摘要:心脏心律失常数据集的心电图(ECG)数据往往存在各心律失常类型下样本数量不平衡问题.针对此问题,提出了一种新的模式识别分类方法,即改进的基于核的差重建的加权k-近邻分类器(modified kernel difference-weighted k-nearest neighbor classifier, MKDF-WKNN),通过引入修正因子对含样本数较多的类别进行权值抑制,对含样本数较少的类别进行权值的加大,并使用UCI心脏心律失常数据集对ECG数据进行分类.实验结果表明,提出的算法和其他一些基于KNN的算法如KNN,DS-WKNN,DF-WKNN和KDF-WKNN相比,对于不平衡的心律失常数据集的分类有更好的效果.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社。
东北大学学报·自然科学版杂志, 月刊,本刊重视学术导向,坚持科学性、学术性、先进性、创新性,刊载内容涉及的栏目:材料与冶金、信息与控制、机械工程、资源与土木工程、管理科学等。于1955年经新闻总署批准的正规刊物。