光伏阵列故障类型的改进型RBF神经网络识别算法

作者:王福忠; 裴玉龙 河南理工大学电气工程与自动化学院; 焦作454000

摘要:光伏阵列是光伏系统中非常重要的组成部分。传统的BP神经网络诊断算法有着精度低、收敛速度慢等缺点,为了精确地诊断出光伏阵列内部的故障位置及其类型,通过分析阵列开路、短路、老化、阴影和电池板裂片5种故障,提出了一种改进型RBF神经网络的故障诊断识别算法。首先,建立RBF神经网络的光伏阵列故障诊断模型,确定基于遗传算法的故障模型隐层中心的确定方法,然后针对基于粒子群优化算法的网络模型进行自适应权重寻优的仿真实验。最后,将优化的算法与传统RBF神经网络算法进行对比。结果表明:该优化算法不仅可以有效地诊断光伏阵列的故障类型,还可以提高故障诊断的准确率。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

电源学报

北大期刊 下单

国际刊号:2095-2805

国内刊号:12-1420/TM

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。