基于VMD样本熵和KELM的输电线路故障诊断

作者:谢国民; 黄睿灵; 丁会巧 辽宁工程技术大学电气与控制工程学院; 葫芦岛125105; 国家电网乌鲁木齐供电公司; 乌鲁木齐830011

摘要:针对输电线路短路故障危害大,故障识别率较低的情况,提出基于变分模态分解(VMD)样本熵与核极端学习机(KELM)相结合的输电线路故障诊断方法,提高输电线路故障诊断的正确率。首先,采用VMD对故障后的三相电压进行分解,得到一系列三相平稳的模态分量;其次分别计算每组各分量的样本熵值,作为输电线路故障提取特征,组成样本库;以提取的输电线路故障特征输入到核极端学习机进行训练,获取诊断模型,然后比较其与极限学习机(ELM)、支持向量机(SVM)和BP神经网络的诊断效果。仿真结果表明,VMD样本熵+KELM的输电线路故障诊断模型精度高于其他3种算法,且运算速率更快,噪声鲁棒性更好。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

电子测量与仪器学报

北大期刊 下单

国际刊号:1000-7105

国内刊号:11-2488/TN

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。