摘要:针对目标人脸短暂离开画面后不能继续跟踪的问题,提出将增量分层判别回归方法(IHDR)与改进的核相关滤波(KCF)跟踪算法相结合,以解决人脸持续跟踪问题。首先,提取人脸光照不变特征,增量构建人脸特征IHDR树。然后,检索IHDR树识别目标人脸,通过循环矩阵获取人脸正负样本,训练岭回归分类器对人脸进行跟踪。在人脸短暂离开画面时,重新识别目标人脸,使用识别结果重新初始化跟踪器,实现对人脸的持续跟踪。此外,针对KCF跟踪器的跟踪框尺度不能自适应的问题,对KCF跟踪器进行了改进,设置3个尺度不同的模板区域并计算响应,以响应最大的区域的尺度为跟踪框的尺度。最后,在不同光照下进行了动态人脸识别实验,识别率达到97.84%。与传统跟踪算法进行对比,所提方法能够在尺度上自适应跟踪目标人脸,并满足实时性要求。在人脸短暂离开画面的视频中,该方法亦能实现对目标持续跟踪。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社