多分类支持向量机在电力变压器故障诊断中的应用

作者:孙志鹏; 崔青; 张志磊; 王涛; 张天伟 东北电力大学电气工程学院; 吉林吉林132012; 河北省电力公司石家庄供电公司; 石家庄050051; 北京润伟天华电力科技有限公司; 北京102211

摘要:支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好地解决了小样本、高维数、非线性等学习问题。支持向量机分类性能的好坏很大程度依赖于核函数与核参数的选取。目前常用的参数寻优方法有网格搜索法、遗传算法和粒子群优化算法。本文提出了一种基于支持向量机多分类的电力变压器故障诊断模型,以变压器油中5种特征气体作为输入,5种故障状态作为相应的输出,选用高斯径向基核函数,使用网格搜索法获取最优参数C、g。经实验表明,该模型准确率为83.3%,具有较好的实用性。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

电气技术

部级期刊 下单

国际刊号:1673-3800

国内刊号:11-5255/TM

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅