欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

机器学习的四旋翼植保机目标识别研究

时间:2023-03-23 16:08:57

序论:在您撰写机器学习的四旋翼植保机目标识别研究时,参考他人的优秀作品可以开阔视野,小编为您整理的1篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

机器学习的四旋翼植保机目标识别研究

摘要:为了提高无人植保机的目标识别能力,提升其在复杂环境下自主化作业的适应性,将机器学习算法引入到了植保机目标自主识别系统的设计上,利用神经网络学习算法和图像增强处理技术提高了识别系统的准确性。模拟植保机的作业环境,在作业区域设置了大量的作物目标,通过植保机对目标物的识别对其性能进行了测试,结果表明:植保机可以准确地识别作物目标,满足自主作业时对目标自主识别的设计需求。

关键词:无人植保机;四旋翼飞行器;机器学习;神经网络;目标识别

0引言

四旋翼飞行器是一种飞行平稳的无人飞行器,通过整体一体化设计后,结构变得简单,易于维护,且负载能力强和抗阻能力好,被广泛地应用到了植保机的设计上。在无人植保机的设计上,目标自主识别是视觉系统设计的关键。如果植保机可以自主识别作业目标,在没有定位导航仪器的情况下,植保机依然可以根据自己识别的作物作业,会大大提高作业的适应能力,实现在复杂条件下的作业。因此,植保机目标识别系统的研究对提升其自身的自主化作业水平具有重要的意义。

1无人植保机在农业生产上的应用

近年来,一种新型的植保机被应用到农业生产过程中,以代替人工实现无人化作业,从而极大地提高了植保作业效率,降低了植保作业过程中农药对作业人员的伤害。在各类无人植保机中,四旋翼无人植保机是最常用的,其具有较好的平稳性,抗阻性能强,操作简单,可以在复杂情况下进行大面积作业。在植保机无人化作业过程中,作业目标的自主识别是提高作业智能化水平的关键。植保机利用自身的视觉系统可以对作业目标进行识别,其流程如图1所示。在作物识别时,植保机通过机器视觉系统对目标作物进行图像采集,在采集到的大量图像中,机器视觉系统需要对图像进行增强处理,以达到提取目标作业区域的目的;然后,通过相关的算法对图像进行特征提取,再将图像和记忆存储的图像进行比对,以识别作物。在识别时,可以利用智能算法的大量训练提高记忆精度,进而提高作物目标识别的准确性。识别到农作物后,控制器通过质心坐标计算得到作物的位置,将无人植保机移动到作业区域执行植保作业。

2基于机器学习的目标识别算法

机器学习算法是当前智能控制领域研究的一个热点问题,采用机器算法可以使机器具有类人的学习能力,从而实现智能化控制。将机器学习算法应用农业领域,可以提高农机的自动化作业水平,实现自主化作业。四旋翼无人机是一种先进的无人驾驶飞行装置,由于其飞行的平稳性,被应用到农业植保领域,实现了植保过程的无人化作业。在农机自主作业时,作业目标的识别能力是一个非常重要的参数。利用机器视觉技术,植保机可以自主识别作业区域,从而有效地提高作业效率。特征提取是目标识别的一种可靠手段,通过特征的提取植保机识别到农作物区域,便可以按照指定的任务程序进行作业。在特征提取算法中,边缘检测算法是其中的一种。利用边缘检测算法可以将目标区域和背景之间区别开,得到目标和背景的边缘线,进而成功地捕捉到作业区域的目标。在进行边缘检测之前,需要利用增强算法对图像进行处理,从而提高目标识别的准确性。利用边缘检测算法对目标区域进行识别主要是由4个步骤组成,包括滤波、增强处理、检测和定位。植保机利用机器视觉系统对农作物作业区域的图像进行采集,再利用边缘处理技术对农作物作业区域的图像进行特征提取,利用机器学习算法对农作物的目标区域进行识别,进而得到区域的位置;定位后,控制中心发出控制指令,移动植保机到达作业区域位置,进行喷洒农药的作业。整个过程由此可以实现无人化控制。

3四旋翼无人植保机性能测试

近年来,很多无人化作业机械被应用到农业生产过程中,其中典型的无人机包括无人机驾驶播种机和联合收获机、采摘机器人、无人植保机等。在无人植保机系列中,由于四旋翼无人飞行器的飞行平稳性较好,抗风能力强,因此作为典型的无人植保机被设计出来。在作业过程中,无人机植保机如果可以自主地识别作业区域,并可以自动导航,便可以实现无人化作业。谷上飞是珠海羽人农业航空有限公司根据中小型农田植保作业的需求开发的一款无人植保机,如图3所示。其飞行稳定,抗风性好,喷药的穿透性较好,操控较为简单,一般的农田管理人员在短时间内都可以掌握其操作要领。根据无人植保机的作业环境,仿照无人机的结构特征,对四旋翼植保机进行了设计,其控制部分框架如图4所示。飞行控制模块是整个飞行器的核心,该模块可以接收并分析传感器采集到的各种农作物的信息数据,接收和分析速度传感器传来的飞行姿态数据,包括速度传感器和角度传感器。本文主要研究内容是相机传感器采集到农作物后对目标作业区域进行识别。因此,在选择控制器芯片时可以采用数据处理能力较强的芯片,并具有可编程性。根据无人植保机对作业区域自动识别的设计需求,采用了ARM生产的一款处理能力强大、可扩展能力好、性价比高STM32F105微型控制单片机。为了验证无人植保机自主识别目标的可行性,将机器学习算法以编程的方式嵌入到植保机的控制系统中,并模拟植保机作业环境设置农作物目标,通过对目标的识别测试植保机的性能。进行目标识别时,以农田平面为坐标平面,以X向和Y向坐标为点,设置了一系列的农作物目标点;然后利用无人植保机对这些目标物进行识别,得到了目标实际物和无人机识别并定位到的坐标点;将这些点拟合成曲线,如图6所示。由对比结果可以看出:无人植保机能够较为准确地识别到农作物目标,并可以精确定位农作物的位置,为无人植保机的自主作业提供了数据参考。

4结论

为了提高植保机无人化作业的水平及目标自主识别能力,将机器学习算法用到了机器视觉系统的设计上,利用图像边缘处理对特征图像进行提取。然后与记忆图像进行比对,以达到识别作业区域的目的,并通过神经网络算法对图像识别过程进行了训练,提高了目标识别的准确性。最后对植保机目标识别的准确性进行了验证,结果表明:植保机可以较为准确地识别到农作物目标,对于提高其自身的无人化作业能力和环境适应性具有重要的意义。

参考文献:

[1]李茗萱,张漫,孟庆宽,等.基于扫描滤波的农机具视觉导航基准线快速检测方法[J].农业工程学报,2013,29(1):41-47.

[2]王莎,伍萍辉,王秀,等.基于北斗导航的联合收割机作业面积测量系统[J].农机化研究,2015,37(1):39-42.

[3]张文利,郭宇,陈开臻,等.基于预适应路径追踪的收割机RAC导航系统[J].中国农业信息,2020,32(1):1-8.

[4]曾宏伟,雷军波,陶建峰,等.低对比度条件下联合收割机导航线提取方法[J].农业工程学报,2020,36(4):18-25.

作者:魏纯 李明 龙嘉川 姚敏 单位:武汉东湖学院电子信息工程学院 空军预警学院信息管理中心