摘要:针对制冷机轴承振动信号被复杂干扰淹没,难以提取有效特征问题,提出一种提升总体经验模态分解(EEMD)的轴承振动信号降噪方法。首先,利用小波包精细分解特性,基于白噪声检验原理提取第一个IMF分量中有用信号;然后,利用噪声和信号主导的本征模态分量(IMFs)与原始信号互相关系数差异巨大的特性,对分解后的IMFs进行区分,分别使用小波包浮动阈值方法和SG滤波算法提取高、低频分量的有用信号,克服了传统EEMD降噪时信号失真、IMFs选择的难题。为了验证方法的有效性,进行了数字仿真与制冷机轴承振动信号应用验证分析,结果表明,所提方法基于一种精细的决策处理方法,可以将淹没在复杂干扰中的有用特征提取出来,为制冷机轴承状态监测提供有效的预处理手段。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社