[ 登录/注册 ] 购物车(0)
期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文
摘要:卷积神经网络(CNN)具有权值数量少,训练速度快等优点,在图像识别、机器视觉等领域得到广泛应用。本文提出了一种卷积神经网络的自适应加权池化算法,算法通过生成合并通道,并在学习掩模的引导下汇集特征,优化了子采样模型的特征提取,有效改善了网络的识别准确性和快速性。利用该算法对磁片表面缺陷进行检测实验,实验结果表明,本文提出的池化模型使卷积神经网络对特征的提取更加精确,同时提高了收敛速度和鲁棒性,并且可以应用于各种深度神经网络体系结构中。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
统计源期刊 下单
国际刊号:1002-0470
国内刊号:11-2770/N
国际刊号:2096-7586
国内刊号:42-1907/C
国际刊号:1672-528X
国内刊号:50-1163/TP
多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。
推荐期刊保障正刊,评职认可,企业资质合规可查。
诚信服务,签订协议,严格保密用户信息,提供正规票据。
如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。