摘要:根据kd曲率计算方法具有比传统方法简捷的特点,提出了基于kd曲率自适应支撑邻域的角点检测方法.首先,用Canny算子提取初步轮廓曲线,然后进行融合填补,再筛选出高质量的轮廓曲线,并对曲线进行高斯核平滑.从算法鲁棒性考虑,提出一种新的思想,即寻找一个可以确定一条曲线总体支撑邻域的参数,使其随着仿射变换在噪声干扰下发生有规律的变化,从而实现自适应支撑邻域的角点检测,并用自适应阈值和非极大值抑制来排除伪角点和弱角点,最后提取精确的角点.通过实验与Harris、He&Yang、CPDA、KD、ANDD等算法对比,该算法的定位误差和错误率较低,而平均重复率明显较高,具有更好的角点检测性能.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社