摘要:为提高短期负荷预测模型的精确度,研究了一种基于径向基函数(radial basis function,RBF)神经网络参数优化的短期负荷预测方法。首先,对短期负荷影响因素进行分析,建立了计及温度累积效应的温度变量量化模型和计及负荷修正的日期类型变量量化模型;其次,建立基于RBF神经网络的短期负荷预测模型,分别基于近邻传播算法和遗传算法对RBF神经网络隐层节点的中心矢量和基宽参数进行优化;最后,基于某地区轻工业行业的夏季负荷数据进行了算例分析,结果表明,相比于未考虑参数优化的预测模型,可在一定程度上提高短期负荷的预测精度。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社