基于径向基函数优化的短期负荷预测方法

作者:陈玉辰; 王子健; 姜宁; 李扬 东南大学电气工程学院; 南京210096; 国网陕西省电力公司经济技术研究院; 西安710075

摘要:为提高短期负荷预测模型的精确度,研究了一种基于径向基函数(radial basis function,RBF)神经网络参数优化的短期负荷预测方法。首先,对短期负荷影响因素进行分析,建立了计及温度累积效应的温度变量量化模型和计及负荷修正的日期类型变量量化模型;其次,建立基于RBF神经网络的短期负荷预测模型,分别基于近邻传播算法和遗传算法对RBF神经网络隐层节点的中心矢量和基宽参数进行优化;最后,基于某地区轻工业行业的夏季负荷数据进行了算例分析,结果表明,相比于未考虑参数优化的预测模型,可在一定程度上提高短期负荷的预测精度。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

电力需求侧管理

统计源期刊 下单

国际刊号:1009-1831

国内刊号:32-1592/TK

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。