欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数列考试总结范文

时间:2022-10-24 01:16:42

序论:在您撰写数列考试总结时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数列考试总结

第1篇

数列

第十八讲

数列的综合应用

一、选择题

1.(2018浙江)已知,,,成等比数列,且.若,则

A.,

B.,

C.,

D.,

2.(2015湖北)设,.若p:成等比数列;q:,则

A.p是q的充分条件,但不是q的必要条件

B.p是q的必要条件,但不是q的充分条件

C.p是q的充分必要条件

D.p既不是q的充分条件,也不是q的必要条件

3.(2014新课标2)等差数列的公差为2,若,,成等比数列,则的前项和=

A.

B.

C.

D.

4.(2014浙江)设函数,,

,记

,则

A.

B.

C.

D.

二、填空题

5.(2018江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前项和,则使得成立的的最小值为

6.(2015浙江)已知是等差数列,公差不为零.若,,成等比数列,且,则

7.(2013重庆)已知是等差数列,,公差,为其前项和,若成等比数列,则.

8.(2011江苏)设,其中成公比为的等比数列,成公差为1的等差数列,则的最小值是________.

三、解答题

9.(2018江苏)设是首项为,公差为的等差数列,是首项为,公比为的等比数列.

(1)设,若对均成立,求的取值范围;

(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).

10*.(2017浙江)已知数列满足:,.

证明:当时

(Ⅰ);

(Ⅱ);

(Ⅲ).

*根据亲所在地区选用,新课标地区(文科)不考.

11.(2017江苏)对于给定的正整数,若数列满足

对任意正整数总成立,则称数列是“数列”.

(1)证明:等差数列是“数列”;

(2)若数列既是“数列”,又是“数列”,证明:是等差数列.

12.(2016年四川)已知数列的首项为1,为数列的前项和,,其中,

(Ⅰ)若成等差数列,求数列的通项公式;

(Ⅱ)设双曲线的离心率为,且,求.

13.(2016年浙江)设数列{}的前项和为.已知=4,=2+1,.

(I)求通项公式;

(II)求数列{}的前项和.

14.(2015重庆)已知等差数列满足,前3项和.

(Ⅰ)求的通项公式;

(Ⅱ)设等比数列满足,,求前项和.

15.(2015天津)已知是各项均为正数的等比数列,是等差数列,且,,.

(Ⅰ)求和的通项公式;

(Ⅱ)设,,求数列的前项和.

16.(2015四川)设数列(=1,2,3…)的前项和满足,且,+1,成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列的前项和为,求.

17.(2015湖北)设等差数列的公差为,前项和为,等比数列的公比为,已知,,,.

(Ⅰ)求数列,的通项公式;

(Ⅱ)当时,记=,求数列的前项和.

18.(2014山东)已知等差数列的公差为2,前项和为,且,,成等比数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)令=求数列的前项和.

19.(2014浙江)已知数列和满足.若为等比数列,且

(Ⅰ)求与;

(Ⅱ)设.记数列的前项和为.

(ⅰ)求;

(ⅱ)求正整数,使得对任意,均有.

20.(2014湖南)已知数列{}满足

(Ⅰ)若{}是递增数列,且成等差数列,求的值;

(Ⅱ)若,且{}是递增数列,{}是递减数列,求数列{}的通项公式.

21.(2014四川)设等差数列的公差为,点在函数的图象上().

(Ⅰ)若,点在函数的图象上,求数列的前项和;

(Ⅱ)若,函数的图象在点处的切线在轴上的截距为,求数列

的前项和.

22.(2014江苏)设数列的前项和为.若对任意正整数,总存在正整数,使得,则称是“H数列”.

(Ⅰ)若数列的前n项和(N),证明:

是“H数列”;

(Ⅱ)设

是等差数列,其首项,公差.若

是“H数列”,求的值;

(Ⅲ)证明:对任意的等差数列,总存在两个“H数列”和,使得(N)成立.

23.(2013安徽)设数列满足,,且对任意,函数

,满足

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求数列的前项和.

24.(2013广东)设各项均为正数的数列的前项和为,满足

且构成等比数列.

(Ⅰ)证明:;

(Ⅱ)求数列的通项公式;

(Ⅲ)证明:对一切正整数,有.

25.(2013湖北)已知是等比数列的前项和,,,成等差数列,

且.

(Ⅰ)求数列的通项公式;

(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;

若不存在,说明理由.

26.(2013江苏)设是首项为,公差为的等差数列,是其前项和.

记,,其中为实数.

(Ⅰ)

若,且,,成等比数列,证明:;

(Ⅱ)

若是等差数列,证明:.

27.

(2012山东)已知等差数列的前5项和为105,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)对任意,将数列中不大于的项的个数记为.求数列的前m项和.

28.(2012湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金万元,并将剩余资金全部投入下一年生产.设第年年底企业上缴资金后的剩余资金为万元.

(Ⅰ)用表示,并写出与的关系式;

(Ⅱ)若公司希望经过(≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金的值(用表示).

29.(2012浙江)已知数列的前项和为,且=,,数列满足,.

(Ⅰ)求;

(Ⅱ)求数列的前项和.

30.(2012山东)在等差数列中,,

(Ⅰ)求数列的通项公式;

(Ⅱ)对任意的,将数列中落入区间内的项的个数为,求数列的前项和.

31.(2012江苏)已知各项均为正数的两个数列和满足:.

(Ⅰ)设,求证:数列是等差数列;

(Ⅱ)设,且是等比数列,求和的值.

32.(2011天津)已知数列满足,

(Ⅰ)求的值;

(Ⅱ)设,证明是等比数列;

(Ⅲ)设为的前项和,证明

33.(2011天津)已知数列与满足:,

,且.

(Ⅰ)求的值;

(Ⅱ)设,证明:是等比数列;

(Ⅲ)设证明:.

34.(2010新课标)设数列满足

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和.

35.(2010湖南)给出下面的数表序列:

其中表(=1,2,3

)有行,第1行的个数是1,3,5,,21,从第2行起,每行中的每个数都等于它肩上的两数之和.

(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表(≥3)(不要求证明);

(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12,,记此数列为,求和:

专题六

数列

第十八讲

数列的综合应用

答案部分

1.B【解析】解法一

因为(),所以

,所以,又,所以等比数列的公比.

若,则,

而,所以,

与矛盾,

所以,所以,,

所以,,故选B.

解法二

因为,,

所以,则,

又,所以等比数列的公比.

若,则,

而,所以

与矛盾,

所以,所以,,

所以,,故选B.

2.A【解析】对命题p:成等比数列,则公比且;

对命题,

①当时,成立;

②当时,根据柯西不等式,

等式成立,

则,所以成等比数列,

所以是的充分条件,但不是的必要条件.

3.A【解析】,,成等比数列,,即,解得,所以.

4.B【解析】在上单调递增,可得,

,…,,

=

在上单调递增,在单调递减

,…,,,

,…,

==

=

在,上单调递增,在,上单调递减,可得

因此.

5.27【解析】所有的正奇数和()按照从小到大的顺序排列构成,在数列

中,前面有16个正奇数,即,.当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,=

441

+62=

503

+62=546>=540,符合题意.故使得成立的的最小值为27.

6.【解析】由题可得,,故有,又因为,即,所以.

7.64【解析】由且成等比数列,得,解得,故.

8.【解析】设,则,由于,所以,故的最小值是.

因此,所以.

9.【解析】(1)由条件知:,.

因为对=1,2,3,4均成立,

即对=1,2,3,4均成立,

即11,13,35,79,得.

因此,的取值范围为.

(2)由条件知:,.

若存在,使得(=2,3,···,+1)成立,

即(=2,3,···,+1),

即当时,满足.

因为,则,

从而,,对均成立.

因此,取=0时,对均成立.

下面讨论数列的最大值和数列的最小值().

①当时,,

当时,有,从而.

因此,当时,数列单调递增,

故数列的最大值为.

②设,当时,,

所以单调递减,从而.

当时,,

因此,当时,数列单调递减,

故数列的最小值为.

因此,的取值范围为.

10.【解析】(Ⅰ)用数学归纳法证明:

当时,

假设时,,

那么时,若,则,矛盾,故.

因此

所以

因此

(Ⅱ)由得

记函数

函数在上单调递增,所以=0,

因此

(Ⅲ)因为

所以得

由得

所以

综上,

11.【解析】证明:(1)因为是等差数列,设其公差为,则,

从而,当时,

所以,

因此等差数列是“数列”.

(2)数列既是“数列”,又是“数列”,因此,

当时,,①

当时,.②

由①知,,③

,④

将③④代入②,得,其中,

所以是等差数列,设其公差为.

在①中,取,则,所以,

在①中,取,则,所以,

所以数列是等差数列.

12.【解析】(Ⅰ)由已知,

两式相减得到.

又由得到,故对所有都成立.

所以,数列是首项为1,公比为q的等比数列.

从而.

由成等差数列,可得,所以,故.

所以.

(Ⅱ)由(Ⅰ)可知,.

所以双曲线的离心率.

由解得.所以,

13.【解析】(1)由题意得:,则,

又当时,由,

得,

所以,数列的通项公式为.

(2)设,,.

当时,由于,故.

设数列的前项和为,则.

当时,,

所以,.

14.【解析】(Ⅰ)设的公差为,则由已知条件得

化简得

解得,.

故通项公式,即.

(Ⅱ)由(Ⅰ)得.

设的公比为,则,从而.

故的前项和

15.【解析】(Ⅰ)设数列的公比为q,数列的公差为d,由题意,由已知,有

消去d,整数得,又因为>0,解得,所以的通项公式为,数列的通项公式为.

(Ⅱ)解:由(Ⅰ)有

,设的前n项和为,则

两式相减得,

所以.

16.【解析】(Ⅰ)

由已知,有

=(n≥2),即(n≥2),

从而,.

又因为,+1,成等差数列,即+=2(+1),

所以+4=2(2+1),解得=2.

所以,数列是首项为2,公比为2的等比数列,故.

(Ⅱ)由(Ⅰ)得,

所以=.

17.【解析】(Ⅰ)由题意有,

即,

解得

故或

(Ⅱ)由,知,,故,于是

①-②可得

故.

18.【解析】(Ⅰ)

解得

(Ⅱ),

当为偶数时

19.【解析】(Ⅰ)由题意,,,

知,又由,得公比(舍去),

所以数列的通项公式为,

所以,

故数列的通项公式为,;

(Ⅱ)(i)由(Ⅰ)知,,

所以;

(ii)因为;

当时,,

而,

得,

所以当时,,

综上对任意恒有,故.

20.【解析】(I)因为是递增数列,所以。而,

因此又成等差数列,所以,因而,

解得

当时,,这与是递增数列矛盾。故.

(Ⅱ)由于是递增数列,因而,于是

但,所以

.

又①,②知,,因此

因为是递减数列,同理可得,故

由③,④即知,。

于是

.

故数列的通项公式为.

21.【解析】(Ⅰ)点在函数的图象上,所以,又等差数列的公差为,所以

因为点在函数的图象上,所以,所以

又,所以

(Ⅱ)由,函数的图象在点处的切线方程为

所以切线在轴上的截距为,从而,故

从而,,

所以

故.

22.【解析】(Ⅰ)当时,

当时,

时,,当时,,是“H数列”.

(Ⅱ)

对,使,即

取得,

,,又,,.

(Ⅲ)设的公差为d

令,对,

,对,

则,且为等差数列

的前n项和,令,则

当时;

当时;

当时,由于n与奇偶性不同,即非负偶数,

因此对,都可找到,使成立,即为“H数列”.

的前n项和,令,则

对,是非负偶数,

即对,都可找到,使得成立,即为“H数列”

因此命题得证.

23.【解析】(Ⅰ)由,

所以,

是等差数列.

而,,,,

(Ⅱ)

24.【解析】(Ⅰ)当时,,

(Ⅱ)当时,,

,

当时,是公差的等差数列.

构成等比数列,,,

解得.

由(Ⅰ)可知,

是首项,公差的等差数列.

数列的通项公式为.

(Ⅲ)

25.【解析】(Ⅰ)设数列的公比为,则,.

由题意得

解得

故数列的通项公式为.

(Ⅱ)由(Ⅰ)有

.

若存在,使得,则,即

当为偶数时,,

上式不成立;

当为奇数时,,即,则.

综上,存在符合条件的正整数,且所有这样的n的集合为.

26.【证明】(Ⅰ)若,则,,又由题,

,,

是等差数列,首项为,公差为,,又成等比数列,

,,,,,,

,().

(Ⅱ)由题,,,若是等差数列,则可设,是常数,关于恒成立.整理得:

关于恒成立.,

27.【解析】(Ⅰ)由已知得:

解得,

所以通项公式为.

(Ⅱ)由,得,即.

是公比为49的等比数列,

28.【解析】(Ⅰ)由题意得,

(Ⅱ)由(Ⅰ)得

整理得

由题意,

解得.

故该企业每年上缴资金的值为缴时,经过年企业的剩余资金为4000元.

29.【解析】(Ⅰ)由=,得

当=1时,;

当2时,,.

由,得,.

(Ⅱ)由(1)知,

所以,

,.

30.【解析】:(Ⅰ)由a3+a4+a5=84,a5=73可得而a9=73,则

,,

于是,即.

(Ⅱ)对任意m∈,,则,

即,而,由题意可知,

于是

即.

31.【解析】(Ⅰ)由题意知,

所以,从而

所以数列是以1为公差的等差数列.

(Ⅱ).所以,

从而

(*)

设等比数列的公比为,由知下证.

若,则.故当,,与(*)矛盾;

若,则.故当,,与(*)矛盾;

综上:故,所以.

又,所以是以公比为的等比数列,若,

则,于是,又由,得,

所以中至少有两项相同,矛盾.所以,从而,

所以.

32.【解析】(Ⅰ)由,可得

又,

(Ⅱ)证明:对任意

②-①,得

所以是等比数列。

(Ⅲ)证明:,由(Ⅱ)知,当时,

故对任意

由①得

因此,

于是,

33.【解析】(Ⅰ)由可得

当时,,由,,可得;

当时,,可得;

当时,,可得;

(Ⅱ)证明:对任意

②—③,得

将④代入①,可得

因此是等比数列.

(Ⅲ)证明:由(II)可得,

于是,对任意,有

将以上各式相加,得

即,

此式当k=1时也成立.由④式得

从而

所以,对任意,

对于=1,不等式显然成立.

所以,对任意

34.【解析】(Ⅰ)由已知,当n≥1时,

.而

所以数列{}的通项公式为.

(Ⅱ)由知

从而

①-②得

35.【解析】(Ⅰ)表4为

1

3

5

7

4

8

12

12

20

32

它的第1,2,3,4行中的数的平均数分别为4,8,16,32.

它们构成首项为4,公比为2的等比数列.将结这一论推广到表(≥3),即表各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

将这一结论推广到表,即表各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

简证如下(对考生不作要求)

首先,表的第1行1,3,5,…,是等差数列,其平均数为;其次,若表的第行,,…,是等差数列,则它的第行,,…,也是等差数列.由等差数列的性质知,表的第行中的数的平均数与行中的数的平均数分别是

,.

由此可知,表各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列.

(Ⅱ)表第1行是1,3,5,…,2-1,其平均数是

由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为,公比为2的等比数列(从而它的第行中的数的平均数是),于是表中最后一行的唯一一个数为.因此

.(=1,2,3,

…,

第2篇

关键词:高中数学 数列 函数

在高中数学教学中,数列和函数是其中的两个主要部分。在很多的高考数学题中都常常把数列和函数两者相结合起来,作为一个考察的重点。很多的学生在这方面就感到很大的困难。在高考中也常常容易出现失分的情况,进而影响到整个数学科目的分数。为了能够适应数学教学的发展,很多老师也开始加强对数列和函数结合点的数学知识的教学,帮助学生全面提高数学能力。这也是符合了高考数学学科中关注学生对知识点的有机结合的一个改革要求的。在高中数学中数列和函数知识的结合主要是数列中的等差数列与函数知识相结合,等比数列和函数知识相结合以及等差、等比和函数的综合运用。教师在教学中不断地总结这类题目的解答规律,把握这类题目的本质。下面从一些具体的数学例题来把握数列和函数这两者间的联系。

一、等差数列的知识和函数的联系

这一类题目的解答的方法都是差不多的,教师在进行这一类题目的详细解答之后,要帮助学生进行必要的总结,让学生在面对这一类题目时,不再茫然无措,而是能够比较熟练地完成题目的要求。

二、等比数列和函数之间的综合运用问题

基本上,等比数列和函数之间的综合运用都是按照数列的解题思路来进行的。但是,具体上来说,他们都各自结合了等差数列和等比数列的基本特征。一般来说,教师会采用下面的方式来解答此类题目。基本上了解了这一点,整个等比数列和函数之间的数学问题的解决就是从这个关系出发的。

三、等比、等差数列和函数的综合关系

只要掌握了它们之间的关系,问题就很容易解决了。因为等差数列、等比数列都是可以看作是函数中的特殊函数。在很多的函数问题的解决中常常要求它们引入到数列的方程中。我们可以从函数的另外一个性质来看,数列其实是可以被看成是一个定义域为正整数的集合。这样就很容易构建起了数列和函数的关系。下面以一道等差、等比数列和函数综合的题目来分析这个知识点的结合。

四、结语

在高中数学的教学过程中,综合题目中的数列和函数有时候还会和其他的方程、向量等问题相结合。但是重要的是教会学生把握这些知识点的内容和他们结合点的知识的联系,这样就能够培养学生的数学联系思维能力,提升学生的数学思维能力。

参考文献:

[1]杜洪明.数列与函数综合的问题分类解析[J].数理化学习(高中版),2009,(7):2.

第3篇

关键词: 高中数学教学 数列 解题技巧

数列是高中数学中非常重要的教学内容之一,在大学数学中的应用也非常广泛。高中数学老师在数列的教学过程中,通常是对数列的基本知识进行讲解,通过分析具体的例题和课后练习的布置,让学生自主分析、思考和总结数列知识和其中的规律。但目前学生对于如何掌握和自主总结数列知识及规律还是存在很多困难,很多学生会将通项公式搞混,或者在拿到题目后不知道从何入手,出现考试时失分等不利影响。因此下面将通过列举数列解题的策略及对教学方式进行探讨,从而得出让学生更快更好掌握数列知识的有效手段。

一、掌握一定的数列知识

1.对基础内容要熟记。

2.掌握基础的前提下逐渐扩展。

二、掌握一定的解题技巧

在高中数学的考查过程中,包括高考在内,对于数列的通项公式的考查非常多,而其中的数列求和是重点需要老师讲解的内容,对于数列的求和有几种常见的解题技巧。

1.错位相减法。

2.通过合并来求和。

在数列的各种考查题型中,有时候会出现一些特殊的题型,要知道任何数列都存在一定的规律可以寻找,通常解题的时候可以将这些数列的个别项进行整合,就可以找到该数列的特殊性质了。遇到这样类型的题,老师要教会学生对数列进行一定的整合,从而求出特殊性质中各项的和,最后进行整体的求和,将题目解答出来。

3.利用数学归纳法解决不等式

在解题过程中,数学归纳法是一个常用的解题技巧,通常在解答与正整数n相关的题目中,多被运用在证明不等式的过程中。要想让学生求一个通项公式还是存在些许的难度,很多学生在面对证明题时都不知道应该如何入手,往往这是考试的失分点。老师应该更多地引导学生利用数学归纳法进行不等式证明,这样才可以让学生在难度较大的题目上都可以获得一定的分数,避免考试出现知识点掌握不平衡的现象。

三、老师在教学过程中该如何培养学生更好地学习数列知识

1.引导学生进行推理,培养其创新能力。

2.锻炼学生自主推理,得出通项公式。

在素质教育的要求中,高中数学必修中要更注重发展学生的自主推理能力,因此老师在教学过程中要做到合乎情理地推理和演绎,在培养学生创新意识的同时,提高学生严谨的数学思维逻辑能力。在上课过程中,老师应该做到的是自身对于概念和定理都了如指掌,从而为学生的推理论证打下一定的基础,做好良好的示范作用,培养学生进行良好的推理论证习惯;挖掘推理过程需要的素材,在教学过程中通过布置好合理的推理论证联系,通过不同的上课方式,有条理、有差异性地培养不同程度学生的推理能力等。

总而言之,数列考查一直是高考数学中必考的重点内容,需要老师在高中数学教学过程中对数列问题进行具体深入的讲解。在讲解过程中,老师要更多地注重数列问题的解题技巧,只有让学生真正掌握了高中数学数列问题,才可以更好地提高学习效率,让以后的考试或者更深入地学习都不那么吃力。

参考文献:

[1]孟祖国.高中数列的有效教学研究[D].华中师范大学,2011[2].

[2]张婷.高中数列不同版本教科书内容的比较研究[D].东北师范大学,2009[3].

第4篇

关键词:高考题; 通项公式; 初等数学; 高等数学; 递推式; 解法

数列在中学数学中既具有相对的独立性,又具有较强的综合性,它是初等数学与高等数学的一个重要衔接点,因此历年高考中占有较大比重。在选择、填空题中突出“小、巧、活”的特点;在解答题中,常以一般数列为载体,重点放在数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上,其中求通项公式即为历年高考考查的重点之一,下面介绍一些中学数学数列通项公式的一些常见解法。

一、观察、推理法

根据数列前n个项求通项时,所求通项公式通常不是唯一的,常用观察、推理法求解,通过观察 与n之间的关系,用归纳法写出一个通项公式,体现了由特殊到一般的思维规律。

例.求出下列数列的通项公式

1、数列是一种特殊的函数,复习时要善于利用函数的思想来解决;

2、运用方程思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量 ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代换”来简化运算;

3、分类讨论思想在本章尤为突出,复习时考虑问题需全面,如等比数列的 两种情况等;

4、等价转化是数列的常用解题思想,如 的转化,将一些数列转化成等差(比)数列来解决,复习时,要及时总结归纳。

5、深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本节的关键。

6、理科数列考查分析问题、解决问题能力的综合题,常蕴含着考要的数学思想方法(如:分类讨论思想、函数与方程的思想、化归转化思想、换元法、构造(或建模)法等).难度有逐年上升趋势,复习中应注意加强数列与其它知识的联系与交汇内容的强化。

参考文献

[1]《中学教研:数学版》[].2009年第1期

[2] 杜丽英.《走向高考》[C].2006.4

[3]《数学辅导报人教高考版》[N]. 2009.5

第5篇

关键词: 2009年高考试题数列比较分析

高考是全国普通高等院校统一招生考试的简称,是一种竞争、选拔性的考试。作为我国高中教学的唯一评价标准,它关系到社会的方方面面。数学是高考的主要考试科目,数学试题又是高考中数学科目的关键,因此高考中的数学试题也是值得注意的方面。

数列在整个高中数学教学内容中,处于数学知识和教学方法的汇合点。与高中的许多知识,如方程、不等式、函数、解析几何、三角函数等,都有着密切的联系。在数列的题目中,这些知识点都能充分运用。因此数列部分在我国高考数学这一科目中占有重要地位。

对2009年全国高考的18份数学理科试卷:全国卷Ⅰ,全国卷Ⅱ,北京卷,湖北卷,陕西卷,四川卷,安徽卷,福建卷,辽宁卷,江苏卷,山东卷,广东卷,浙江卷,天津卷,江西卷,重庆卷,湖南卷,宁夏、海南卷的比较分析,均有数列这部分内容的试题。对其中的考查题型与命题知识点的分析如下。

一、考查题型比较

高考数学考试的题型有三种:选择题、填空题和简答题。其中填空题和选择题都属于提供型试题。选择题与填空题在数学考试中每道题的分值在5分左右,而简答题的分值一般都在10分以上。

所研究的18套2009年高考试卷,都涉及了数列内容的试题。而且其中在11份试卷中,数列部分的内容被列为简答题,在这11份试卷中有7份试卷,除了将数列的题目列为简答题外,也将其知识点放在填空或选择题中考查,数列知识点在卷面上的分值都在12分以上。只有5份试卷对数列知识的评价分值放在5分左右,只将其作为填空题或者选择题。有两份试卷对这部分内容既作为选择题又作为填空题来考查,分值都在10分左右。

通过比较发现,全国卷的两套试题和安徽卷、江苏卷、江西卷、广东卷、重庆卷对数列部分的试题分值都达到了15分以上,考查的内容均为综合性的知识,大多涉及数列通项公式的推导和数列与函数知识点、数列与不等式知识点的结合。而北京卷、陕西卷、福建卷、浙江卷这几套高考试题对数列的试题分值较小,只有5分左右,而且以考查基本知识点为主。

二、考查的知识点

从考查的知识点来说,高考在考查数列部分内容过程中主要有以下几个主要的知识点。

1.等差、等比数列的概念、性质、通项公式、前n项和公式的应用,以及它们之间的关系。

如2009年浙江卷填空题第11题。

这道题主要考查了等比数列的通项公式及前n项和公式,以及它们之间的关系。在历年的考试题中,对等差、等比数列的基本概念、性质、通项公式、前n项和,以及通项公式与前n项和之间关系的题目屡见不鲜。不仅在填空选择题,还在简答题中也作为基本题型出现。

2.数列的求和问题,递推数列问题,数列应用问题。

如2009年湖北卷简答题第19题。

这道题主要考查数列的通项公式、等差数列的定义、数列求和、数学归纳法等基础知识和基本技能,考查学生分析问题的能力和推理论证的能力。解决此类问题要熟练数列等差、等比数列的通项公式及前n项和的公式,也要掌握常用的通项公式及前n项和的求法,如错位相减法,拆项法等。这种题目主要是数列知识点的综合运用。

3.数列与其它知识点的综合问题。

如:2009年广东卷第21题是一道考查函数、数列、不等式的综合题目。

这道高考题以数列知识为基础,分别考查了数列的递推关系、数列的通项公式、不等式的放缩等内容,是函数、数列、不等式的综合题目,还能够考查学生的抽象概括能力,推理论证能力,运算求解能力和创新意识。

在对数列这部分高考试题的研究,我们不难发现数列内容命题的多元化。这些题目也反映出了我国高考数学命题的方方面面。

三、总结与反思

1.总结

通过对2009年不同数学试卷中数列部分命题研究,以及对数列试题的异同分析,我们不难得出以下结论。

(1)单纯基础知识点的试题较少,学生能力的考查较多。

在这18份数学高考试卷中,就数列这部分内容来看,单纯考查学生数列的基本概念、性质、通项公式的题目很少,大部分的试题是数列知识的综合运用、学生的归纳推理能力,以及数列知识与其它数学知识的综合运用。

“过去多年的改革基本上是在科目设置上,科目多少上做文章,没有去触动影响高中学生能力和素质的关键――高考的内容,把高考内容作为改革的重点是新一轮高考改革的关键”。[1]而这里所说的高考内容就是高考试题。数列试题的命题现在已经重视考查学生的数学能力及数学思想方法。

(2)高中课程改革对高考数列试题的影响。

高中课程改革与高考改革是当前教育改革的两大热点问题,高考的命题关系到新课程改革的实施与高校人才的选拔。作为高中课程改革的一部分,高考命题也充分反映了高中新课程标准的要求。“数列作为一种特殊的函数,是反映自然规律的基本数学模型”,“学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用他们解决一些实际问题”。[2]

各地的高考卷中,数列这部分的命题表现出了题目新颖,提供了新的信息、新的材料,从不同的角度对数列的知识点进行考查,通过与不等式、方程、函数、解析几何等知识点融合起来,引导学生从不同的角度思考数列的模型。

2.2009年高考试题对2010年高考的启示

2010年普通高校招生全国统一大纲――数学(理)(必修+选修Ⅱ)中对数列这部分的考试要求为:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。大纲中还强调了数学能力、数学思想方法、数学意识等方面提出了考查要求。从2009年各种数学试卷对数列命题可以看出,2010年的试卷中仍然不会单独地考查单独的数列知识点,仍然会以数列的综合题型或与解析几何、函数、不等式等知识点结合起来。因此,学生学习数列的过程中,应运用数列的思想,通过类比归纳,将数列的通项公式之间的关系和数列与其它数学知识点之间的关系结合起来,真正认识数列的本质。

参考文献:

[1]周远清.实现高考改革的新突破[J].中国高等教育,2000,(19).

第6篇

在各级各类的招聘考试中,经常出现一些有关数列的填空题或选择题.给出数列的一些项,让应聘者通过观察这些项的规律,填上指定的某一项;或者给出几个选项,让应聘者从中选出正确的答案.笔者认为,这类问题虽然可以考察应聘者归纳总结、合情推理等方面的能力,但是,至少存在下面两个问题值得我们探讨:

1 有些数列的规律比较特殊,有偏难偏怪之嫌,应聘者很难在短时间内找到它的规律

例如,有这样一道题:观察下面这个数列的前五项,写出它的第六项:61,52,63,94,46.假如你是应聘者,请你不妨试一试,看看需用多长时间能够得出答案.命题者给出的答案是18.为什么答案是18呢?理由是这样的:把这个数列的每一项的个位数字与十位数字对调,前五项成为:16,25,36,49,64,分别是 42,52 ,62,72 ,82 ,按照这个规律,后面一项应该是 92,即81,对调81的个位数字与十位数字,就得到18.这类数学问题,作为茶余饭后的游戏玩玩尚可,如果作为一种正是招聘的试题,那么就显得不太合适了.虽然这类问题也能考查应聘者的归纳和推理能力,但是,从选拔人才的角度来讲,却不是首选的问题。

笔者查看了近几年各级公务员招聘的部分试题以及一些模拟试题;也与一些应聘者进行过交谈.笔者了解到:试题中所给出的数列的规律比较特殊,往往使一些应聘者望而却步,从而放弃对这类问题的进一步思考,他们宁愿把有限的考试时间和精力放在解决其它问题上.这样一来,也就谈不上考查归纳总结、合情推理等方面的能力,当然也就失去了这类试题的意义。

2 答案的不唯一性,使这类问题的科学性遭到质疑

对于以选择题形式给出的问题来说,我们有充足的理由可以说明,几个备选答案都是正确的;而对于以填空题形式给出的问题来说,我们甚至可以说,填上任何的正整数都是正确的.从这个角度来说,这类试题缺乏科学性,甚至可以说是错误的. 也许你对这种说法持怀疑态度,但是,看完下面的讨论之后,你就会打消疑虑.

实际上,对于任意的有穷数列,如果只给出有限项,而要求填写指定的某一项,那么我们都可以构造出类似于公式(1)的数列的通项公式,从而找到符合"规律"的若干个数.

因此我们说,类似于前文所述的招聘考题是不科学的!

下面我们给出2011年与2012年河北省公务员录用考试中的相关题目,有兴趣的读者可以仿照上面的方法,自己试一试.

2011年河北省公务员录用考试《行政职业能力测验试卷》第二部分"数量关系"第一题数字推理:给你一个数列,但其中缺少一项,要求你从四个选项中选出你认为最符合数列排列规律的一项,来填补空缺。

(1) -1,0,1,1,4,( )

A.8 B.11 C.25 D.36

(2)6,7,3,0,3,3,6,9,5,( )

A.1 B.2 C.3 D.4

(3)257,178,259,173,261,168,263,( )

A.163 B.164 C.178 D.275

(4)2,3,4,9,32,( )

A.47 B.83 C.128 D.279

(5)1,1,2,6,24,( )

A.48 B.96 C.120 D.122

2012年河北省公务员录用考试《行政职业能力测验试卷》第二部分"数量关系"第一题数字推理:给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺,使之符合原数列的排列规律。

(1) 0,0,6,24,60,( )

A.180 B.196 C.210 D.216

(2)2,3,7,45,2017,( )

A.4068271 B.4068273 C.4068275 D.4068277

(3)2,2,3,4,9,32,( )

A.129 B.215 C.257 D.283

(4)0,4,16,48,128,( )

A.280 B.320 C.350 D.420

(5)0.5,1,2,5,17,107,( )

第7篇

关键词:递推数列;通项公式;方法

中图分类号:G633.6 文献标识码:B 文章编号:1006-5962(2013)07-0243-01

引言

近些年,高考数学试卷中不乏有求递推数列通项公式的题目涌现,特别是在解答题部分。就求递推数列的通项公式本身而言,涵盖了全面的数学综合知识,对学生的观察能力、创造性思维和发散性思维能进行有效的考察。仔细分析,不难发现所涉及的题目求通项公式的题目难度呈现逐年递增的态势。足可见,求递推数列通项公式已成为高考考查的侧重点之一。因而,在高考复习时,对通项公式的有关求法与知识点应进行全面的归纳与总结。

根据多年的课堂教学实践,本人对求数列的通项公式的常用方法进行了总结和归纳,以便各位考生在解题的过程中,选择最佳方法,提高做题速度和准确度。

4.结语

数列在高考数学中的举足轻重,是数学每年必考的重要知识点之一。在创新题型中等差数列及等比数列仍然作为考查的重点。对于数列通项公式的考查渗透了分类讨论和类比等重要的数学思想。因此,各位考生在备考时应着重培养自身分析与解决问题的能力,抓重点,把握考点,最终在高考中取胜。

以上是几种常见的求数列通项公式的方法。需要指出的是求数列的通项公式并没有固定的方法,这里所举方法,仅让大家注意的题型,在具体的做题过程中还是要灵活选择,具体分析。若有不当之处,敬请各位同仁批评指正。

参考文献

[1]杜平秋.例谈利用构造法求数列通项公式[J];大观周刊; 2011,(32):161.

[2]王荣松.高中数学课堂教学实践总结-求数列通项公式的常用方法归纳[J];考试周刊; 2009,(32):68.

[3]高明旭.浅谈几种常见数列通项公式的求法[J]; 理科爱好者(教育教学版). 2009,1(1):66.

[4]范子静.2011年高考数列创新题型分析[J];中国科教创新导刊; 2012,(27): 77.

相关范文