Closing the loop between data mining and fast decision support for intelligent train scheduling and traffic control

作者:Ingo; A.; HANSEN Delft; University; of; Technology; Delft; 2628CD·thc; Netherlands

摘要:The existing Big Data of transport flows and railway operations can be mined through advanced statistical analysis and machine learning methods in order to describe and predict well the train speed, punctuality, track capacity and energy consumption. The accurate modelling of the real spatial and temporal distribution of line and network transport, traffic and performance stimulates a faster construction and implementation of robust and resilient timetables, as well as the development of efficient decision support tools for real-time rescheduling of train schedules. In combination with advanced train control and safety systems even (semi-.) automatic piloting of trains on main and regional railway lines will become feasible in near future.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

北京交通大学学报

北大期刊 下单

国际刊号:1673-0291

国内刊号:11-5258/U

杂志详情

服务介绍LITERATURE

正规发表流程 全程指导

多年专注期刊服务,熟悉发表政策,投稿全程指导。因为专注所以专业。

保障正刊 双刊号

推荐期刊保障正刊,评职认可,企业资质合规可查。

用户信息严格保密

诚信服务,签订协议,严格保密用户信息,提供正规票据。

不成功可退款

如果发表不成功可退款或转刊。资金受第三方支付宝监管,安全放心。

学术顾问

发表咨询 加急见刊 文秘咨询 杂志订阅