陷因素与工艺设计过程的关系,避免工艺设计缺陷的产生,并参考多数企业的工艺设计流程,采用过程方法构建的工艺缺陷因素结构关系模型,如图3所示。从图3可以看出硬件产品工艺设计过程是一个多层次,多步骤和分阶段的设计过程。整个工艺设计过程涉及的影响因素因不同阶段而不同,分布于产品工艺设计过程各个阶段的活动中。工艺缺陷影响因素结构关系模型不仅表达出工艺设计过程中各设计阶段间的逻辑顺序关系,理顺了工艺设计阶段的各个活动的输入、输出,而且还清晰地呈现出设计资源、环境等缺陷因素与工艺设计过程的关系,为以后的工艺设计缺陷的预防和控制提供了理论基础。然而,从整个模型可以看出,影响工艺缺陷的因素比较多,在具体的工艺设计活动中,往往是由于模型中缺陷因素不能合理有效的控制这些因素,增加了工艺设计缺陷的风险。因此,需要进一步定量掌握工艺设计阶段的影响因素对工艺设计活动的影响程度,以及因素之间的互相影响关系,以便更好的,有针对性地采取措施来优化工艺设计过程,提高工艺设计质量。

5工艺缺陷影响因素定量化分析

5.1基于DEMATEL方法的工艺设计缺陷因素分析

DEMATEL(decisionmakingtrialandevaluationlaboratory)决策实验室分析法,是20世纪70年代出现的运用图论与矩阵论原理进行系统因素分析的方法,它通过系统中各因素之间的逻辑关系构建直接影响矩阵,计算各因素对其他因素的影响度以及被影响度,从而计算各因素的中心度和原因度,然后,根据因素所对应的中心度和原因度,得出该因素所属的种类(原因性因素还是结果性因素)。DEMATEL方法关注的不仅是因素之间的两两直接影响关系,还考虑了所有因素之间的间接影响关系,从而获取众多因素中的关键因素。采用DEMATEL方法对影响工艺设计缺陷因素进行量化分析,分析过程直观、明晰,其结果不仅可以表达各缺陷因素之间的量化因果关系,还能根据量化结果对影响因素集进行因果分类和重要程度排序,为缺陷因素控制管理以及识别提供科学依据。

5.2基于DEMATEL方法的工艺设计缺陷因素分析步

骤如下(1)构建各因素间的直接影响矩阵。工艺设计缺陷影响因素表示为Tx,其中x=1,2,3……n,如果因素Ti对因素Tj有影响,则表示为tij。设定影响关系评价标度(如根据较强,强,一般,弱,无五个等级分别赋值),定义:当i=j时,tij=0表示因素自身对自己无影响;当因素Ti对因素Tj影响很弱时,tij=1;当因素Ti对因素Tj影响一般时,tij=2;当因素Ti对因素Tj影响较强时,tij=3;当因素Ti对因素Tj影响很强时,tij=4。构造因素间的影响矩阵G。影响度Hi为综合影响矩阵D中i行的行和,表示因素Ti对其他所有元素的综合影响值。被影响度Lj为综合影响矩阵T中j列的列和,表示Tj受其他所有因素的综合影响值。中心度Mi为综合影响矩阵T中第i行的行和与第i列的列和之和,表示该因素在系统中的重要性程度。原因度Ui为综合影响矩阵T中的第i行之和与第i列之和的差,表示该因素与其他因素的因果逻辑关系程度,若为正,表示该因素对其他因素的影响大,称为原因因素;若为负,则表示该因素受其他因素的影响大,称为结果因素。(5)根据第四步计算的结果,以Ui为纵轴,Mi为横轴,绘制因素的原因—结果图,得出各缺陷因素的影响度和被影响度排序。

5.3举例分析

以某雨弹发射架的工艺设计为例,影响雨弹发射架工艺设计缺陷的因素众多、关系复杂。按上述方法,从与工艺设计有关过程活动的角度来考虑,同时考虑输入输出类、资源类、环境类以及监测评价四大类工艺缺陷影响因影响因素体系,构建了雨弹发射架工艺设计缺陷因素表以及按DEMATEL方法步骤计算出综合数据,如表2所示。(1)缺陷因素的原因—结果图根据综合影响关系表,以Ui为纵轴,Mi为横轴,绘制因素的原因—结果图,得出各缺陷因素的影响度和被影响度排序。应用SPSS软件将各雨弹发射架工艺设计影响因素标注在坐标系上,如图4所示。(2)分析结果由以上结果从整体所有因素可以看到:(1)雨弹发射架工艺设计的原因因素有24个位于0线以上,依次f1、f2、f3、f4、f5、f7、f8、f10、f11、f13、f14、f15、f17、f21、f23、f24、f25、f28、f30、f32、f35、f37、f39、f40,它们是导致雨弹发射架工艺设计缺陷的主导因素。根据20/80原则,影响度大小排序前五位为f10(工艺流程图)、f13(工序操作指导卡片)、f5(现有生产能力资料)、f7(毛坯方案)、f2(组件明细)、所以,必须采取针对性的措施。(2)结果因素有16个位于0线以下,依次为f6、f9、f12、f16、f18、f19、f20、f22、f26、f27、f29、f31、f33、f34、f36、f38,这些因素受其他因素影响比较大。按被影响度大小排序前三位为f38(成本约束)、f22(毛坯的相关经验)、f12(工序卡片),它们极易受到其他因素的影响,必须加以重视。(3)从工艺设计缺陷因素原因—结果图中也可以分别按类中的因素比较,如输入输出类缺陷因素(正方形表示)中的f10(工艺流程图)、f13(工序操作指导卡片)、f5(现有生产能力资料)中心度值较大,是输入输出类最可能导致工艺设计缺陷的致因因素;从图4可以看出输入输出类因素相对其他类因素大部分都在0线以上,这说明此类因素中原因因素较多,应该给予一定控制。资源类缺陷因素(圆圈表示)中f22(毛坯的相关经验)原因度第二小,说明受其他因素影响最大。环境类缺陷因素(正三角形表示)中f38(成本约束)原因度最小,中心度第三大,说明成本约束不仅受其他因素影响大外,自身影响其他因素也大,应给予控制。监测评价类成本约束(倒三角形表示)f39,f40,都在0线以上,说明此类缺陷因素影响其他因素较多。(4)从整体来看缺陷因素f5(现有生产能力资料)、f10(工艺流程图)、f12(工序卡片)、f13(工序操作指导卡片)、f22(毛坯的相关经验)、f38(成本约束)相对离散,应重点控制监测。以上结果只是针对雨弹发射架工艺设计,对其他硬件产品工艺设计缺陷因素分析可参照此方法,但分析结果因产品而异。

6结论

第2篇

系统硬件原理框图如图1所示。系统采用不同的链路口完成输入和输出,可以避免采用总线可能产生的通道冲突。模拟视频信号由AD9883A完成模数转换。AD9883A是个三通道的ADC,因此系统可以完成单色的视频信号处理,也可以完成彩色的视频信号处理。采样所得视频数字信号经链路口输入到ADSP-21160,完成处理后由不同的链路口输出到ADV7125,完成数模转换。ADV7125是三通道的DAC,同样也可以用于处理彩色信号。输出视频信号到灰度电压产生电路,得到驱动液晶屏所需要的驱动电压。ADSP-21160还有通用可编程I/O标志脚,可用于接受外部控制信号,给系统及其模块发送控制信息,以使整个系统稳定有序地工作。例如,ADSP-21160为灰度电压产生电路和液晶屏提供必要的控制信号。另外,系统还设置了一些LED灯,用于直观的指示系统硬件及DSP内部程序各模块的工作状态。

本设计采用从闪存引导的方式加载DSP的程序文件,闪存具有很高的性价比,体积小,功耗低。由于本系统中的闪

存既要存储DSP程序,又要保存对应于不同的伽玛值的查找表数据以及部分预设的显示数据,故选择ST公司的容量较大的M29W641DL,既能保存程序代码,又能保存必要的数据信息。

图2为DSP与闪存的接口电路。因为采用8位闪存引导方式,所以ADSP-21160地址线应使用A20-A0,数据线为D39—32,读、写和片选信号分别接到闪存相应引脚上。

系统功能及实现

本设计采用ADSP-21160完成伽玛校正、时基校正、时钟发生2S、图像优化和控制信号的产生等功能。

1伽玛校正原理

在LCD中,驱动IC/LSI的DAC图像数据信号线性变化,而液晶的电光特性是非线性,所以要调节对液晶所加的外加电压,使其满足液晶显示亮度的线性,即伽玛(Y)校正。Y校正是一个实现图像能够尽可能真实地反映原物体或原图像视觉信息的重要过程。利用查找表来补偿液晶电光特性的Y校正方法能使液晶显示系统具有理想的传输函数。未校正时液晶显示系统的输入输出曲线呈S形。伽玛表的作用就是通过对ADC进来的信号进行反S形的非线性变换,最终使液晶显示系统的输入输出曲线满足实际要求。

LCD的Y校正图形如图3所示,左图是LCD的电光特性曲线图,右图是LCD亮度特性曲线和电压的模数转换图。

2伽玛校正的实现

本文采用较科学的Y校正处理技术,对数字三基信号分别进行数字Y校正(也可以对模拟三基信号分别进行Y校正)。在完成v校正的同时,并不损失灰度层次,使全彩色显示屏图像更鲜艳,更逼真,更清晰。

某单色光Y调整过程如图4所示,其他二色与此相同。以单色光v调整为例:ADSP-21160首先根据外部提供的一组控制信号,进行第一次查表,得到Y调整系数(Y值)。然后根据该Y值和输入的显示数据进行第二次查表,得到经校正后的显示数据。第一次查表的Y值是通过外部的控制信号输入到控制模块进行第一次查表得到的。8位显示数据信号可查表数字0~255种灰度级显示数据(Y校正后)。

3图像优化

为了提高图像质量,ADSP-21160内部还设计了图像效果优化及特技模块,许多在模拟处理中无法进行的工作可以在数字处理中进行,例如,二维数字滤波、轮廓校正,细节补偿频率微调、准确的彩色矩阵(线性矩阵电路),黑斑校正、g校正、孔阑校正、增益调整、黑电平控制及杂散光补偿、对比度调节等,这些处理都提高了图像质量。

数字特技是对视频信号本身进行尺寸、位置变化和亮,色信号变化的数字化处理,它能使图像变成各种形状,在屏幕上任意放缩,旋转等,这些是模拟特技无法实现的。还可以设计滤波器来滤除一些干扰信号和噪声信号等,使图像的清晰度更高,更好地再现原始图像。所有的信号和数据都是存储在DSP内部,由它内部产生的时钟模块和控制模块实现的。

4时基校正及系统控制

由于ADSP-21160内部各个模块的功能和处理时间不同,各模块之间存在一定延时,故需要进行数字时基校正,使存储器最终输出的数据能严格对齐,而不会出现信息的重叠或不连续。数字时基校正主要用于校正视频信号中的行,场同步信号的时基误差。首先,将被校正的信号以它的时基信号为基准写入存储器,然后,以TFT-LCD的时基信号为基准读出,即可得到时基误差较小的视频信号。同时它还附加了其他功能,可以对视频信号的色度、亮度、饱和度进行调节,同时对行、场相位、负载波相位进行调节,并具有时钟台标的功能。

控制模块主要负责控制时序驱动逻辑电路以管理和操作各功能模块,如显示数据存储器的管理和操作,负责将显示数据和指令参数传输到位,负责将参数寄存器的内容转换成相应的显示功能逻辑。内部的信号发生器产生控制信号及地址,根据水平和垂直显示及消隐计数器的值产生控制信号。此外,它还可以接收外部控制信号,以实现人机交互,从而使该电路的功能更加强大,更加灵活。此外,ADSP21160的内部还设计了I2C总线控制模块,模拟FC总线的工作,为外部的具有I2C接口的器件提供SCLK(串行时钟信号)和SDA(双向串行数据信号)。模拟I2C工作状态如图5和图6所示。

系统软件实现

在软件设计如图7所示,采用Matlab软件计算出校正值,并以查找表的文件形式存储,供时序的调用。系统上电

开始,首先要完成ADSP-21160的一系列寄存器的设置,以使DSP能正确有效地工作。当ADSP-21160接收到有效的视频信号以后,根据外部控制信息确定Y值。为适应不同TFT-LCD屏对视频信号的显示,系统可以通过调整Y值,以调节显示效果到最佳。再如图4所示,对先前预存的文件进行查表,得到所需的矫正后的值,然后暂存等待下一步处理。系统还可以根据视频信号特点和用户需要完成一些图像的优化和特技,如二维数字滤波、轮廓校正、增益调整、对比度调节等。这些操作可由用户需求选择性使用。利用ADSP-21160还可以实现图像翻转、停滞等特技。最后进行数字时基校正,主要用于校正视频信号中的行、场同步信号的时基误差,使存储器最终输出的数据能严格对齐,而不会出现信息的重叠或不连续。除了以上所述的主要功能以外,ADSP-21160还根据时序控制信号,为灰度电压产生电路和TFT-LCD屏提供必要的控制信号。另外,ADSP-21160还能设置驱动通用I/O脚配置的LED灯,显示系统工作状态。

第3篇

1飞行原理与机械结构

四旋翼飞行器的旋翼对称地安装在呈十字交叉的支架顶端,位置相邻的旋翼旋转方向相反,同一对角线上的旋翼旋转方向相同,以此确保了飞行系统的扭矩平衡[7],如图1所示。四旋翼飞行器旋翼的旋转切角是固定值,因此,要通过调节每个电机的转速来实现六自由度的飞行姿态控制。增大或减少4个电机的转速来完成垂直方向上的升降运动,调节1,3旋翼的转速差来控制仰俯速率和进退运动,调节2,4旋翼的转速差来控制横滚速率和倾飞运动,调节2个顺时针旋转电机和2个逆时针旋转电机的相对速率来控制偏航运动。通过对飞行原理的分析,把可行性、低成本、易维护作为主要考虑因素,设计的样机如图2所示。机臂由镂空工程塑料材料PA66和30%玻璃纤维制成,质量相对较轻,强度大,对称电机轴距55cm,为保证水平起飞与平稳着陆,四旋翼飞行器底部安装起落架。电机旋翼等具体参数为:机体质量为857g;最大负载约为300g;机身高度为31cm;飞行时间约为8min。在整机安装过程中尽量保证重心在机械机构的对称中心,实际飞行实验证明了系统动力设备与机械结构的可行性。

2总体结构设计

四旋翼飞行器的硬件系统设计以飞控板为核心,搭载动力设备、电源模块与遥控模块。图3描述了以ATMEGA644P—AU为核心芯片搭载多传感器的飞行控制系统总体结构框图,整体系统利用11.1V锂电池供电,飞控与无刷电调以I2C总线数据传输来调节4个电机的转速;在遥控模块中,2.4MHz的控制信号通过PPM解码板与飞控板进行数据传输;在多传感器系统中,大气压力感器用行高度检测,陀螺仪与加速度计的融合使用用于姿态解算。

3电源模块

四旋翼飞行器由2200MAh,11.1V,持续放电倍率30C锂电池供电,通过稳压电路的设计对不同电路进行供电,确保各模块正常稳定的工作。控制系统设计需要5,3V两种电平供电,电压转换电路如图4所示。由锂电池提供的11.1电压经两块7805稳压芯片后转为5V电压,一部分用控板供电,一部分向预留的外部接口供电。经7805输出的5V电压经过2个MCP1700T稳压芯片输出3V电压,一部分供给控制系统的数字电路,一部分供给控制系统的模拟电路。330μF/25V电解电容器,10nF/16V钽电容器,贴片电容器的并联使用起到了防止电压抖动与滤波的作用。

4多传感器控制模块

为了准确地控制四旋翼飞行器的飞行姿态,需要在控制系统中加入不同的传感器,加速度传感器与三个陀螺仪来测量三轴加速度与角速度,大气压力传感器通过测量起始位置与飞行位置的气压差对飞行高度控制,为自主导航功能提供支持。大气压力传感器选择的是Freescale公司的MPX4250A,在该集成传感器芯片上,除具有压阻式压力传感器外,还有用作温度补偿的薄膜电阻网络,测压范围为20~250kPa,输出电压为0.2~4.9V,工作温度范围为-40~+125℃。电路如图5所示,可以根据压力的大小,通过控制P_1和P_2选择不同的放大倍数,提高采样的精度。LIS344ALH是一种低功耗、高性能、高精度的三轴加速度传感器,通过模拟输出为外部电路提供直接测量信号,加速度传感器的工作电压为2.2~3.6V,检测量程可以在±2gn或±4gn间选择。其中,VREF为通过稳压芯片MCP1700T转换为3V的稳定电压输入。应用电路如图6所示,选择100nF的贴片电容器作为VCC端的解耦电容,在输出端使用1μF的滤波电容减小噪声。考虑到振动误差无法通过加速度传感器进行补偿,因此,陀螺仪选型的过程中把机械性能作为重要的考虑因素,选择了可以在单芯片上实现完整单轴角速度响应的ADXRS610陀螺仪传感器。3个ADXRS610陀螺仪分别安装于垂直于机体坐标系的XYZ轴来实现系统三轴角速度的测量。

5实验与仿真

四旋翼飞行器在姿态解算时,陀螺仪传感器直接测量的是角速度,在积分得到角度的过程中随着时间的增长会产生累计积分误差,积分误差产生的原因一方面是积分时间,另一方面,由于自身的机械特性会产生零漂温漂等现象[8]。在陀螺仪的使用过程中融合加速度传感器,不仅为陀螺仪提供了绝对参考系,而且使加速度传感器优秀的静态性能与陀螺仪良好的动态性能相结合[9],较好地抑制了外界干扰。数据经卡尔曼滤波算法处理后,可有效地降低数据噪声。图8为加速度传感器采样数据与卡尔曼滤波后的数据比较,可以明显地看到噪声信号减小了,但是仍有少量的扰动存在。图9的曲线表明了陀螺仪采集角速度数据存在零漂、温漂现象,当确定零漂为0.05°,静态输出电压为2.63V时,从波形图中可以观察到通过卡尔曼滤波处理后的积分数据平滑收敛,不但对零点漂移进行了补偿,而且对累计积-10-5051015角度/(°)012345时间/s卡尔曼滤波后的数据加速度计采集数据图8加速度计采样数据经卡尔曼滤波后的数据图Fig8DatadiagramofsamplingdatasofaccelerometerprocessedbyKalmanfiltering分误差,温漂有较好的抑制作用。-10-5051015角度/(°)012345时间/s卡尔曼滤波后的陀螺仪数据陀螺仪积分数据采集角速度数据。

6结论

第4篇

关键词:VoIPPCIFXS路由器语音压缩

1VoIP在路由器中的应用

近年来,VoIP(VoiceoverInternetProtocol)给通信市场带来了强大的冲击。IP语音业务推出后,由于其在通话费用上比传统电话具有突出的优势,因而受到了广泛欢迎。VoIP技术在路由器中应用,可以大大节省有多个部门在不同地方办公的企业或机构的电话费用。图1为一个VoIP路由器在公安分局与派出所间应用的方案。

派出所网点的路由器DCR-2501V和DCR-2509V使用FR(帧中继)或DDN线路同分局的DCR-3660实现互连,各网点的计算机可通过路由器连接分局的局域网或Internet,实现数据通信;同时,DCR-2501V或DCR-2509V通过FXS语音端口连接普通电话机,分局路由器通过E&M接口和PBX连接,这样既可以实现内部各部门间的数据通信,同时还可进行零费用的语音通话。

VoIP在费用上呈现巨大优势的原因在于其利用了计算机通讯的分组化、数字化传输技术,先对语音数据按照一定的语音压缩标准进行压缩编码处理,然后把这些数据按IP相关协议打包,再将数据包通过IP网络传输到接收端,接收端将这些以不同顺序到达的数据包按其本身顺序串起来,并经过解码解压恢复出原来的语音信号。与传统的语音业务相比,VoIP在时间延迟、话音质量等方面存在缺陷。可以采用一些先进的协议如资源预留协议(RSVP)和不同类型服务(Diffserv)等方案来尽可能的优化语音数据包的传输,以减少传输延迟和拥塞。

目前,VoIP的标准主要有国际电信联盟技术部(ITU-T)建议的H.323系统和IETF建议的会话发起协议(SessionInitiationProtocol,SIP)系统两种。前者主要在电信网络上实现多媒体业务制订,技术已趋成熟。后者基于动态的Internet模式建网,是基于软交换技术的面向网络会议和电话的简单信令协议。在我国,主要选用H.323技术标准来实现VoIP,在H.323系列标准中,音频压缩编码标准有G.711、G.722、G.723和G729等。

本文将介绍一种已经应用于路由器产品中的VoIP语音卡的硬件设计和工作原理。

2VoIP语音卡硬件结构

该语音卡基于AudioCodes公司的VoPP(VoiceOverPacketProcessor,即语音包处理器)AC48302设计,采用PCI接口界面,可提供两个FXS(ForeignExchangeStation)语音/传真接口,可以方便灵活地应用于本公司开发的系列路由器中,实现VoIP功能。其硬件结构框图如图2所示,以下介绍各部分硬件的原理和作用。

2.1PCI接口

路由器主板与语音卡之间通过PCI总线连接,便于通用。采用了PCI接口芯片PLX9030实现语音卡本地总线(HPI)与PCI总线之间的转换。由于语音卡上数据流量不大,不需要利用如DMA方式主动向路由器主板上的Memory空间传递数据。因此,语音卡工作于PCI的从模式方式,AC48302通过中断方式接收或发送语音数据,PCI总线的数据宽度和速度为32位/33MHz。

2.2CPLD部分

AC48302采用8位并行的主处理器接口HPI与外部CPU(即路由器CPU)进行数据交换。在本设计中,HPI接口与PLX9030的本地总线接口时序稍有差别,经过CPLD进行调整。另外,路由器CPU还可通过CPLD控制CODEC和SLIC芯片。

2.3AC48302芯片

AC48302是AudioCodes公司推出的一款低功耗、低价格的双通道语音包处理器,其内部集成了一个DSP内核。该芯片的主要特性如下:

·支持两个通道的语音压缩编码,语音压缩标准包括G.729A、G.723.1、G.727、G.726、G.711。

·兼容T.38或FRF.11传真中继(2.4~14.4kbps)。

·呼叫ID产生和检测,呼叫进程和用户定义语音的检测和产生。

·兼容G.168的25ms回声消除。

·高性能的有效语音检测(VAD)和舒适噪声产生(CNG)。

·DTMF检测和产生。

·A律/μ律可选的Codec接口,具有输入输出增益控制。

·PCMHighway接口。

·并行的主处理器接口(HPI)。

AC48302各部分硬件接口如图3所示。

图4AC48302HPI存储器的映射关系

2.3.1语音接口(VoiceInterface)

语音接口提供未压缩的语音、传真数据的输入输出通道。语音接口对外提供四根信号线构成PCM总线,直接连接外部CODEC芯片的PCMHighway。这四根信号线为PCMIN、PCMOUT、PCMCLK、PCMFS。PCMIN输入从CODEC送来的PCM信号,AC48302内部的DSP按照相应标准(如G.729)压缩后从HPI给路由器CPU转发。PCMOUT则相反,AC48302将路由器CPU送来的语音数据按照合适的标准解压缩,然后从PCMOUT口送到外部CODEC,CODEC经过数/模转换后恢复成语音信号?熏通过用户接口送给用户端。PCMCLK提供2.048MHz的比特同步时钟,而PCMFS提供8kHz的帧同步时钟。

2.3.2HPI接口

在本设计中,路由器CPU与AC48302通过HPI口进行通信。路由器CPU和DSP通过AC48302的片内共享的双口存储器实现数据交互。片内共享存储器的映射关系见图4。

HPI接口包括1根8位数据总线和几根控制总线。路由器CPU通过三个寄存器(HPIC、HPIA和HPID)控制AC48302及访问片内存储空间。HPIC为控制寄存器,用来选择AC48302的高低字节顺序、产生和接收中断。HPIA为地址寄存器,用来寻址片内的2K存储空间。HPID为数据寄存器,用来缓存每次读写的两个字节数据,外部CPU可以单个Word或块数据方式访问HPID,当以块数据方式访问时,HPIA寄存器自动累加,这样可以减少外部CPU写HPIA寄存器的开销。AC48302的内部寄存器和存储器为16位宽度,因此外部CPU每次访问AC48302必须以两个字节为基本单位,信号线HI/LO用来选择高低字节,信号HRS1、HRS0指示当前访问的是哪个寄存器。

除了以上两个重要的接口外,AC48302内部还包含一个PCM时钟发生器、一个用于测试的JTAG接口以及一个用于访问外部SRAM及处理信道辅助信令的Memory&I/O接口。

2.4CODEC接口芯片

CODEC芯片负责对DSP解压缩后送来的PCM数据进行解码,并将滤波后的模拟语音信号送到用户线接口芯片SLIC,SLIC对其进行2-4线转换后送给用户端;同时,CODEC还负责将SLIC送来的模拟语音信号进行PCM编码,然后送到DSP芯片进行压缩处理。

本设计中,CODEC芯片采用IDT公司的4通道PCM编解码芯片IDT821034。该芯片具有可编程增益设置、主时钟可选(2.048MHz、4.096MHz和8.192MHz)、最大可支持128个可编程时隙、A律/μ律可选、内置数字滤波器、串行控制接口、低功耗等特点。本设计中选用主时钟为2.048MHz(E1帧模式),可划分为32个相等的时隙(Slot0~Slot31),4个通道的接收和发送时隙可通过向串行控制口写入控制字进行动态选择。各时隙的位置都以8kHz的帧同步时钟信号为参考,在IDT821034中,时隙0相对帧同步脉冲的位置有延迟模式和非延迟模式(图6即为非延迟模式)。

PCM主时钟(BCLK)、帧同步时钟(FS)、接收数据(DR)和发送数据(DX)一起构成PCMHighway信号,与AC48302进行连接。BCLK与FS分别对应AC48302的PCMCLK和PCMFS,这两个时钟信号都由AC48302产生;DR和DX分别对应AC48302的PCMOUT和PCMIN。PCMHighway信号时序以及时隙与帧同步信号的关系分别如图5、图6所示。为了CODEC与DSP芯片间正确收发数据,一般选择CODEC芯片在BCLK的上升沿发送数据DX,下降沿采样数据DR,而在另一端的AC48302,则在时钟下降沿采样PCMIN,上升沿发送PCMOUT。

2.5用户线接口(SLIC)芯片

设计中为了使语音卡能够提供FXS接口功能,采用了爱立信公司的新型SLIC芯片PBL83710连接用户接口。在该芯片内部能够产生高电压铃流信号及提供自动电池馈电切换,具有环流振铃和地键检测功能及2-4线转换功能。该芯片将许多传统的振铃继电器、铃流发生器等器件集成在一个片内,节省了印制板空间和成本。

3VoIP语音卡硬件驱动流程

硬件驱动程序主要完成以下功能:

(1)初始化PLX9030芯片,配置相关寄存器,选择本地总线工作方式。

(2)初始化AC48302芯片,启动AC48302内部的DSP内核到正常工作状态。AC48302的启动步骤按顺序分为以下几步:核代码(Kernel)下载;程序代码(Program)下载;初始化模式;启动运行。

第5篇

关键词:加密卡PCI总线PCI9052ISP单片机

加密是对软件进行保护的一种有效手段。从加密技术的发展历程及发展趋势来看,加密可大体划分为软加密和硬加密两种。硬加密的典型产品是使用并口的软件狗,它的缺点是端口地址固定,容易被逻辑分析仪或仿真软件跟踪,并且还占用了有限的并口资源。笔者设计的基于PCI总线的加密卡具有以下几个优点:第一,PCI总线是当今计算机使用的主流标准总线,具有丰富的硬件资源,因此不易受资源环境限制;第二,PCI设备配置空间采用自动配置方式,反跟踪能力强;第三,在PCI扩展卡上易于实现先进的加密算法。

1总体设计方案

基于PCI总线的加密卡插在计算机的PCI总线插槽上(5V32Bit连接器),主处理器通过与加密卡通信,获取密钥及其它数据。加密卡的工作过程和工作原理是:系统动态分配给加密卡4字节I/O空间,被加密软件通过驱动程序访问该I/O空间;加密卡收到访问命令后,通过PCI专用接口芯片,把PCI总线访问时序转化为本地总线访问时序;本地总线信号经过转换处理后,与单片机相连,按约定的通信协议与单片机通信。上述过程实现了主处理器对加密卡的访问操作。

图1硬件总体设计方案

下面以主处理器对加密卡进行写操作为例,阐述具体的实现方法。加密卡采用PLX公司的PCI9052作为PCI总线周期与本地总线周期进行转换的接口芯片。PCI9052作为PCI总线从设备,又充当了本地总线主设备,对其配置可通过EEPROM93LC46B实现。主处理器对加密卡进行写操作,PCI9052把PCI总线时序转化为8位本地数据总线写操作。这8位本地数据总线通过Lattice公司的ispLSI2064与单片机AT89C51的P0口相连,2064完成PCI9052本地总线与AT89C51之间的数据传输、握手信号转换控制等功能。2064对8位本地数据总线写操作进行处理,产生中断信号。该中断信号与AT89C51的INT0#相连,使AT89C51产生中断。AT89C51产生中断后,检测与其P2口相连的本地读写信号WR#、RD#、LW/R#。当WR#为低电平、LW/R#为高电平时,AT89C51判断目前的操作是否为写操作。确认是写操作后,AT89C51把P0口上的8位数据取下来,然后用RDY51#(经2064转换后)通知PCI9052的LRDYi#,表明自己已经把当前的8位数据取走,可以继续下面的工作。PCI9052收到LRDYi#有效后,结束当前的8位数据写操作。PCI总线的一次32位数据写操作,PCI9052本地总线需要四次8位数据写操作,通过字节使能LBE1#、LBE0#区分当前的8位数据是第几个字节有效。

加密卡硬件总体设计方案如图1所示。

2硬件各组成部分说明

2.1PCI9052部分

PCI9052是PCI总线专用接口芯片,采用CMOS工艺,160引脚PQFP封装,符合PCI总线标准2.1版。其总线接口信号与PCI总线信号位置对应,因此可直接相连,易于PCB实现。PCI9052的最大数据传输速率可达132MB/s;本地时钟最高可至40MHz,且无需与PCI时钟同步;可通过两个本地中断输入或软件设置产生PCI中断。它支持三种本地总线工作模式,实际设计采用地址和数据线非复用、8位本地数据总线、非ISA模式。

PCI9052内部有一个64字节PCI配置空间,一个84字节本地配置寄存器组。对PCI9052的配置可由主机或符合3线协议的串行EEPROM完成(注:ISA模式必须由串行EEPROM完成配置)。实际设计采用Microchip公司的93LC46B存放配置信息。系统初始化时,自动将配置信息装入PCI9052,约需780μs。如果EEPROM不存在或检测到空设备,则PCI9052设置为默认值。

在设计中,EEPROM用到的配置项目有:设备ID:9050;厂商ID:10B5;分类代码:0780;子系统ID:9050;子系统厂商ID:10B5;支持INTA#中断,PCI3C:0100;分配4字节本地I/O空间:(例LAS0RR)0FFFFFFD;其它本地地址空间未使用:00000000;4字节本地I/O空间基地址(模4对齐):(LAS0BA)01200001(仅为示例);4字节本地I/O空间描述符:(LAS0BRD)00000022(非猝发、LRDYi#输入使能、BTERM#输入不使能、不预取、各内部等待状态数均为0、8位本地数据总线宽度、小Endian模式);中断控制/状态,Local4C:00000143(LINTi1使能、LINTi1边沿触发中断选择使能、LINTi2不使能、PCI中断使能、非软件中断、ISA接口模式不使能);UserI/O、从设备应答、串行EEPROM、初始化控制,Local50:00024492。有两点要注意:一是设计中采用PLX公司推荐使用的串行EEPROM93LC46B按字(16bit)为单位组织;二是EEPROM开发器编辑输入与手工书写的顺序对应关系,以厂商ID:10B5为例,在开发器编辑输入的是b510,而不是10B5。

PCI9052本地信号的含义是:LAD[7..0]:本地8位数据总线;WR#:写有效;RD#:读有效;LW/R#:数据传输方向,高电平为写操作,低电平为读操作;LBE1#和LBE0#:字节使能,表明当前LAD[7..0]上的数据是第几个字节(0到3);BLAST#:PCI9052写数据准备好或读数据已取走;LRDYi#:外部设备(此设计指单片机)已把PCI9052写操作数据取走或读操作数据准备好;LINTi1:外部设备通过LINTi1向主机发送INTA#中断,当单片机验证密钥正确,向主处理器发送请求,表明可以开始从中读取相关数据。

需注意的是,PCI9052在使用时,某些引脚要加阻值为1kΩ~10kΩ的下拉或上拉电阻。因此在实现时,给MODE、LHOLD、LINTi1引脚加下拉电阻,CHRDY、EEDO、LRDYi#引脚加上拉电阻。

图2PCI9052本地写时序

以主处理器向单片机写数据为例,图2给出了PCI9052的本地写时序。

2.2ispLSI2064部分

为降低数据被解析的风险,应尽量减少使用分离元件。因此在设计中选用了Lattice公司的CPLDispLSI2064。该芯片采用EECMOS技术,100引脚TQFP封装,拥有2000个PLD门,64个I/O引脚另加4个专用输入,64个寄存器,3个全局时钟,TTL兼容的输入输出信号。2064具有在系统可编程ISP(In-SystemProgrammable)功能,可方便实现硬件重构,易于升级,降低了设计风险,并且安全性能高。PCI9052与单片机之间的8位数据线进行双向数据传输,不能简单地直接相连,需要进行传输方向控制和数据隔离。故用2064作为PCI9052本地信号与单片机信号进行信号传递的接口,图3给出了8位数据信号双向传输的原理图。2064的开发软件ispDesignExpert8.2版支持VHDL、VerilogHDL、Abel等语言及原理图输入,且通过专用下载电缆可把最终生成的JEDEC文件写入2064,实现编程。在设计时采用了原理图输入的方法。

原理图中用到的BI18的功能描述为:当OE=1时,XB为输出,A为输入,即XB=A;当OE=0时,XB为输入,Z为输出,即Z=XB。FD28的功能描述为:8位D触发器(带异步清除)。结合PCI9052本地读写时序,可以分析得出,在进行读写操作时,图3实现了LAD[7..0]与D[7..0]之间正常的数据传输;在非读写时,双方数据处于正常隔离状态。

2.3单片机AT89C51部分

单片机采用ATMEL公司的AT89C51。这是一个8位微处理器,采用CMOS工艺,40引脚DIP封装。它含有4K字节Flash和128字节RAM,且自身具有加密保护功能。单片机不进行外部存储器和RAM的扩展,程序存储和运行均在片内完成,有效地保证了加密强度。

图3LAD[7..0]与D[7..0]之间的数据传输

第6篇

关键词:PCI总线WDM驱动MPEG-1压缩卡

随着计算机技术、多媒体和数据通信技术的高速发展,人们生活水平的提高,对计算机视频的需求和应用越来越多,如视频监控、视频会议、计算机视觉等。计算机视频提供给人的信息很多,但是视频的数据量很大,不利于传输和存储,使其应用受到不少限制。为解决视频数据的存储和传输,唯一途径就是对视频数据进行压缩。

目前常见的视频压缩方法有MPEG-1、MPEG-2、MPEG-4、H.261、H.263等。考虑压缩技术的成熟度和该压缩卡的主要用途,本文采用MPEG-1作为压缩标准,研制了基于PCI总线的MPEG-I压缩卡。该卡适用于视频监控、视频会议等多种应用场合。该卡加上一台主机、摄像头和软件可构成一个完整的视频采集压缩系统。

1系统特点

(1)支持BNC、RCA、S-VIDEO视频接口;

(2)支持PAL和NTSC制式;

(3)可对视频实时预览,最大分辨率可达720×576×32;

(4)可对声音进行同步监听;

(5)可对音、视频信号进行MPEG-I压缩,生成MPEG文件和VCD文件;

(6)用户可编程MPEG-1编码设置,可支持CBR和VBR;

(7)可一机多卡同时工作;

(8)可从动态影像中捕获单帧,生成JPG和BMP文件;

(9)支持Win98/Win2000。

2系统硬件设计

2.1系统组成

该系统主要由视频解码、音频解码、压缩核心和PCI接口等组成,其总体框图如图1所示。

2.2视频解码设计

视频解码部分主要完成模拟视频到数字视频的处理,以供后面预览、压缩用。视频解码芯片常用的有SAA7110、SAA7113和SAA7114等。本方案中采用Philips公司的SAA7114。SAA7114有六路模拟输入,内置模拟源选择器可构成6×CVBS、2×Y/C2×CVBS、1×Y/C和4×CVBS;两路模拟预处理通道,内有抗混迭滤波器;CVBS或Y/C通道含完全可编程静态增益控制或自动增益控制功能,对CVBS、Y/C通道可进行自动钳位控制;能自动检测50Hz/60Hz场频,并可自动在PAL和NTSC制式进行切换;能将PAL、NTSC和SECAM信号解码及模数变换得到符合ITU-601/ITU-656的数字电视信号。该芯片是目前视频解码芯片中接收视频源的宽容性及视频解码图像质量最好的一种。其通过I2C接口,进行初始化设置。

本系统采用ImagePort作为数字视频输出端口,数字视频格式采用ITU-656AI11(PIN20)作为BNC/RCA输入脚,AI12、AI22作为S-VIDEO输入脚。

图2SAA7146A方框图

2.3音频解码设计

音频解码的数据一部分提供给SAA7146A作声音监听用,另一部分用于压缩。考虑到成本,本系统采用BURR-BROWN公司的PCM1800E。该芯片是双声道单片ΔΣ型20位ADC单+5V电源供电,信噪比为95dB(典型值),动态范围95dB(典型值),内嵌高通滤波器,支持四种接口方式和四种数据格式。其采样频率为32kHz、44.1kHz和48kHz可选。

本系统采用从模式,20位I2S数据格式。主时钟由SAA7114提供。

2.4MPEG-1压缩部分设计

本系统中MPEG-I压缩芯片选用ZAPEX公司的SZ1510。该芯片基于TI的TMS320C54xDSP内核,能对ITU-601/ITU-656数字电视信号和PCM音频流进行MPEG-1实时压缩,可生成多种流,如音频基本流、视频基本流、音视频复合流等。

该芯片外接27MHz晶振,可支持多种主机接口,可工作在复用或非复用、Intel或Motorola类型总线。通过输入管脚HCONFIG1:0和SysConfig寄存器可设置成六种总线接口类型:Intel8051类型的数据/地址复用的8位总线、Motorola类型的数据/地址复用的8位总线、Intel8051类型的非复用的8位数据总线、Motorola类型的非复用的8位数据总线、Intel8051类型的非复用的16位数据总线和Motorola类型的非复用的16位数据总线。支持I2S声音接口。

本系统中采用Intel8051类型的非复用的16位数据总线。

2.5PCI接口部分设计

本系统中PCI接口芯片选用SAA7146A,该芯片并不是通用的PCI接口芯片,而是一个多媒体桥(MultimediaBridge)。方框图如图2。该芯片符合PCI2.1规范。它有八个DMA通道,三个视频,四个音频,一个DEBI(DataExpansionBusInterface)。还具有两路视频通道,可对视频数据进行缩放,一路可无级缩放HPS(HighPerformaceScaler,其纵向可达1:1024、横向可达1:256;另一路有级缩放BRS(BinaryRatioScaler支持CIF和QCIF格式。

音频接口以I2S为基础,通过编程控制以支持MSB-FIRST的不同格式及不同的时序格式。

本系统中该部分主要实现功能如下:

(1)通过DEBI接收SZ1510产生的MPEG-1数据,传输到内存;

(2)通过视频接口,接收SAA7114输出的视频解码信号,并进行亮度、色度、饱和度的控制,并实现无级缩放功能实现视频预览功能;

(3)通过音频接口,接收PCM1800E输出的PCM编码信号,传输到内存,实现声音监听功能;

(4)提供符合PCI2.1规范的接口,将板上数据传输到主机内存。

3软件设计

软件设计主要包括驱动程序设计和应用层的API设计。驱动程序主要负责与硬件打交道,应用层API主要负责与驱动程序接口。由于设计了应用层的API,应用程序可很容易在上面进行开发。

3.1驱动程序设计

为了支持Windows2000和Windows98采用WDMWindowsDriverModel驱动程序。WDM作为微软的最新驱动程序模型与传统的Win3.x和Win95使用的VxD驱动完全不同。WDM可支持电源管理、自动配置和热插拔等。WDM驱动的设计可以采用DriverStudioDS、Windriver、DDKDriverDeviceKit等。本系统驱动采用Windows2000DDK借助VC6.0设计。

3.1.1MPEG-I压缩部分

在驱动中,重置SZ1510后,就可以装载相应工作模式的微码;根据需要,设置好相应寄存值后就可以启动SZ1510对视频数据进行MPEG-1编码。每当产生的压缩数据超过SZ1510内部的FIFO门限后,SZ1510产生相应中断,内核调用中断例程,在中断例程中调用中断延迟例程DPC,在中断延迟例程中接收产生的压缩数据。SZ1510提供两种方式提取数据,一种用I2C总线接口方式,另一种用DEBI方式。

在本系统中,采用DEBI进行压缩数据的传输。考虑到压缩数据产生的速度,本系统开了32页大小的缓冲区,在中断延迟例程中填充该缓冲区。每当填满8页大小后,产生一个事件通知应用层进行数据读取。通过这种方式,可以避免压缩数据的丢失。

其流程图如图3所示。

在驱动中,压缩数据的提取方式将极大地影响生成MPEG文件的质量。如果处理不当,将导致马赛克、跳帧等现象。

3.1.2驱动程序中用户缓冲区的访问

驱动程序访问用户内存主要通过缓冲I/O和直接I/O。缓冲I/OI/O管理器创建一个内核模式拷贝缓冲区,并把用户缓冲区的内容拷贝到该缓冲区中,并在IRP首部的AssociateIrp.SystemBuffer域中存储该非分页内存地址。驱动程序可简单地读写该块内存。直接I/O,I/O管理器为输入数据提供一个内核模式拷贝缓冲区,对输出数据提供一个内存描述符(MDL)。为了使用缓冲I/O或直接I/O在创建设备时,必须设置设备对象的Flags域中的DO_BUFFERED_IO标志位来使用缓冲I/O或设置DO_DIRECT_IO标志位来使用直接I/O。

在本驱动中由于缓冲I/O和直接I/O都被使用,DO_BUFFERED_IO标志位和DO_DIRECT_IO标志位都被设置。

在定义IOCTL码中,对缓冲I/O使用METHOD_BUFFEERED对直接I/O使用METHOD_OUT_DIRECT。

3.2应用层API设计

应用层对驱动程序的访问通过调用Win32I/O函数(如ReadFile、WriteFile和DeviceIoControl)访问。当应用层调用Win32I/O函数以请求I/O后,该请求由内核的I/O系统服务接收,I/O管理器对该请求构造合适的IRP包,并将其传给驱动程序栈,IRP在栈中进行传递,传到驱动程序进行处理,并将结果返回给应用程序。

第7篇

关键词:变压器;冷却控制系统;硬件

1变压器冷却控制系统控制模块的设计总体思想

本文所进行的就是对变压器冷却控制系统控制器模块进行设计,其中包括了可以对主变压器风扇投入与切除的温度范围进行自行设定,也可以按照用户的要求而变化。在传统控制方式中,风扇投切的温度限制值是不能改变的,此外,风扇电机的启动和停止温度有一余量,不像传统的控制方式中是一个定值,避免了频繁启动的缺陷,此外还有运行、故障保护及报警等信号的显示及其与控制中心或调度中心的通讯,上传这些信息,如变压器油温、风扇运行状态有无故障等。至于风扇的分组投切设置是为了节约电能,具有一定的经济意义,但这个分组数不宜过多,以免控制复杂,且散热效果不佳。

控制器主要由AT89CS1单片机、A/D转换器、键盘控制芯片,输出模块、通讯模块以及自动复位电路等组成,其中单片机是控制器的核心,AID转换器是把输入信号转换为数字信号。

2变压器风扇控制系统的硬件接线

基于以上的要求,我们设计的风扇控制器的硬件线路图如下页图1所示。变压器风扇控制中对控制模块进行改进是本文研究的重点,其中包括主要芯片的选用以及一些抗干扰元件的使用。所以在本章节中,我们重点将要介绍变压器风扇冷却控制模块中的主要硬件芯片的作用、选用以及它们之间的连接力一法。

(1)单片机AT89C51(如图1)。

AT89C51是Atmel公司生产的一种低功耗,高性能的8位单片机,具有8k的flash可编程只读存储器,它采用Atmel公司的高密度不易丢失的存储器技术,并且和工业标准的80c51和80c52的指令集合插脚引线兼容,其集成的flash允许可编程存储器可以在系统或者通用的非易失性的存储器编程中进行重新编程。AT89C51集成了一个8位的CPU,8K的flash。256字节的EDAM,32位的I/0总线。三个16字节的定时器/计数器,两级六中段结构,一个全双工的串行口,振荡器及时钟电路。AT89C51是完成系统的数据处理和系统控制的核心,所有其它器件都受其控制或为其服务。

在本文中,经过TLC1543A/D转换器后输出的数字量输入到AT89C51单片机中,同时在进行了温度参数的设置以后,进行它的输出控制,其中包括了变压器的温度显示、状态显示、以及声音报警设备等等,也就是我们所研究的变压器冷却控制系统的核心部分。

(2)变压器的温度采集及温度处理模块。在变压器的风扇冷却自动控制系统中,第一步进行的就是对变压器上层油温进行的温度采集工作。变压器的温度采集是由变压器的温度控制器来实现的,其中包括铂电极、传感器以及变送器。经过温度控制器输出的信号进入变送器,变送器送出一个4一20毫安的电流信号,然后将此电流信号通过控制芯片上的电阻元件实现电流电压信号的转换,转换后的电压是在0.4一2(伏特)之间,然后将此电压信号输入到TLC1543数模转换器,进行信号处理。变送器输出信号有电流和电压信号两种,考虑到变压器安装的位置(室外)距本控制装置(室内)有一定的距离,电流信号不易损失,故选择了4一20毫安的电流信号。(3)11通道10位串行A/D转换器丁LC1543。

TLC1543A/D转换器是美国TI公司生产的众多串行A/D转换器中的一种,它具有输入通道多、转换精度高、传输速度快、使用灵活和价格低廉等优点,是一种高性价的模数转换器。TLC1543是CMOS,10位开关电容逐次逼近模数转换器。它有三个输入端和一个3态输出端:片选(CS),输入/输出时钟(I/0CLOCK),地址输入和数据输出(DATAOUT)。这样通过一个直接的四线接口与卞处理器或的串行口通讯。片内还有14通道多路选择器可以选择11个输入中的任何一个三个内部自测试(self-test)电压中的一个。

(4)BC7281128段LED显示及64键键盘控制芯片。

BC7281是16位LED数码管显示器键盘接口专用控制芯片,通过外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位数码管显示或128支独立的LED。BC7281的驱动输出极性及输出时序均为软件可控,从而可以和各种外部电路配合,适用于任何尺寸的数码管。

BC7281各位可独立按不同的译码方式译码或不译码显示,译码方式显示时小数点不受译码影响,使用方便;BC7281内部还有一闪烁速度控制寄存器,使用者可随时改变闪烁速度。

BC7281芯片可以连接最多64键C8*8)的键盘矩阵,内部具有去抖动功能。它的键盘具有两种工作模式,BC7281内部共有26个寄存器,包括16个显示寄存器和10个特殊(控制)寄存器,所有的操作均通过对这26个寄存器的访问完成。

BC7281采用高速二线接口与MCU进行通讯,只占用很少的I/O资源和主机时间。

BC7281在本系统中主要用于驱动变压器温度显示的LED以及显示风扇运行状态的指示灯。

前已提及,BC7281芯片内部共有26个寄存器,包括16个显示寄存器和10个特殊功能寄存器,共用一段连续的地址,其地址范围是OOH-19H,其中OOH-OFH为显示寄存器,其余为特殊寄存器。

(5)使用MAX232实现与PC机的通讯。

①MAX232芯片简介

MAX232芯片是1VIAX工M公司生产的低功耗、单电源双RS232发送/接收器,适用于各种E工A-232E和V.28;V.24的通信接口,1VIAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-2320输出电平所需±10V电压,所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。

我们的设计电路中选用其中一路发送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC机的RD,Rl工N接PC机的TD1。因为MAX232具有驱动能力,所以不需要外加驱动电路。

系统中使用了此技术之后就实现了变压器风扇冷却系统的远程控制,工作人员可以在控制室对冷却系统进行控制,可以达到方便、准确、快捷的日的,这也是我们对传统的风扇冷却控制系统而做的一个重要的改进。

②串行通讯

在此实现中,我们必须要对MCS-51串行接日和PC机串行接日的串行通讯要有一定的了解,串行通信是指通信的发送方和接收方之间数据信息的传输是在单根数据线上,以每次一个二进制位移动的,它的优点是只需一对传输线进行传送信息,囚此其成本低,适用于远即离通信;它的缺点是传送速度低;串行通信有异步通信和同步通信两种基本通信方一式,同步通信适用于传送速度高的情况,其硬件复杂;而异步通信应用于传送速度在50到19200波特之间,是比较常用的传送方式,本文中使用的就是异步通讯方式。

(6)“看门狗”电路DS1232

在系统运行的过程中,为了避免因干扰或其他意外出现的运行中的死机的情况,“看门狗电路”DS1232会自动进行复位,并且能够重读EEPROM中的设置,以保证系统可以安全正常的运行。

美国Dallas公司生产的“看门狗”(WATCHDOG)集成电路DS1232具有性能可靠、使用简单、价格低廉的特点,应用在单片机产品中能够很好的提高硬件的抗干扰能力。

DS1232具有以下特点:

①具有8脚DIP封装和16脚SOIC贴片封装两种形式,可以满足不同设计要求;

②在微处理器失控状态卜可以停止和重新启动微处理器;

③微处理器掉电或电源电压瞬变时可自动复位微处理器;

④精确的5%或10%电源供电监视;

在本变压器冷却控制系统中,DS1232作为一定时器来起到自动复位的作用,在DS1232内部集成有看门狗定时器,当DS1232的ST端在设置的周期时间内没有有效信号到来时,DS1232的RSR端将产生复位信号以强迫微处理器复位。这一功能对于防止由于干扰等原因造成的微处理器死机是非常有效的,因为看门狗定时器的定时时间由DS1232的TD引脚确定,在本设计中,我们将其TD引脚与地相接,所以定时时间一般取为150ms。

3结论

本装置实现了通过单片机自动控制冷却器的各种运行状态并能精确监测变压器的油温和冷却器的各种运行、故障状态,显示了比传统的控制模式的优越性。(1)能够对变压器油温进行监测与控制;(2)实现了变压器冷却器依据不同油温的分组投切,延长了冷却器的使用寿命,有较好的经济意义;(3)实现了冷却系统的各种状况,如油温、风扇投切和故障等信息的上传,便于值班员、调度员随时掌握情况。

由于固态继电器实现了变压器的无触点控制,解决了传统的控制回路的弊端,同时此控制装置具有电机回路断相与过载的保护功能。由于使用了单片机,因而具有一定的智能特征,实现了油温、风扇的投入、退出和故障等信号的显示以及上传等。通过实际运行表明,该装置的研制是比较成功的。但今后,我们还应该对固态继电器本身的保护进行一些研究,以免主回路因电流过大而造成固态继电器的损坏,以使变压器风扇冷却控制回路更加完善。

参考文献