融合可变形卷积与条件随机场的遥感影像语义分割方法

作者:左宗成; 张文; 张东映 武汉大学遥感信息工程学院; 湖北武汉430079; 欧特克(中国)软件研发有限公司; 上海200122; 郑州大学水利与环境学院; 河南郑州450002

摘要:当前,深度卷积神经网络在遥感影像语义分割领域取得了长足的发展.标准的卷积神经网络由于卷积核的几何形状是固定的,导致对几何变换的模拟能力受到限制.本文引入一种可变形卷积来增强卷积网络对空间变换的适应能力.由于神经网络架构中使用了池化层操作,这会导致在输出层未能充分地对局部对象进行准确的分割.为了克服这种特性,本文将神经网络输出层的粗糙预测分割结果通过全连接的条件随机场来进行处理,以此来提高对影像细节的分割能力.本文方法易于采用标准的反向传播算法进行端到端的方式训练.ISPRS数据集上的测试试验结果表明本文方法可以有效地克服遥感影像中分割对象的复杂结构对分割结果的影响,并在该数据集上获得了当前最好的语义分割结果.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

测绘学报

北大期刊 下单

国际刊号:1001-1595

国内刊号:11-2089/P

杂志详情
相关热门期刊

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。